You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
409 lines
10 KiB
409 lines
10 KiB
#include <AP_HAL/AP_HAL.h> |
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX |
|
|
|
#include "Scheduler.h" |
|
#include "Storage.h" |
|
#include "RCInput.h" |
|
#include "UARTDriver.h" |
|
#include "Util.h" |
|
#include "SPIUARTDriver.h" |
|
#include "RPIOUARTDriver.h" |
|
#include <poll.h> |
|
#include <unistd.h> |
|
#include <stdlib.h> |
|
#include <stdio.h> |
|
#include <errno.h> |
|
#include <sys/mman.h> |
|
|
|
using namespace Linux; |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
#define APM_LINUX_TIMER_PRIORITY 15 |
|
#define APM_LINUX_UART_PRIORITY 14 |
|
#define APM_LINUX_RCIN_PRIORITY 13 |
|
#define APM_LINUX_MAIN_PRIORITY 12 |
|
#define APM_LINUX_TONEALARM_PRIORITY 11 |
|
#define APM_LINUX_IO_PRIORITY 10 |
|
|
|
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_NAVIO || CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLEBRAIN2 |
|
#define APM_LINUX_UART_PERIOD 10000 |
|
#define APM_LINUX_RCIN_PERIOD 500 |
|
#define APM_LINUX_TONEALARM_PERIOD 10000 |
|
#define APM_LINUX_IO_PERIOD 20000 |
|
#else |
|
#define APM_LINUX_UART_PERIOD 10000 |
|
#define APM_LINUX_RCIN_PERIOD 10000 |
|
#define APM_LINUX_TONEALARM_PERIOD 10000 |
|
#define APM_LINUX_IO_PERIOD 20000 |
|
#endif // CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_NAVIO || CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLEBRAIN2 |
|
|
|
|
|
|
|
|
|
Scheduler::Scheduler() |
|
{} |
|
|
|
void Scheduler::_create_realtime_thread(pthread_t *ctx, int rtprio, |
|
const char *name, |
|
pthread_startroutine_t start_routine) |
|
{ |
|
struct sched_param param = { .sched_priority = rtprio }; |
|
pthread_attr_t attr; |
|
int r; |
|
|
|
pthread_attr_init(&attr); |
|
/* |
|
we need to run as root to get realtime scheduling. Allow it to |
|
run as non-root for debugging purposes, plus to allow the Replay |
|
tool to run |
|
*/ |
|
if (geteuid() == 0) { |
|
pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED); |
|
pthread_attr_setschedpolicy(&attr, SCHED_FIFO); |
|
pthread_attr_setschedparam(&attr, ¶m); |
|
} |
|
r = pthread_create(ctx, &attr, start_routine, this); |
|
if (r != 0) { |
|
hal.console->printf("Error creating thread '%s': %s\n", |
|
name, strerror(r)); |
|
AP_HAL::panic("Failed to create thread"); |
|
} |
|
pthread_attr_destroy(&attr); |
|
|
|
if (name) { |
|
pthread_setname_np(*ctx, name); |
|
} |
|
} |
|
|
|
void Scheduler::init(void* machtnichts) |
|
{ |
|
mlockall(MCL_CURRENT|MCL_FUTURE); |
|
|
|
struct sched_param param = { .sched_priority = APM_LINUX_MAIN_PRIORITY }; |
|
sched_setscheduler(0, SCHED_FIFO, ¶m); |
|
|
|
struct { |
|
pthread_t *ctx; |
|
int rtprio; |
|
const char *name; |
|
pthread_startroutine_t start_routine; |
|
} *iter, table[] = { |
|
{ .ctx = &_timer_thread_ctx, |
|
.rtprio = APM_LINUX_TIMER_PRIORITY, |
|
.name = "sched-timer", |
|
.start_routine = &Linux::Scheduler::_timer_thread, |
|
}, |
|
{ .ctx = &_uart_thread_ctx, |
|
.rtprio = APM_LINUX_UART_PRIORITY, |
|
.name = "sched-uart", |
|
.start_routine = &Linux::Scheduler::_uart_thread, |
|
}, |
|
{ .ctx = &_rcin_thread_ctx, |
|
.rtprio = APM_LINUX_RCIN_PRIORITY, |
|
.name = "sched-rcin", |
|
.start_routine = &Linux::Scheduler::_rcin_thread, |
|
}, |
|
{ .ctx = &_tonealarm_thread_ctx, |
|
.rtprio = APM_LINUX_TONEALARM_PRIORITY, |
|
.name = "sched-tonealarm", |
|
.start_routine = &Linux::Scheduler::_tonealarm_thread, |
|
}, |
|
{ .ctx = &_io_thread_ctx, |
|
.rtprio = APM_LINUX_IO_PRIORITY, |
|
.name = "sched-io", |
|
.start_routine = &Linux::Scheduler::_io_thread, |
|
}, |
|
{ } |
|
}; |
|
|
|
if (geteuid() != 0) { |
|
printf("WARNING: running as non-root. Will not use realtime scheduling\n"); |
|
} |
|
|
|
for (iter = table; iter->ctx; iter++) |
|
_create_realtime_thread(iter->ctx, iter->rtprio, iter->name, |
|
iter->start_routine); |
|
} |
|
|
|
void Scheduler::_microsleep(uint32_t usec) |
|
{ |
|
struct timespec ts; |
|
ts.tv_sec = 0; |
|
ts.tv_nsec = usec*1000UL; |
|
while (nanosleep(&ts, &ts) == -1 && errno == EINTR) ; |
|
} |
|
|
|
void Scheduler::delay(uint16_t ms) |
|
{ |
|
if (_stopped_clock_usec) { |
|
return; |
|
} |
|
uint64_t start = AP_HAL::millis64(); |
|
|
|
while ((AP_HAL::millis64() - start) < ms) { |
|
// this yields the CPU to other apps |
|
_microsleep(1000); |
|
if (_min_delay_cb_ms <= ms) { |
|
if (_delay_cb) { |
|
_delay_cb(); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void Scheduler::delay_microseconds(uint16_t us) |
|
{ |
|
if (_stopped_clock_usec) { |
|
return; |
|
} |
|
_microsleep(us); |
|
} |
|
|
|
void Scheduler::register_delay_callback(AP_HAL::Proc proc, |
|
uint16_t min_time_ms) |
|
{ |
|
_delay_cb = proc; |
|
_min_delay_cb_ms = min_time_ms; |
|
} |
|
|
|
void Scheduler::register_timer_process(AP_HAL::MemberProc proc) |
|
{ |
|
for (uint8_t i = 0; i < _num_timer_procs; i++) { |
|
if (_timer_proc[i] == proc) { |
|
return; |
|
} |
|
} |
|
|
|
if (_num_timer_procs < LINUX_SCHEDULER_MAX_TIMER_PROCS) { |
|
_timer_proc[_num_timer_procs] = proc; |
|
_num_timer_procs++; |
|
} else { |
|
hal.console->printf("Out of timer processes\n"); |
|
} |
|
} |
|
|
|
void Scheduler::register_io_process(AP_HAL::MemberProc proc) |
|
{ |
|
for (uint8_t i = 0; i < _num_io_procs; i++) { |
|
if (_io_proc[i] == proc) { |
|
return; |
|
} |
|
} |
|
|
|
if (_num_io_procs < LINUX_SCHEDULER_MAX_IO_PROCS) { |
|
_io_proc[_num_io_procs] = proc; |
|
_num_io_procs++; |
|
} else { |
|
hal.console->printf("Out of IO processes\n"); |
|
} |
|
} |
|
|
|
void Scheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us) |
|
{ |
|
_failsafe = failsafe; |
|
} |
|
|
|
void Scheduler::suspend_timer_procs() |
|
{ |
|
if (!_timer_semaphore.take(0)) { |
|
printf("Failed to take timer semaphore\n"); |
|
} |
|
} |
|
|
|
void Scheduler::resume_timer_procs() |
|
{ |
|
_timer_semaphore.give(); |
|
} |
|
|
|
void Scheduler::_run_timers(bool called_from_timer_thread) |
|
{ |
|
if (_in_timer_proc) { |
|
return; |
|
} |
|
_in_timer_proc = true; |
|
|
|
if (!_timer_semaphore.take(0)) { |
|
printf("Failed to take timer semaphore in _run_timers\n"); |
|
} |
|
// now call the timer based drivers |
|
for (int i = 0; i < _num_timer_procs; i++) { |
|
if (_timer_proc[i]) { |
|
_timer_proc[i](); |
|
} |
|
} |
|
|
|
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_RASPILOT |
|
//SPI UART use SPI |
|
if (!((RPIOUARTDriver *)hal.uartC)->isExternal() ) |
|
{ |
|
((RPIOUARTDriver *)hal.uartC)->_timer_tick(); |
|
} |
|
#endif |
|
|
|
_timer_semaphore.give(); |
|
|
|
// and the failsafe, if one is setup |
|
if (_failsafe != NULL) { |
|
_failsafe(); |
|
} |
|
|
|
_in_timer_proc = false; |
|
} |
|
|
|
void *Scheduler::_timer_thread(void* arg) |
|
{ |
|
Scheduler* sched = (Scheduler *)arg; |
|
|
|
while (sched->system_initializing()) { |
|
poll(NULL, 0, 1); |
|
} |
|
/* |
|
this aims to run at an average of 1kHz, so that it can be used |
|
to drive 1kHz processes without drift |
|
*/ |
|
uint64_t next_run_usec = AP_HAL::micros64() + 1000; |
|
while (true) { |
|
uint64_t dt = next_run_usec - AP_HAL::micros64(); |
|
if (dt > 2000) { |
|
// we've lost sync - restart |
|
next_run_usec = AP_HAL::micros64(); |
|
} else { |
|
sched->_microsleep(dt); |
|
} |
|
next_run_usec += 1000; |
|
// run registered timers |
|
sched->_run_timers(true); |
|
} |
|
return NULL; |
|
} |
|
|
|
void Scheduler::_run_io(void) |
|
{ |
|
if (!_io_semaphore.take(0)) { |
|
return; |
|
} |
|
|
|
// now call the IO based drivers |
|
for (int i = 0; i < _num_io_procs; i++) { |
|
if (_io_proc[i]) { |
|
_io_proc[i](); |
|
} |
|
} |
|
|
|
_io_semaphore.give(); |
|
} |
|
|
|
void *Scheduler::_rcin_thread(void *arg) |
|
{ |
|
Scheduler* sched = (Scheduler *)arg; |
|
|
|
while (sched->system_initializing()) { |
|
poll(NULL, 0, 1); |
|
} |
|
while (true) { |
|
sched->_microsleep(APM_LINUX_RCIN_PERIOD); |
|
RCInput::from(hal.rcin)->_timer_tick(); |
|
} |
|
return NULL; |
|
} |
|
|
|
void *Scheduler::_uart_thread(void* arg) |
|
{ |
|
Scheduler* sched = (Scheduler *)arg; |
|
|
|
while (sched->system_initializing()) { |
|
poll(NULL, 0, 1); |
|
} |
|
while (true) { |
|
sched->_microsleep(APM_LINUX_UART_PERIOD); |
|
|
|
// process any pending serial bytes |
|
UARTDriver::from(hal.uartA)->_timer_tick(); |
|
UARTDriver::from(hal.uartB)->_timer_tick(); |
|
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_RASPILOT |
|
//SPI UART not use SPI |
|
if (RPIOUARTDriver::from(hal.uartC)->isExternal()) { |
|
RPIOUARTDriver::from(hal.uartC)->_timer_tick(); |
|
} |
|
#else |
|
UARTDriver::from(hal.uartC)->_timer_tick(); |
|
#endif |
|
UARTDriver::from(hal.uartE)->_timer_tick(); |
|
} |
|
return NULL; |
|
} |
|
|
|
void *Scheduler::_tonealarm_thread(void* arg) |
|
{ |
|
Scheduler* sched = (Scheduler *)arg; |
|
|
|
while (sched->system_initializing()) { |
|
poll(NULL, 0, 1); |
|
} |
|
while (true) { |
|
sched->_microsleep(APM_LINUX_TONEALARM_PERIOD); |
|
|
|
// process tone command |
|
Util::from(hal.util)->_toneAlarm_timer_tick(); |
|
} |
|
return NULL; |
|
} |
|
|
|
void *Scheduler::_io_thread(void* arg) |
|
{ |
|
Scheduler* sched = (Scheduler *)arg; |
|
|
|
while (sched->system_initializing()) { |
|
poll(NULL, 0, 1); |
|
} |
|
while (true) { |
|
sched->_microsleep(APM_LINUX_IO_PERIOD); |
|
|
|
// process any pending storage writes |
|
Storage::from(hal.storage)->_timer_tick(); |
|
|
|
// run registered IO procepsses |
|
sched->_run_io(); |
|
} |
|
return NULL; |
|
} |
|
|
|
bool Scheduler::in_timerprocess() |
|
{ |
|
return _in_timer_proc; |
|
} |
|
|
|
void Scheduler::begin_atomic() |
|
{} |
|
|
|
void Scheduler::end_atomic() |
|
{} |
|
|
|
bool Scheduler::system_initializing() { |
|
return !_initialized; |
|
} |
|
|
|
void Scheduler::system_initialized() |
|
{ |
|
if (_initialized) { |
|
AP_HAL::panic("PANIC: scheduler::system_initialized called more than once"); |
|
} |
|
_initialized = true; |
|
} |
|
|
|
void Scheduler::reboot(bool hold_in_bootloader) |
|
{ |
|
exit(1); |
|
} |
|
|
|
void Scheduler::stop_clock(uint64_t time_usec) |
|
{ |
|
if (time_usec >= _stopped_clock_usec) { |
|
_stopped_clock_usec = time_usec; |
|
_run_io(); |
|
} |
|
} |
|
|
|
#endif // CONFIG_HAL_BOARD
|
|
|