You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1330 lines
53 KiB
1330 lines
53 KiB
#include <AP_HAL/AP_HAL.h> |
|
#include "AC_PosControl.h" |
|
#include <AP_Math/AP_Math.h> |
|
#include <AP_Logger/AP_Logger.h> |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
#if APM_BUILD_TYPE(APM_BUILD_ArduPlane) |
|
// default gains for Plane |
|
# define POSCONTROL_POS_Z_P 1.0f // vertical position controller P gain default |
|
# define POSCONTROL_VEL_Z_P 5.0f // vertical velocity controller P gain default |
|
# define POSCONTROL_ACC_Z_P 0.3f // vertical acceleration controller P gain default |
|
# define POSCONTROL_ACC_Z_I 1.0f // vertical acceleration controller I gain default |
|
# define POSCONTROL_ACC_Z_D 0.0f // vertical acceleration controller D gain default |
|
# define POSCONTROL_ACC_Z_IMAX 800 // vertical acceleration controller IMAX gain default |
|
# define POSCONTROL_ACC_Z_FILT_HZ 10.0f // vertical acceleration controller input filter default |
|
# define POSCONTROL_ACC_Z_DT 0.02f // vertical acceleration controller dt default |
|
# define POSCONTROL_POS_XY_P 1.0f // horizontal position controller P gain default |
|
# define POSCONTROL_VEL_XY_P 1.4f // horizontal velocity controller P gain default |
|
# define POSCONTROL_VEL_XY_I 0.7f // horizontal velocity controller I gain default |
|
# define POSCONTROL_VEL_XY_D 0.35f // horizontal velocity controller D gain default |
|
# define POSCONTROL_VEL_XY_IMAX 1000.0f // horizontal velocity controller IMAX gain default |
|
# define POSCONTROL_VEL_XY_FILT_HZ 5.0f // horizontal velocity controller input filter |
|
# define POSCONTROL_VEL_XY_FILT_D_HZ 5.0f // horizontal velocity controller input filter for D |
|
#elif APM_BUILD_TYPE(APM_BUILD_ArduSub) |
|
// default gains for Sub |
|
# define POSCONTROL_POS_Z_P 3.0f // vertical position controller P gain default |
|
# define POSCONTROL_VEL_Z_P 8.0f // vertical velocity controller P gain default |
|
# define POSCONTROL_ACC_Z_P 0.5f // vertical acceleration controller P gain default |
|
# define POSCONTROL_ACC_Z_I 0.1f // vertical acceleration controller I gain default |
|
# define POSCONTROL_ACC_Z_D 0.0f // vertical acceleration controller D gain default |
|
# define POSCONTROL_ACC_Z_IMAX 100 // vertical acceleration controller IMAX gain default |
|
# define POSCONTROL_ACC_Z_FILT_HZ 20.0f // vertical acceleration controller input filter default |
|
# define POSCONTROL_ACC_Z_DT 0.0025f // vertical acceleration controller dt default |
|
# define POSCONTROL_POS_XY_P 1.0f // horizontal position controller P gain default |
|
# define POSCONTROL_VEL_XY_P 1.0f // horizontal velocity controller P gain default |
|
# define POSCONTROL_VEL_XY_I 0.5f // horizontal velocity controller I gain default |
|
# define POSCONTROL_VEL_XY_D 0.0f // horizontal velocity controller D gain default |
|
# define POSCONTROL_VEL_XY_IMAX 1000.0f // horizontal velocity controller IMAX gain default |
|
# define POSCONTROL_VEL_XY_FILT_HZ 5.0f // horizontal velocity controller input filter |
|
# define POSCONTROL_VEL_XY_FILT_D_HZ 5.0f // horizontal velocity controller input filter for D |
|
#else |
|
// default gains for Copter / TradHeli |
|
# define POSCONTROL_POS_Z_P 1.0f // vertical position controller P gain default |
|
# define POSCONTROL_VEL_Z_P 5.0f // vertical velocity controller P gain default |
|
# define POSCONTROL_ACC_Z_P 0.5f // vertical acceleration controller P gain default |
|
# define POSCONTROL_ACC_Z_I 1.0f // vertical acceleration controller I gain default |
|
# define POSCONTROL_ACC_Z_D 0.0f // vertical acceleration controller D gain default |
|
# define POSCONTROL_ACC_Z_IMAX 800 // vertical acceleration controller IMAX gain default |
|
# define POSCONTROL_ACC_Z_FILT_HZ 20.0f // vertical acceleration controller input filter default |
|
# define POSCONTROL_ACC_Z_DT 0.0025f // vertical acceleration controller dt default |
|
# define POSCONTROL_POS_XY_P 1.0f // horizontal position controller P gain default |
|
# define POSCONTROL_VEL_XY_P 2.0f // horizontal velocity controller P gain default |
|
# define POSCONTROL_VEL_XY_I 1.0f // horizontal velocity controller I gain default |
|
# define POSCONTROL_VEL_XY_D 0.5f // horizontal velocity controller D gain default |
|
# define POSCONTROL_VEL_XY_IMAX 1000.0f // horizontal velocity controller IMAX gain default |
|
# define POSCONTROL_VEL_XY_FILT_HZ 5.0f // horizontal velocity controller input filter |
|
# define POSCONTROL_VEL_XY_FILT_D_HZ 5.0f // horizontal velocity controller input filter for D |
|
#endif |
|
|
|
// vibration compensation gains |
|
#define POSCONTROL_VIBE_COMP_P_GAIN 0.250f |
|
#define POSCONTROL_VIBE_COMP_I_GAIN 0.125f |
|
|
|
const AP_Param::GroupInfo AC_PosControl::var_info[] = { |
|
// 0 was used for HOVER |
|
|
|
// @Param: _ACC_XY_FILT |
|
// @DisplayName: XY Acceleration filter cutoff frequency |
|
// @Description: Lower values will slow the response of the navigation controller and reduce twitchiness |
|
// @Units: Hz |
|
// @Range: 0.5 5 |
|
// @Increment: 0.1 |
|
// @User: Advanced |
|
AP_GROUPINFO("_ACC_XY_FILT", 1, AC_PosControl, _accel_xy_filt_hz, POSCONTROL_ACCEL_FILTER_HZ), |
|
|
|
// @Param: _POSZ_P |
|
// @DisplayName: Position (vertical) controller P gain |
|
// @Description: Position (vertical) controller P gain. Converts the difference between the desired altitude and actual altitude into a climb or descent rate which is passed to the throttle rate controller |
|
// @Range: 1.000 3.000 |
|
// @User: Standard |
|
AP_SUBGROUPINFO(_p_pos_z, "_POSZ_", 2, AC_PosControl, AC_P), |
|
|
|
// @Param: _VELZ_P |
|
// @DisplayName: Velocity (vertical) controller P gain |
|
// @Description: Velocity (vertical) controller P gain. Converts the difference between desired vertical speed and actual speed into a desired acceleration that is passed to the throttle acceleration controller |
|
// @Range: 1.000 8.000 |
|
// @User: Standard |
|
AP_SUBGROUPINFO(_p_vel_z, "_VELZ_", 3, AC_PosControl, AC_P), |
|
|
|
// @Param: _ACCZ_P |
|
// @DisplayName: Acceleration (vertical) controller P gain |
|
// @Description: Acceleration (vertical) controller P gain. Converts the difference between desired vertical acceleration and actual acceleration into a motor output |
|
// @Range: 0.500 1.500 |
|
// @Increment: 0.05 |
|
// @User: Standard |
|
|
|
// @Param: _ACCZ_I |
|
// @DisplayName: Acceleration (vertical) controller I gain |
|
// @Description: Acceleration (vertical) controller I gain. Corrects long-term difference in desired vertical acceleration and actual acceleration |
|
// @Range: 0.000 3.000 |
|
// @User: Standard |
|
|
|
// @Param: _ACCZ_IMAX |
|
// @DisplayName: Acceleration (vertical) controller I gain maximum |
|
// @Description: Acceleration (vertical) controller I gain maximum. Constrains the maximum pwm that the I term will generate |
|
// @Range: 0 1000 |
|
// @Units: d% |
|
// @User: Standard |
|
|
|
// @Param: _ACCZ_D |
|
// @DisplayName: Acceleration (vertical) controller D gain |
|
// @Description: Acceleration (vertical) controller D gain. Compensates for short-term change in desired vertical acceleration vs actual acceleration |
|
// @Range: 0.000 0.400 |
|
// @User: Standard |
|
|
|
// @Param: _ACCZ_FF |
|
// @DisplayName: Acceleration (vertical) controller feed forward |
|
// @Description: Acceleration (vertical) controller feed forward |
|
// @Range: 0 0.5 |
|
// @Increment: 0.001 |
|
// @User: Standard |
|
|
|
// @Param: _ACCZ_FLTT |
|
// @DisplayName: Acceleration (vertical) controller target frequency in Hz |
|
// @Description: Acceleration (vertical) controller target frequency in Hz |
|
// @Range: 1 50 |
|
// @Increment: 1 |
|
// @Units: Hz |
|
// @User: Standard |
|
|
|
// @Param: _ACCZ_FLTE |
|
// @DisplayName: Acceleration (vertical) controller error frequency in Hz |
|
// @Description: Acceleration (vertical) controller error frequency in Hz |
|
// @Range: 1 100 |
|
// @Increment: 1 |
|
// @Units: Hz |
|
// @User: Standard |
|
|
|
// @Param: _ACCZ_FLTD |
|
// @DisplayName: Acceleration (vertical) controller derivative frequency in Hz |
|
// @Description: Acceleration (vertical) controller derivative frequency in Hz |
|
// @Range: 1 100 |
|
// @Increment: 1 |
|
// @Units: Hz |
|
// @User: Standard |
|
AP_SUBGROUPINFO(_pid_accel_z, "_ACCZ_", 4, AC_PosControl, AC_PID), |
|
|
|
// @Param: _POSXY_P |
|
// @DisplayName: Position (horizonal) controller P gain |
|
// @Description: Position controller P gain. Converts the distance (in the latitude direction) to the target location into a desired speed which is then passed to the loiter latitude rate controller |
|
// @Range: 0.500 2.000 |
|
// @User: Standard |
|
AP_SUBGROUPINFO(_p_pos_xy, "_POSXY_", 5, AC_PosControl, AC_P), |
|
|
|
// @Param: _VELXY_P |
|
// @DisplayName: Velocity (horizontal) P gain |
|
// @Description: Velocity (horizontal) P gain. Converts the difference between desired velocity to a target acceleration |
|
// @Range: 0.1 6.0 |
|
// @Increment: 0.1 |
|
// @User: Advanced |
|
|
|
// @Param: _VELXY_I |
|
// @DisplayName: Velocity (horizontal) I gain |
|
// @Description: Velocity (horizontal) I gain. Corrects long-term difference in desired velocity to a target acceleration |
|
// @Range: 0.02 1.00 |
|
// @Increment: 0.01 |
|
// @User: Advanced |
|
|
|
// @Param: _VELXY_D |
|
// @DisplayName: Velocity (horizontal) D gain |
|
// @Description: Velocity (horizontal) D gain. Corrects short-term changes in velocity |
|
// @Range: 0.00 1.00 |
|
// @Increment: 0.001 |
|
// @User: Advanced |
|
|
|
// @Param: _VELXY_IMAX |
|
// @DisplayName: Velocity (horizontal) integrator maximum |
|
// @Description: Velocity (horizontal) integrator maximum. Constrains the target acceleration that the I gain will output |
|
// @Range: 0 4500 |
|
// @Increment: 10 |
|
// @Units: cm/s/s |
|
// @User: Advanced |
|
|
|
// @Param: _VELXY_FILT |
|
// @DisplayName: Velocity (horizontal) input filter |
|
// @Description: Velocity (horizontal) input filter. This filter (in hz) is applied to the input for P and I terms |
|
// @Range: 0 100 |
|
// @Units: Hz |
|
// @User: Advanced |
|
|
|
// @Param: _VELXY_D_FILT |
|
// @DisplayName: Velocity (horizontal) input filter |
|
// @Description: Velocity (horizontal) input filter. This filter (in hz) is applied to the input for P and I terms |
|
// @Range: 0 100 |
|
// @Units: Hz |
|
// @User: Advanced |
|
AP_SUBGROUPINFO(_pid_vel_xy, "_VELXY_", 6, AC_PosControl, AC_PID_2D), |
|
|
|
// @Param: _ANGLE_MAX |
|
// @DisplayName: Position Control Angle Max |
|
// @Description: Maximum lean angle autopilot can request. Set to zero to use ANGLE_MAX parameter value |
|
// @Units: deg |
|
// @Range: 0 45 |
|
// @Increment: 1 |
|
// @User: Advanced |
|
AP_GROUPINFO("_ANGLE_MAX", 7, AC_PosControl, _lean_angle_max, 0.0f), |
|
|
|
AP_GROUPEND |
|
}; |
|
|
|
// Default constructor. |
|
// Note that the Vector/Matrix constructors already implicitly zero |
|
// their values. |
|
// |
|
AC_PosControl::AC_PosControl(AP_AHRS_View& ahrs, const AP_InertialNav& inav, |
|
const AP_Motors& motors, AC_AttitudeControl& attitude_control) : |
|
_ahrs(ahrs), |
|
_inav(inav), |
|
_motors(motors), |
|
_attitude_control(attitude_control), |
|
_p_pos_z(POSCONTROL_POS_Z_P), |
|
_p_vel_z(POSCONTROL_VEL_Z_P), |
|
_pid_accel_z(POSCONTROL_ACC_Z_P, POSCONTROL_ACC_Z_I, POSCONTROL_ACC_Z_D, 0.0f, POSCONTROL_ACC_Z_IMAX, 0.0f, POSCONTROL_ACC_Z_FILT_HZ, 0.0f, POSCONTROL_ACC_Z_DT), |
|
_p_pos_xy(POSCONTROL_POS_XY_P), |
|
_pid_vel_xy(POSCONTROL_VEL_XY_P, POSCONTROL_VEL_XY_I, POSCONTROL_VEL_XY_D, POSCONTROL_VEL_XY_IMAX, POSCONTROL_VEL_XY_FILT_HZ, POSCONTROL_VEL_XY_FILT_D_HZ, POSCONTROL_DT_50HZ), |
|
_dt(POSCONTROL_DT_400HZ), |
|
_speed_down_cms(POSCONTROL_SPEED_DOWN), |
|
_speed_up_cms(POSCONTROL_SPEED_UP), |
|
_speed_cms(POSCONTROL_SPEED), |
|
_accel_z_cms(POSCONTROL_ACCEL_Z), |
|
_accel_cms(POSCONTROL_ACCEL_XY), |
|
_leash(POSCONTROL_LEASH_LENGTH_MIN), |
|
_leash_down_z(POSCONTROL_LEASH_LENGTH_MIN), |
|
_leash_up_z(POSCONTROL_LEASH_LENGTH_MIN), |
|
_accel_target_filter(POSCONTROL_ACCEL_FILTER_HZ) |
|
{ |
|
AP_Param::setup_object_defaults(this, var_info); |
|
|
|
// initialise flags |
|
_flags.recalc_leash_z = true; |
|
_flags.recalc_leash_xy = true; |
|
_flags.reset_desired_vel_to_pos = true; |
|
_flags.reset_accel_to_lean_xy = true; |
|
_flags.reset_rate_to_accel_z = true; |
|
_flags.freeze_ff_z = true; |
|
_flags.use_desvel_ff_z = true; |
|
_limit.pos_up = true; |
|
_limit.pos_down = true; |
|
_limit.vel_up = true; |
|
_limit.vel_down = true; |
|
_limit.accel_xy = true; |
|
} |
|
|
|
/// |
|
/// z-axis position controller |
|
/// |
|
|
|
/// set_dt - sets time delta in seconds for all controllers (i.e. 100hz = 0.01, 400hz = 0.0025) |
|
void AC_PosControl::set_dt(float delta_sec) |
|
{ |
|
_dt = delta_sec; |
|
|
|
// update PID controller dt |
|
_pid_accel_z.set_dt(_dt); |
|
_pid_vel_xy.set_dt(_dt); |
|
|
|
// update rate z-axis velocity error and accel error filters |
|
_vel_error_filter.set_cutoff_frequency(POSCONTROL_VEL_ERROR_CUTOFF_FREQ); |
|
} |
|
|
|
/// set_max_speed_z - set the maximum climb and descent rates |
|
/// To-Do: call this in the main code as part of flight mode initialisation |
|
void AC_PosControl::set_max_speed_z(float speed_down, float speed_up) |
|
{ |
|
// ensure speed_down is always negative |
|
speed_down = -fabsf(speed_down); |
|
|
|
// exit immediately if no change in speed up or down |
|
if (is_equal(_speed_down_cms, speed_down) && is_equal(_speed_up_cms, speed_up)) { |
|
return; |
|
} |
|
|
|
// sanity check speeds and update |
|
if (is_positive(speed_up) && is_negative(speed_down)) { |
|
_speed_down_cms = speed_down; |
|
_speed_up_cms = speed_up; |
|
_flags.recalc_leash_z = true; |
|
calc_leash_length_z(); |
|
} |
|
} |
|
|
|
/// set_max_accel_z - set the maximum vertical acceleration in cm/s/s |
|
void AC_PosControl::set_max_accel_z(float accel_cmss) |
|
{ |
|
// exit immediately if no change in acceleration |
|
if (is_equal(_accel_z_cms, accel_cmss)) { |
|
return; |
|
} |
|
|
|
_accel_z_cms = accel_cmss; |
|
_flags.recalc_leash_z = true; |
|
calc_leash_length_z(); |
|
} |
|
|
|
/// set_alt_target_with_slew - adjusts target towards a final altitude target |
|
/// should be called continuously (with dt set to be the expected time between calls) |
|
/// actual position target will be moved no faster than the speed_down and speed_up |
|
/// target will also be stopped if the motors hit their limits or leash length is exceeded |
|
void AC_PosControl::set_alt_target_with_slew(float alt_cm, float dt) |
|
{ |
|
float alt_change = alt_cm - _pos_target.z; |
|
|
|
// do not use z-axis desired velocity feed forward |
|
_flags.use_desvel_ff_z = false; |
|
|
|
// adjust desired alt if motors have not hit their limits |
|
if ((alt_change < 0 && !_motors.limit.throttle_lower) || (alt_change > 0 && !_motors.limit.throttle_upper)) { |
|
if (!is_zero(dt)) { |
|
float climb_rate_cms = constrain_float(alt_change / dt, _speed_down_cms, _speed_up_cms); |
|
_pos_target.z += climb_rate_cms * dt; |
|
_vel_desired.z = climb_rate_cms; // recorded for reporting purposes |
|
} |
|
} else { |
|
// recorded for reporting purposes |
|
_vel_desired.z = 0.0f; |
|
} |
|
|
|
// do not let target get too far from current altitude |
|
float curr_alt = _inav.get_altitude(); |
|
_pos_target.z = constrain_float(_pos_target.z, curr_alt - _leash_down_z, curr_alt + _leash_up_z); |
|
} |
|
|
|
/// set_alt_target_from_climb_rate - adjusts target up or down using a climb rate in cm/s |
|
/// should be called continuously (with dt set to be the expected time between calls) |
|
/// actual position target will be moved no faster than the speed_down and speed_up |
|
/// target will also be stopped if the motors hit their limits or leash length is exceeded |
|
void AC_PosControl::set_alt_target_from_climb_rate(float climb_rate_cms, float dt, bool force_descend) |
|
{ |
|
// adjust desired alt if motors have not hit their limits |
|
// To-Do: add check of _limit.pos_down? |
|
if ((climb_rate_cms < 0 && (!_motors.limit.throttle_lower || force_descend)) || (climb_rate_cms > 0 && !_motors.limit.throttle_upper && !_limit.pos_up)) { |
|
_pos_target.z += climb_rate_cms * dt; |
|
} |
|
|
|
// do not use z-axis desired velocity feed forward |
|
// vel_desired set to desired climb rate for reporting and land-detector |
|
_flags.use_desvel_ff_z = false; |
|
_vel_desired.z = climb_rate_cms; |
|
} |
|
|
|
/// set_alt_target_from_climb_rate_ff - adjusts target up or down using a climb rate in cm/s using feed-forward |
|
/// should be called continuously (with dt set to be the expected time between calls) |
|
/// actual position target will be moved no faster than the speed_down and speed_up |
|
/// target will also be stopped if the motors hit their limits or leash length is exceeded |
|
/// set force_descend to true during landing to allow target to move low enough to slow the motors |
|
void AC_PosControl::set_alt_target_from_climb_rate_ff(float climb_rate_cms, float dt, bool force_descend) |
|
{ |
|
// calculated increased maximum acceleration if over speed |
|
float accel_z_cms = _accel_z_cms; |
|
if (_vel_desired.z < _speed_down_cms && !is_zero(_speed_down_cms)) { |
|
accel_z_cms *= POSCONTROL_OVERSPEED_GAIN_Z * _vel_desired.z / _speed_down_cms; |
|
} |
|
if (_vel_desired.z > _speed_up_cms && !is_zero(_speed_up_cms)) { |
|
accel_z_cms *= POSCONTROL_OVERSPEED_GAIN_Z * _vel_desired.z / _speed_up_cms; |
|
} |
|
accel_z_cms = constrain_float(accel_z_cms, 0.0f, 750.0f); |
|
|
|
// jerk_z is calculated to reach full acceleration in 1000ms. |
|
float jerk_z = accel_z_cms * POSCONTROL_JERK_RATIO; |
|
|
|
float accel_z_max = MIN(accel_z_cms, safe_sqrt(2.0f * fabsf(_vel_desired.z - climb_rate_cms) * jerk_z)); |
|
|
|
_accel_last_z_cms += jerk_z * dt; |
|
_accel_last_z_cms = MIN(accel_z_max, _accel_last_z_cms); |
|
|
|
float vel_change_limit = _accel_last_z_cms * dt; |
|
_vel_desired.z = constrain_float(climb_rate_cms, _vel_desired.z - vel_change_limit, _vel_desired.z + vel_change_limit); |
|
_flags.use_desvel_ff_z = true; |
|
|
|
// adjust desired alt if motors have not hit their limits |
|
// To-Do: add check of _limit.pos_down? |
|
if ((_vel_desired.z < 0 && (!_motors.limit.throttle_lower || force_descend)) || (_vel_desired.z > 0 && !_motors.limit.throttle_upper && !_limit.pos_up)) { |
|
_pos_target.z += _vel_desired.z * dt; |
|
} |
|
} |
|
|
|
/// add_takeoff_climb_rate - adjusts alt target up or down using a climb rate in cm/s |
|
/// should be called continuously (with dt set to be the expected time between calls) |
|
/// almost no checks are performed on the input |
|
void AC_PosControl::add_takeoff_climb_rate(float climb_rate_cms, float dt) |
|
{ |
|
_pos_target.z += climb_rate_cms * dt; |
|
} |
|
|
|
/// shift altitude target (positive means move altitude up) |
|
void AC_PosControl::shift_alt_target(float z_cm) |
|
{ |
|
_pos_target.z += z_cm; |
|
|
|
// freeze feedforward to avoid jump |
|
if (!is_zero(z_cm)) { |
|
freeze_ff_z(); |
|
} |
|
} |
|
|
|
/// relax_alt_hold_controllers - set all desired and targets to measured |
|
void AC_PosControl::relax_alt_hold_controllers(float throttle_setting) |
|
{ |
|
_pos_target.z = _inav.get_altitude(); |
|
_vel_desired.z = 0.0f; |
|
_flags.use_desvel_ff_z = false; |
|
_vel_target.z = _inav.get_velocity_z(); |
|
_vel_last.z = _inav.get_velocity_z(); |
|
_accel_desired.z = 0.0f; |
|
_accel_last_z_cms = 0.0f; |
|
_flags.reset_rate_to_accel_z = true; |
|
_pid_accel_z.set_integrator((throttle_setting - _motors.get_throttle_hover()) * 1000.0f); |
|
_accel_target.z = -(_ahrs.get_accel_ef_blended().z + GRAVITY_MSS) * 100.0f; |
|
_pid_accel_z.reset_filter(); |
|
} |
|
|
|
// get_alt_error - returns altitude error in cm |
|
float AC_PosControl::get_alt_error() const |
|
{ |
|
return (_pos_target.z - _inav.get_altitude()); |
|
} |
|
|
|
/// set_target_to_stopping_point_z - returns reasonable stopping altitude in cm above home |
|
void AC_PosControl::set_target_to_stopping_point_z() |
|
{ |
|
// check if z leash needs to be recalculated |
|
calc_leash_length_z(); |
|
|
|
get_stopping_point_z(_pos_target); |
|
} |
|
|
|
/// get_stopping_point_z - calculates stopping point based on current position, velocity, vehicle acceleration |
|
void AC_PosControl::get_stopping_point_z(Vector3f& stopping_point) const |
|
{ |
|
const float curr_pos_z = _inav.get_altitude(); |
|
float curr_vel_z = _inav.get_velocity_z(); |
|
|
|
float linear_distance; // half the distance we swap between linear and sqrt and the distance we offset sqrt |
|
float linear_velocity; // the velocity we swap between linear and sqrt |
|
|
|
// if position controller is active add current velocity error to avoid sudden jump in acceleration |
|
if (is_active_z()) { |
|
curr_vel_z += _vel_error.z; |
|
if (_flags.use_desvel_ff_z) { |
|
curr_vel_z -= _vel_desired.z; |
|
} |
|
} |
|
|
|
// avoid divide by zero by using current position if kP is very low or acceleration is zero |
|
if (_p_pos_z.kP() <= 0.0f || _accel_z_cms <= 0.0f) { |
|
stopping_point.z = curr_pos_z; |
|
return; |
|
} |
|
|
|
// calculate the velocity at which we switch from calculating the stopping point using a linear function to a sqrt function |
|
linear_velocity = _accel_z_cms / _p_pos_z.kP(); |
|
|
|
if (fabsf(curr_vel_z) < linear_velocity) { |
|
// if our current velocity is below the cross-over point we use a linear function |
|
stopping_point.z = curr_pos_z + curr_vel_z / _p_pos_z.kP(); |
|
} else { |
|
linear_distance = _accel_z_cms / (2.0f * _p_pos_z.kP() * _p_pos_z.kP()); |
|
if (curr_vel_z > 0) { |
|
stopping_point.z = curr_pos_z + (linear_distance + curr_vel_z * curr_vel_z / (2.0f * _accel_z_cms)); |
|
} else { |
|
stopping_point.z = curr_pos_z - (linear_distance + curr_vel_z * curr_vel_z / (2.0f * _accel_z_cms)); |
|
} |
|
} |
|
stopping_point.z = constrain_float(stopping_point.z, curr_pos_z - POSCONTROL_STOPPING_DIST_DOWN_MAX, curr_pos_z + POSCONTROL_STOPPING_DIST_UP_MAX); |
|
} |
|
|
|
/// init_takeoff - initialises target altitude if we are taking off |
|
void AC_PosControl::init_takeoff() |
|
{ |
|
const Vector3f& curr_pos = _inav.get_position(); |
|
|
|
_pos_target.z = curr_pos.z; |
|
|
|
// freeze feedforward to avoid jump |
|
freeze_ff_z(); |
|
|
|
// shift difference between last motor out and hover throttle into accelerometer I |
|
_pid_accel_z.set_integrator((_attitude_control.get_throttle_in() - _motors.get_throttle_hover()) * 1000.0f); |
|
|
|
// initialise ekf reset handler |
|
init_ekf_z_reset(); |
|
} |
|
|
|
// is_active_z - returns true if the z-axis position controller has been run very recently |
|
bool AC_PosControl::is_active_z() const |
|
{ |
|
return ((AP_HAL::micros64() - _last_update_z_us) <= POSCONTROL_ACTIVE_TIMEOUT_US); |
|
} |
|
|
|
/// update_z_controller - fly to altitude in cm above home |
|
void AC_PosControl::update_z_controller() |
|
{ |
|
// check time since last cast |
|
const uint64_t now_us = AP_HAL::micros64(); |
|
if (now_us - _last_update_z_us > POSCONTROL_ACTIVE_TIMEOUT_US) { |
|
_flags.reset_rate_to_accel_z = true; |
|
_pid_accel_z.set_integrator((_attitude_control.get_throttle_in() - _motors.get_throttle_hover()) * 1000.0f); |
|
_accel_target.z = -(_ahrs.get_accel_ef_blended().z + GRAVITY_MSS) * 100.0f; |
|
_pid_accel_z.reset_filter(); |
|
} |
|
_last_update_z_us = now_us; |
|
|
|
// check for ekf altitude reset |
|
check_for_ekf_z_reset(); |
|
|
|
// check if leash lengths need to be recalculated |
|
calc_leash_length_z(); |
|
|
|
// call z-axis position controller |
|
run_z_controller(); |
|
} |
|
|
|
/// calc_leash_length - calculates the vertical leash lengths from maximum speed, acceleration |
|
/// called by update_z_controller if z-axis speed or accelerations are changed |
|
void AC_PosControl::calc_leash_length_z() |
|
{ |
|
if (_flags.recalc_leash_z) { |
|
_leash_up_z = calc_leash_length(_speed_up_cms, _accel_z_cms, _p_pos_z.kP()); |
|
_leash_down_z = calc_leash_length(-_speed_down_cms, _accel_z_cms, _p_pos_z.kP()); |
|
_flags.recalc_leash_z = false; |
|
} |
|
} |
|
|
|
// run position control for Z axis |
|
// target altitude should be set with one of these functions: set_alt_target, set_target_to_stopping_point_z, init_takeoff |
|
// calculates desired rate in earth-frame z axis and passes to rate controller |
|
// vel_up_max, vel_down_max should have already been set before calling this method |
|
void AC_PosControl::run_z_controller() |
|
{ |
|
float curr_alt = _inav.get_altitude(); |
|
|
|
// clear position limit flags |
|
_limit.pos_up = false; |
|
_limit.pos_down = false; |
|
|
|
// calculate altitude error |
|
_pos_error.z = _pos_target.z - curr_alt; |
|
|
|
// do not let target altitude get too far from current altitude |
|
if (_pos_error.z > _leash_up_z) { |
|
_pos_target.z = curr_alt + _leash_up_z; |
|
_pos_error.z = _leash_up_z; |
|
_limit.pos_up = true; |
|
} |
|
if (_pos_error.z < -_leash_down_z) { |
|
_pos_target.z = curr_alt - _leash_down_z; |
|
_pos_error.z = -_leash_down_z; |
|
_limit.pos_down = true; |
|
} |
|
|
|
// calculate _vel_target.z using from _pos_error.z using sqrt controller |
|
_vel_target.z = AC_AttitudeControl::sqrt_controller(_pos_error.z, _p_pos_z.kP(), _accel_z_cms, _dt); |
|
|
|
// check speed limits |
|
// To-Do: check these speed limits here or in the pos->rate controller |
|
_limit.vel_up = false; |
|
_limit.vel_down = false; |
|
if (_vel_target.z < _speed_down_cms) { |
|
_vel_target.z = _speed_down_cms; |
|
_limit.vel_down = true; |
|
} |
|
if (_vel_target.z > _speed_up_cms) { |
|
_vel_target.z = _speed_up_cms; |
|
_limit.vel_up = true; |
|
} |
|
|
|
// add feed forward component |
|
if (_flags.use_desvel_ff_z) { |
|
_vel_target.z += _vel_desired.z; |
|
} |
|
|
|
// the following section calculates acceleration required to achieve the velocity target |
|
|
|
const Vector3f& curr_vel = _inav.get_velocity(); |
|
|
|
// TODO: remove velocity derivative calculation |
|
// reset last velocity target to current target |
|
if (_flags.reset_rate_to_accel_z) { |
|
_vel_last.z = _vel_target.z; |
|
} |
|
|
|
// feed forward desired acceleration calculation |
|
if (_dt > 0.0f) { |
|
if (!_flags.freeze_ff_z) { |
|
_accel_desired.z = (_vel_target.z - _vel_last.z) / _dt; |
|
} else { |
|
// stop the feed forward being calculated during a known discontinuity |
|
_flags.freeze_ff_z = false; |
|
} |
|
} else { |
|
_accel_desired.z = 0.0f; |
|
} |
|
|
|
// store this iteration's velocities for the next iteration |
|
_vel_last.z = _vel_target.z; |
|
|
|
// reset velocity error and filter if this controller has just been engaged |
|
if (_flags.reset_rate_to_accel_z) { |
|
// Reset Filter |
|
_vel_error.z = 0; |
|
_vel_error_filter.reset(0); |
|
_flags.reset_rate_to_accel_z = false; |
|
} else { |
|
// calculate rate error and filter with cut off frequency of 2 Hz |
|
_vel_error.z = _vel_error_filter.apply(_vel_target.z - curr_vel.z, _dt); |
|
} |
|
|
|
_accel_target.z = _p_vel_z.get_p(_vel_error.z); |
|
|
|
_accel_target.z += _accel_desired.z; |
|
|
|
|
|
// the following section calculates a desired throttle needed to achieve the acceleration target |
|
float z_accel_meas; // actual acceleration |
|
|
|
// Calculate Earth Frame Z acceleration |
|
z_accel_meas = -(_ahrs.get_accel_ef_blended().z + GRAVITY_MSS) * 100.0f; |
|
|
|
// ensure imax is always large enough to overpower hover throttle |
|
if (_motors.get_throttle_hover() * 1000.0f > _pid_accel_z.imax()) { |
|
_pid_accel_z.imax(_motors.get_throttle_hover() * 1000.0f); |
|
} |
|
|
|
float thr_out; |
|
if (_vibe_comp_enabled) { |
|
_flags.freeze_ff_z = true; |
|
_accel_desired.z = 0.0f; |
|
const float thr_per_accelz_cmss = _motors.get_throttle_hover() / (GRAVITY_MSS * 100.0f); |
|
// during vibration compensation use feed forward with manually calculated gain |
|
// ToDo: clear pid_info P, I and D terms for logging |
|
if (!(_motors.limit.throttle_lower || _motors.limit.throttle_upper) || ((is_positive(_pid_accel_z.get_i()) && is_negative(_vel_error.z)) || (is_negative(_pid_accel_z.get_i()) && is_positive(_vel_error.z)))) { |
|
_pid_accel_z.set_integrator(_pid_accel_z.get_i() + _dt * thr_per_accelz_cmss * 1000.0f * _vel_error.z * _p_vel_z.kP() * POSCONTROL_VIBE_COMP_I_GAIN); |
|
} |
|
thr_out = POSCONTROL_VIBE_COMP_P_GAIN * thr_per_accelz_cmss * _accel_target.z + _pid_accel_z.get_i() * 0.001f; |
|
} else { |
|
thr_out = _pid_accel_z.update_all(_accel_target.z, z_accel_meas, (_motors.limit.throttle_lower || _motors.limit.throttle_upper)) * 0.001f; |
|
} |
|
thr_out += _motors.get_throttle_hover(); |
|
|
|
// send throttle to attitude controller with angle boost |
|
_attitude_control.set_throttle_out(thr_out, true, POSCONTROL_THROTTLE_CUTOFF_FREQ); |
|
|
|
// _speed_down_cms is checked to be non-zero when set |
|
float error_ratio = _vel_error.z/_speed_down_cms; |
|
|
|
_vel_z_control_ratio += _dt*0.1f*(0.5-error_ratio); |
|
_vel_z_control_ratio = constrain_float(_vel_z_control_ratio, 0.0f, 2.0f); |
|
} |
|
|
|
/// |
|
/// lateral position controller |
|
/// |
|
|
|
/// set_max_accel_xy - set the maximum horizontal acceleration in cm/s/s |
|
void AC_PosControl::set_max_accel_xy(float accel_cmss) |
|
{ |
|
// return immediately if no change |
|
if (is_equal(_accel_cms, accel_cmss)) { |
|
return; |
|
} |
|
_accel_cms = accel_cmss; |
|
_flags.recalc_leash_xy = true; |
|
calc_leash_length_xy(); |
|
} |
|
|
|
/// set_max_speed_xy - set the maximum horizontal speed maximum in cm/s |
|
void AC_PosControl::set_max_speed_xy(float speed_cms) |
|
{ |
|
// return immediately if no change in speed |
|
if (is_equal(_speed_cms, speed_cms)) { |
|
return; |
|
} |
|
|
|
_speed_cms = speed_cms; |
|
_flags.recalc_leash_xy = true; |
|
calc_leash_length_xy(); |
|
} |
|
|
|
/// set_pos_target in cm from home |
|
void AC_PosControl::set_pos_target(const Vector3f& position) |
|
{ |
|
_pos_target = position; |
|
|
|
_flags.use_desvel_ff_z = false; |
|
_vel_desired.z = 0.0f; |
|
// initialise roll and pitch to current roll and pitch. This avoids a twitch between when the target is set and the pos controller is first run |
|
// To-Do: this initialisation of roll and pitch targets needs to go somewhere between when pos-control is initialised and when it completes it's first cycle |
|
//_roll_target = constrain_int32(_ahrs.roll_sensor,-_attitude_control.lean_angle_max(),_attitude_control.lean_angle_max()); |
|
//_pitch_target = constrain_int32(_ahrs.pitch_sensor,-_attitude_control.lean_angle_max(),_attitude_control.lean_angle_max()); |
|
} |
|
|
|
/// set_xy_target in cm from home |
|
void AC_PosControl::set_xy_target(float x, float y) |
|
{ |
|
_pos_target.x = x; |
|
_pos_target.y = y; |
|
} |
|
|
|
/// shift position target target in x, y axis |
|
void AC_PosControl::shift_pos_xy_target(float x_cm, float y_cm) |
|
{ |
|
// move pos controller target |
|
_pos_target.x += x_cm; |
|
_pos_target.y += y_cm; |
|
} |
|
|
|
/// set_target_to_stopping_point_xy - sets horizontal target to reasonable stopping position in cm from home |
|
void AC_PosControl::set_target_to_stopping_point_xy() |
|
{ |
|
// check if xy leash needs to be recalculated |
|
calc_leash_length_xy(); |
|
|
|
get_stopping_point_xy(_pos_target); |
|
} |
|
|
|
/// get_stopping_point_xy - calculates stopping point based on current position, velocity, vehicle acceleration |
|
/// distance_max allows limiting distance to stopping point |
|
/// results placed in stopping_position vector |
|
/// set_max_accel_xy() should be called before this method to set vehicle acceleration |
|
/// set_leash_length() should have been called before this method |
|
void AC_PosControl::get_stopping_point_xy(Vector3f &stopping_point) const |
|
{ |
|
const Vector3f curr_pos = _inav.get_position(); |
|
Vector3f curr_vel = _inav.get_velocity(); |
|
float linear_distance; // the distance at which we swap from a linear to sqrt response |
|
float linear_velocity; // the velocity above which we swap from a linear to sqrt response |
|
float stopping_dist; // the distance within the vehicle can stop |
|
float kP = _p_pos_xy.kP(); |
|
|
|
// add velocity error to current velocity |
|
if (is_active_xy()) { |
|
curr_vel.x += _vel_error.x; |
|
curr_vel.y += _vel_error.y; |
|
} |
|
|
|
// calculate current velocity |
|
float vel_total = norm(curr_vel.x, curr_vel.y); |
|
|
|
// avoid divide by zero by using current position if the velocity is below 10cm/s, kP is very low or acceleration is zero |
|
if (kP <= 0.0f || _accel_cms <= 0.0f || is_zero(vel_total)) { |
|
stopping_point.x = curr_pos.x; |
|
stopping_point.y = curr_pos.y; |
|
return; |
|
} |
|
|
|
// calculate point at which velocity switches from linear to sqrt |
|
linear_velocity = _accel_cms / kP; |
|
|
|
// calculate distance within which we can stop |
|
if (vel_total < linear_velocity) { |
|
stopping_dist = vel_total / kP; |
|
} else { |
|
linear_distance = _accel_cms / (2.0f * kP * kP); |
|
stopping_dist = linear_distance + (vel_total * vel_total) / (2.0f * _accel_cms); |
|
} |
|
|
|
// constrain stopping distance |
|
stopping_dist = constrain_float(stopping_dist, 0, _leash); |
|
|
|
// convert the stopping distance into a stopping point using velocity vector |
|
stopping_point.x = curr_pos.x + (stopping_dist * curr_vel.x / vel_total); |
|
stopping_point.y = curr_pos.y + (stopping_dist * curr_vel.y / vel_total); |
|
} |
|
|
|
/// get_distance_to_target - get horizontal distance to target position in cm |
|
float AC_PosControl::get_distance_to_target() const |
|
{ |
|
return norm(_pos_error.x, _pos_error.y); |
|
} |
|
|
|
/// get_bearing_to_target - get bearing to target position in centi-degrees |
|
int32_t AC_PosControl::get_bearing_to_target() const |
|
{ |
|
return get_bearing_cd(_inav.get_position(), _pos_target); |
|
} |
|
|
|
// relax velocity controller by clearing velocity error and setting velocity target to current velocity |
|
void AC_PosControl::relax_velocity_controller_xy() |
|
{ |
|
const Vector3f& curr_vel = _inav.get_velocity(); |
|
_vel_target.x = curr_vel.x; |
|
_vel_target.y = curr_vel.y; |
|
_vel_error.x = 0.0f; |
|
_vel_error.y = 0.0f; |
|
} |
|
|
|
// is_active_xy - returns true if the xy position controller has been run very recently |
|
bool AC_PosControl::is_active_xy() const |
|
{ |
|
return ((AP_HAL::micros64() - _last_update_xy_us) <= POSCONTROL_ACTIVE_TIMEOUT_US); |
|
} |
|
|
|
/// get_lean_angle_max_cd - returns the maximum lean angle the autopilot may request |
|
float AC_PosControl::get_lean_angle_max_cd() const |
|
{ |
|
if (is_zero(_lean_angle_max)) { |
|
return _attitude_control.lean_angle_max(); |
|
} |
|
return _lean_angle_max * 100.0f; |
|
} |
|
|
|
/// init_xy_controller - initialise the xy controller |
|
/// this should be called after setting the position target and the desired velocity and acceleration |
|
/// sets target roll angle, pitch angle and I terms based on vehicle current lean angles |
|
/// should be called once whenever significant changes to the position target are made |
|
/// this does not update the xy target |
|
void AC_PosControl::init_xy_controller() |
|
{ |
|
// set roll, pitch lean angle targets to current attitude |
|
// todo: this should probably be based on the desired attitude not the current attitude |
|
_roll_target = _ahrs.roll_sensor; |
|
_pitch_target = _ahrs.pitch_sensor; |
|
|
|
// initialise I terms from lean angles |
|
_pid_vel_xy.reset_filter(); |
|
lean_angles_to_accel(_accel_target.x, _accel_target.y); |
|
_pid_vel_xy.set_integrator(_accel_target - _accel_desired); |
|
|
|
// flag reset required in rate to accel step |
|
_flags.reset_desired_vel_to_pos = true; |
|
_flags.reset_accel_to_lean_xy = true; |
|
|
|
// initialise ekf xy reset handler |
|
init_ekf_xy_reset(); |
|
} |
|
|
|
/// standby_xyz_reset - resets I terms and removes position error |
|
/// This function will let Loiter and Alt Hold continue to operate |
|
/// in the event that the flight controller is in control of the |
|
/// aircraft when in standby. |
|
void AC_PosControl::standby_xyz_reset() |
|
{ |
|
// Set _pid_accel_z integrator to zero. |
|
_pid_accel_z.set_integrator(0.0f); |
|
|
|
// Set the target position to the current pos. |
|
_pos_target = _inav.get_position(); |
|
|
|
// Set _pid_vel_xy integrators and derivative to zero. |
|
_pid_vel_xy.reset_filter(); |
|
|
|
// initialise ekf xy reset handler |
|
init_ekf_xy_reset(); |
|
} |
|
|
|
/// update_xy_controller - run the horizontal position controller - should be called at 100hz or higher |
|
void AC_PosControl::update_xy_controller() |
|
{ |
|
// compute dt |
|
const uint64_t now_us = AP_HAL::micros64(); |
|
float dt = (now_us - _last_update_xy_us) * 1.0e-6f; |
|
|
|
// sanity check dt |
|
if (dt >= POSCONTROL_ACTIVE_TIMEOUT_US * 1.0e-6f) { |
|
dt = 0.0f; |
|
} |
|
|
|
// check for ekf xy position reset |
|
check_for_ekf_xy_reset(); |
|
|
|
// check if xy leash needs to be recalculated |
|
calc_leash_length_xy(); |
|
|
|
// translate any adjustments from pilot to loiter target |
|
desired_vel_to_pos(dt); |
|
|
|
// run horizontal position controller |
|
run_xy_controller(dt); |
|
|
|
// update xy update time |
|
_last_update_xy_us = now_us; |
|
} |
|
|
|
float AC_PosControl::time_since_last_xy_update() const |
|
{ |
|
const uint64_t now_us = AP_HAL::micros64(); |
|
return (now_us - _last_update_xy_us) * 1.0e-6f; |
|
} |
|
|
|
// write log to dataflash |
|
void AC_PosControl::write_log() |
|
{ |
|
const Vector3f &pos_target = get_pos_target(); |
|
const Vector3f &vel_target = get_vel_target(); |
|
const Vector3f &accel_target = get_accel_target(); |
|
const Vector3f &position = _inav.get_position(); |
|
const Vector3f &velocity = _inav.get_velocity(); |
|
float accel_x, accel_y; |
|
lean_angles_to_accel(accel_x, accel_y); |
|
|
|
// @LoggerMessage: PSC |
|
// @Description: Position Control data |
|
// @Field: TimeUS: Time since system startup |
|
// @Field: TPX: Target position relative to origin, X-axis |
|
// @Field: TPY: Target position relative to origin, Y-axis |
|
// @Field: PX: Position relative to origin, X-axis |
|
// @Field: PY: Position relative to origin, Y-axis |
|
// @Field: TVX: Target velocity, X-axis |
|
// @Field: TVY: Target velocity, Y-axis |
|
// @Field: VX: Velocity, X-axis |
|
// @Field: VY: Velocity, Y-axis |
|
// @Field: TAX: Target acceleration, X-axis |
|
// @Field: TAY: Target acceleration, Y-axis |
|
// @Field: AX: Acceleration, X-axis |
|
// @Field: AY: Acceleration, Y-axis |
|
AP::logger().Write("PSC", |
|
"TimeUS,TPX,TPY,PX,PY,TVX,TVY,VX,VY,TAX,TAY,AX,AY", |
|
"smmmmnnnnoooo", |
|
"F000000000000", |
|
"Qffffffffffff", |
|
AP_HAL::micros64(), |
|
double(pos_target.x * 0.01f), |
|
double(pos_target.y * 0.01f), |
|
double(position.x * 0.01f), |
|
double(position.y * 0.01f), |
|
double(vel_target.x * 0.01f), |
|
double(vel_target.y * 0.01f), |
|
double(velocity.x * 0.01f), |
|
double(velocity.y * 0.01f), |
|
double(accel_target.x * 0.01f), |
|
double(accel_target.y * 0.01f), |
|
double(accel_x * 0.01f), |
|
double(accel_y * 0.01f)); |
|
} |
|
|
|
/// init_vel_controller_xyz - initialise the velocity controller - should be called once before the caller attempts to use the controller |
|
void AC_PosControl::init_vel_controller_xyz() |
|
{ |
|
// set roll, pitch lean angle targets to current attitude |
|
_roll_target = _ahrs.roll_sensor; |
|
_pitch_target = _ahrs.pitch_sensor; |
|
|
|
_pid_vel_xy.reset_filter(); |
|
lean_angles_to_accel(_accel_target.x, _accel_target.y); |
|
_pid_vel_xy.set_integrator(_accel_target); |
|
|
|
// flag reset required in rate to accel step |
|
_flags.reset_desired_vel_to_pos = true; |
|
_flags.reset_accel_to_lean_xy = true; |
|
|
|
// set target position |
|
const Vector3f& curr_pos = _inav.get_position(); |
|
set_xy_target(curr_pos.x, curr_pos.y); |
|
set_alt_target(curr_pos.z); |
|
|
|
// move current vehicle velocity into feed forward velocity |
|
const Vector3f& curr_vel = _inav.get_velocity(); |
|
set_desired_velocity(curr_vel); |
|
|
|
// set vehicle acceleration to zero |
|
set_desired_accel_xy(0.0f, 0.0f); |
|
|
|
// initialise ekf reset handlers |
|
init_ekf_xy_reset(); |
|
init_ekf_z_reset(); |
|
} |
|
|
|
/// update_velocity_controller_xy - run the velocity controller - should be called at 100hz or higher |
|
/// velocity targets should we set using set_desired_velocity_xy() method |
|
/// callers should use get_roll() and get_pitch() methods and sent to the attitude controller |
|
/// throttle targets will be sent directly to the motors |
|
void AC_PosControl::update_vel_controller_xy() |
|
{ |
|
// capture time since last iteration |
|
const uint64_t now_us = AP_HAL::micros64(); |
|
float dt = (now_us - _last_update_xy_us) * 1.0e-6f; |
|
|
|
// sanity check dt |
|
if (dt >= 0.2f) { |
|
dt = 0.0f; |
|
} |
|
|
|
// check for ekf xy position reset |
|
check_for_ekf_xy_reset(); |
|
|
|
// check if xy leash needs to be recalculated |
|
calc_leash_length_xy(); |
|
|
|
// apply desired velocity request to position target |
|
// TODO: this will need to be removed and added to the calling function. |
|
desired_vel_to_pos(dt); |
|
|
|
// run position controller |
|
run_xy_controller(dt); |
|
|
|
// update xy update time |
|
_last_update_xy_us = now_us; |
|
} |
|
|
|
/// update_velocity_controller_xyz - run the velocity controller - should be called at 100hz or higher |
|
/// velocity targets should we set using set_desired_velocity_xyz() method |
|
/// callers should use get_roll() and get_pitch() methods and sent to the attitude controller |
|
/// throttle targets will be sent directly to the motors |
|
void AC_PosControl::update_vel_controller_xyz() |
|
{ |
|
update_vel_controller_xy(); |
|
|
|
// update altitude target |
|
set_alt_target_from_climb_rate_ff(_vel_desired.z, _dt, false); |
|
|
|
// run z-axis position controller |
|
update_z_controller(); |
|
} |
|
|
|
float AC_PosControl::get_horizontal_error() const |
|
{ |
|
return norm(_pos_error.x, _pos_error.y); |
|
} |
|
|
|
/// |
|
/// private methods |
|
/// |
|
|
|
/// calc_leash_length - calculates the horizontal leash length given a maximum speed, acceleration |
|
/// should be called whenever the speed, acceleration or position kP is modified |
|
void AC_PosControl::calc_leash_length_xy() |
|
{ |
|
// todo: remove _flags.recalc_leash_xy or don't call this function after each variable change. |
|
if (_flags.recalc_leash_xy) { |
|
_leash = calc_leash_length(_speed_cms, _accel_cms, _p_pos_xy.kP()); |
|
_flags.recalc_leash_xy = false; |
|
} |
|
} |
|
|
|
/// move velocity target using desired acceleration |
|
void AC_PosControl::desired_accel_to_vel(float nav_dt) |
|
{ |
|
// range check nav_dt |
|
if (nav_dt < 0) { |
|
return; |
|
} |
|
|
|
// update target velocity |
|
if (_flags.reset_desired_vel_to_pos) { |
|
_flags.reset_desired_vel_to_pos = false; |
|
} else { |
|
_vel_desired.x += _accel_desired.x * nav_dt; |
|
_vel_desired.y += _accel_desired.y * nav_dt; |
|
} |
|
} |
|
|
|
/// desired_vel_to_pos - move position target using desired velocities |
|
void AC_PosControl::desired_vel_to_pos(float nav_dt) |
|
{ |
|
// range check nav_dt |
|
if (nav_dt < 0) { |
|
return; |
|
} |
|
|
|
// update target position |
|
if (_flags.reset_desired_vel_to_pos) { |
|
_flags.reset_desired_vel_to_pos = false; |
|
} else { |
|
_pos_target.x += _vel_desired.x * nav_dt; |
|
_pos_target.y += _vel_desired.y * nav_dt; |
|
} |
|
} |
|
|
|
/// run horizontal position controller correcting position and velocity |
|
/// converts position (_pos_target) to target velocity (_vel_target) |
|
/// desired velocity (_vel_desired) is combined into final target velocity |
|
/// converts desired velocities in lat/lon directions to accelerations in lat/lon frame |
|
/// converts desired accelerations provided in lat/lon frame to roll/pitch angles |
|
void AC_PosControl::run_xy_controller(float dt) |
|
{ |
|
float ekfGndSpdLimit, ekfNavVelGainScaler; |
|
AP::ahrs_navekf().getEkfControlLimits(ekfGndSpdLimit, ekfNavVelGainScaler); |
|
|
|
Vector3f curr_pos = _inav.get_position(); |
|
float kP = ekfNavVelGainScaler * _p_pos_xy.kP(); // scale gains to compensate for noisy optical flow measurement in the EKF |
|
|
|
// avoid divide by zero |
|
if (kP <= 0.0f) { |
|
_vel_target.x = 0.0f; |
|
_vel_target.y = 0.0f; |
|
} else { |
|
// calculate distance error |
|
_pos_error.x = _pos_target.x - curr_pos.x; |
|
_pos_error.y = _pos_target.y - curr_pos.y; |
|
|
|
// Constrain _pos_error and target position |
|
// Constrain the maximum length of _vel_target to the maximum position correction velocity |
|
// TODO: replace the leash length with a user definable maximum position correction |
|
if (limit_vector_length(_pos_error.x, _pos_error.y, _leash)) { |
|
_pos_target.x = curr_pos.x + _pos_error.x; |
|
_pos_target.y = curr_pos.y + _pos_error.y; |
|
} |
|
|
|
_vel_target = sqrt_controller(_pos_error, kP, _accel_cms); |
|
} |
|
|
|
// add velocity feed-forward |
|
_vel_target.x += _vel_desired.x; |
|
_vel_target.y += _vel_desired.y; |
|
|
|
// the following section converts desired velocities in lat/lon directions to accelerations in lat/lon frame |
|
|
|
Vector2f accel_target, vel_xy_p, vel_xy_i, vel_xy_d; |
|
|
|
// check if vehicle velocity is being overridden |
|
if (_flags.vehicle_horiz_vel_override) { |
|
_flags.vehicle_horiz_vel_override = false; |
|
} else { |
|
_vehicle_horiz_vel.x = _inav.get_velocity().x; |
|
_vehicle_horiz_vel.y = _inav.get_velocity().y; |
|
} |
|
|
|
// calculate velocity error |
|
_vel_error.x = _vel_target.x - _vehicle_horiz_vel.x; |
|
_vel_error.y = _vel_target.y - _vehicle_horiz_vel.y; |
|
// TODO: constrain velocity error and velocity target |
|
|
|
// call pi controller |
|
_pid_vel_xy.set_input(_vel_error); |
|
|
|
// get p |
|
vel_xy_p = _pid_vel_xy.get_p(); |
|
|
|
// update i term if we have not hit the accel or throttle limits OR the i term will reduce |
|
// TODO: move limit handling into the PI and PID controller |
|
if (!_limit.accel_xy && !_motors.limit.throttle_upper) { |
|
vel_xy_i = _pid_vel_xy.get_i(); |
|
} else { |
|
vel_xy_i = _pid_vel_xy.get_i_shrink(); |
|
} |
|
|
|
// get d |
|
vel_xy_d = _pid_vel_xy.get_d(); |
|
|
|
// acceleration to correct for velocity error and scale PID output to compensate for optical flow measurement induced EKF noise |
|
accel_target.x = (vel_xy_p.x + vel_xy_i.x + vel_xy_d.x) * ekfNavVelGainScaler; |
|
accel_target.y = (vel_xy_p.y + vel_xy_i.y + vel_xy_d.y) * ekfNavVelGainScaler; |
|
|
|
// reset accel to current desired acceleration |
|
if (_flags.reset_accel_to_lean_xy) { |
|
_accel_target_filter.reset(Vector2f(accel_target.x, accel_target.y)); |
|
_flags.reset_accel_to_lean_xy = false; |
|
} |
|
|
|
// filter correction acceleration |
|
_accel_target_filter.set_cutoff_frequency(MIN(_accel_xy_filt_hz, 5.0f * ekfNavVelGainScaler)); |
|
_accel_target_filter.apply(accel_target, dt); |
|
|
|
// pass the correction acceleration to the target acceleration output |
|
_accel_target.x = _accel_target_filter.get().x; |
|
_accel_target.y = _accel_target_filter.get().y; |
|
|
|
// Add feed forward into the target acceleration output |
|
_accel_target.x += _accel_desired.x; |
|
_accel_target.y += _accel_desired.y; |
|
|
|
// the following section converts desired accelerations provided in lat/lon frame to roll/pitch angles |
|
|
|
// limit acceleration using maximum lean angles |
|
float angle_max = MIN(_attitude_control.get_althold_lean_angle_max(), get_lean_angle_max_cd()); |
|
float accel_max = MIN(GRAVITY_MSS * 100.0f * tanf(ToRad(angle_max * 0.01f)), POSCONTROL_ACCEL_XY_MAX); |
|
_limit.accel_xy = limit_vector_length(_accel_target.x, _accel_target.y, accel_max); |
|
|
|
// update angle targets that will be passed to stabilize controller |
|
accel_to_lean_angles(_accel_target.x, _accel_target.y, _roll_target, _pitch_target); |
|
} |
|
|
|
// get_lean_angles_to_accel - convert roll, pitch lean angles to lat/lon frame accelerations in cm/s/s |
|
void AC_PosControl::accel_to_lean_angles(float accel_x_cmss, float accel_y_cmss, float& roll_target, float& pitch_target) const |
|
{ |
|
float accel_right, accel_forward; |
|
|
|
// rotate accelerations into body forward-right frame |
|
// todo: this should probably be based on the desired heading not the current heading |
|
accel_forward = accel_x_cmss * _ahrs.cos_yaw() + accel_y_cmss * _ahrs.sin_yaw(); |
|
accel_right = -accel_x_cmss * _ahrs.sin_yaw() + accel_y_cmss * _ahrs.cos_yaw(); |
|
|
|
// update angle targets that will be passed to stabilize controller |
|
pitch_target = atanf(-accel_forward / (GRAVITY_MSS * 100.0f)) * (18000.0f / M_PI); |
|
float cos_pitch_target = cosf(pitch_target * M_PI / 18000.0f); |
|
roll_target = atanf(accel_right * cos_pitch_target / (GRAVITY_MSS * 100.0f)) * (18000.0f / M_PI); |
|
} |
|
|
|
// get_lean_angles_to_accel - convert roll, pitch lean angles to lat/lon frame accelerations in cm/s/s |
|
void AC_PosControl::lean_angles_to_accel(float& accel_x_cmss, float& accel_y_cmss) const |
|
{ |
|
// rotate our roll, pitch angles into lat/lon frame |
|
// todo: this should probably be based on the desired attitude not the current attitude |
|
accel_x_cmss = (GRAVITY_MSS * 100) * (-_ahrs.cos_yaw() * _ahrs.sin_pitch() * _ahrs.cos_roll() - _ahrs.sin_yaw() * _ahrs.sin_roll()) / MAX(_ahrs.cos_roll() * _ahrs.cos_pitch(), 0.5f); |
|
accel_y_cmss = (GRAVITY_MSS * 100) * (-_ahrs.sin_yaw() * _ahrs.sin_pitch() * _ahrs.cos_roll() + _ahrs.cos_yaw() * _ahrs.sin_roll()) / MAX(_ahrs.cos_roll() * _ahrs.cos_pitch(), 0.5f); |
|
} |
|
|
|
/// calc_leash_length - calculates the horizontal leash length given a maximum speed, acceleration and position kP gain |
|
float AC_PosControl::calc_leash_length(float speed_cms, float accel_cms, float kP) const |
|
{ |
|
float leash_length; |
|
|
|
// sanity check acceleration and avoid divide by zero |
|
if (accel_cms <= 0.0f) { |
|
accel_cms = POSCONTROL_ACCELERATION_MIN; |
|
} |
|
|
|
// avoid divide by zero |
|
if (kP <= 0.0f) { |
|
return POSCONTROL_LEASH_LENGTH_MIN; |
|
} |
|
|
|
// calculate leash length |
|
if (speed_cms <= accel_cms / kP) { |
|
// linear leash length based on speed close in |
|
leash_length = speed_cms / kP; |
|
} else { |
|
// leash length grows at sqrt of speed further out |
|
leash_length = (accel_cms / (2.0f * kP * kP)) + (speed_cms * speed_cms / (2.0f * accel_cms)); |
|
} |
|
|
|
// ensure leash is at least 1m long |
|
if (leash_length < POSCONTROL_LEASH_LENGTH_MIN) { |
|
leash_length = POSCONTROL_LEASH_LENGTH_MIN; |
|
} |
|
|
|
return leash_length; |
|
} |
|
|
|
/// initialise ekf xy position reset check |
|
void AC_PosControl::init_ekf_xy_reset() |
|
{ |
|
Vector2f pos_shift; |
|
_ekf_xy_reset_ms = _ahrs.getLastPosNorthEastReset(pos_shift); |
|
} |
|
|
|
/// check for ekf position reset and adjust loiter or brake target position |
|
void AC_PosControl::check_for_ekf_xy_reset() |
|
{ |
|
// check for position shift |
|
Vector2f pos_shift; |
|
uint32_t reset_ms = _ahrs.getLastPosNorthEastReset(pos_shift); |
|
if (reset_ms != _ekf_xy_reset_ms) { |
|
shift_pos_xy_target(pos_shift.x * 100.0f, pos_shift.y * 100.0f); |
|
_ekf_xy_reset_ms = reset_ms; |
|
} |
|
} |
|
|
|
/// initialise ekf z axis reset check |
|
void AC_PosControl::init_ekf_z_reset() |
|
{ |
|
float alt_shift; |
|
_ekf_z_reset_ms = _ahrs.getLastPosDownReset(alt_shift); |
|
} |
|
|
|
/// check for ekf position reset and adjust loiter or brake target position |
|
void AC_PosControl::check_for_ekf_z_reset() |
|
{ |
|
// check for position shift |
|
float alt_shift; |
|
uint32_t reset_ms = _ahrs.getLastPosDownReset(alt_shift); |
|
if (reset_ms != 0 && reset_ms != _ekf_z_reset_ms) { |
|
shift_alt_target(-alt_shift * 100.0f); |
|
_ekf_z_reset_ms = reset_ms; |
|
} |
|
} |
|
|
|
/// limit vector to a given length, returns true if vector was limited |
|
bool AC_PosControl::limit_vector_length(float& vector_x, float& vector_y, float max_length) |
|
{ |
|
float vector_length = norm(vector_x, vector_y); |
|
if ((vector_length > max_length) && is_positive(vector_length)) { |
|
vector_x *= (max_length / vector_length); |
|
vector_y *= (max_length / vector_length); |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
/// Proportional controller with piecewise sqrt sections to constrain second derivative |
|
Vector3f AC_PosControl::sqrt_controller(const Vector3f& error, float p, float second_ord_lim) |
|
{ |
|
if (second_ord_lim < 0.0f || is_zero(second_ord_lim) || is_zero(p)) { |
|
return Vector3f(error.x * p, error.y * p, error.z); |
|
} |
|
|
|
float linear_dist = second_ord_lim / sq(p); |
|
float error_length = norm(error.x, error.y); |
|
if (error_length > linear_dist) { |
|
float first_order_scale = safe_sqrt(2.0f * second_ord_lim * (error_length - (linear_dist * 0.5f))) / error_length; |
|
return Vector3f(error.x * first_order_scale, error.y * first_order_scale, error.z); |
|
} else { |
|
return Vector3f(error.x * p, error.y * p, error.z); |
|
} |
|
} |
|
|
|
bool AC_PosControl::pre_arm_checks(const char *param_prefix, |
|
char *failure_msg, |
|
const uint8_t failure_msg_len) |
|
{ |
|
// validate AC_P members: |
|
const struct { |
|
const char *pid_name; |
|
AC_P &p; |
|
} ps[] = { |
|
{ "POSXY", get_pos_xy_p() }, |
|
{ "POSZ", get_pos_z_p() }, |
|
{ "VELZ", get_vel_z_p() }, |
|
}; |
|
for (uint8_t i=0; i<ARRAY_SIZE(ps); i++) { |
|
// all AC_P's must have a positive P value: |
|
if (!is_positive(ps[i].p.kP())) { |
|
hal.util->snprintf(failure_msg, failure_msg_len, "%s_%s_P must be > 0", param_prefix, ps[i].pid_name); |
|
return false; |
|
} |
|
} |
|
|
|
// z-axis acceleration control PID doesn't use FF, so P and I must be positive |
|
if (!is_positive(get_accel_z_pid().kP())) { |
|
hal.util->snprintf(failure_msg, failure_msg_len, "%s_ACCZ_P must be > 0", param_prefix); |
|
return false; |
|
} |
|
if (!is_positive(get_accel_z_pid().kI())) { |
|
hal.util->snprintf(failure_msg, failure_msg_len, "%s_ACCZ_I must be > 0", param_prefix); |
|
return false; |
|
} |
|
|
|
return true; |
|
}
|
|
|