You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
212 lines
6.6 KiB
212 lines
6.6 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
/* |
|
helicopter simulator class |
|
*/ |
|
|
|
#include <AP_HAL/AP_HAL.h> |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL |
|
#include "SIM_Helicopter.h" |
|
#include <stdio.h> |
|
|
|
/* |
|
constructor |
|
*/ |
|
Helicopter::Helicopter(const char *home_str, const char *frame_str) : |
|
Aircraft(home_str, frame_str) |
|
{ |
|
mass = 2.13f; |
|
|
|
/* |
|
scaling from motor power to Newtons. Allows the copter |
|
to hover against gravity when the motor is at hover_throttle |
|
*/ |
|
thrust_scale = (mass * GRAVITY_MSS) / hover_throttle; |
|
|
|
// calculate lateral thrust ratio for tail rotor |
|
tail_thrust_scale = sinf(radians(hover_lean)) * thrust_scale / yaw_zero; |
|
|
|
frame_height = 0.1; |
|
|
|
if (strstr(frame_str, "-dual")) { |
|
frame_type = HELI_FRAME_DUAL; |
|
} else if (strstr(frame_str, "-compound")) { |
|
frame_type = HELI_FRAME_COMPOUND; |
|
} else { |
|
frame_type = HELI_FRAME_CONVENTIONAL; |
|
} |
|
gas_heli = (strstr(frame_str, "-gas") != NULL); |
|
} |
|
|
|
/* |
|
update the helicopter simulation by one time step |
|
*/ |
|
void Helicopter::update(const struct sitl_input &input) |
|
{ |
|
// how much time has passed? |
|
float delta_time = frame_time_us * 1.0e-6f; |
|
|
|
float rsc = (input.servos[7]-1000) / 1000.0f; |
|
float rsc_scale = rsc/rsc_setpoint; |
|
// ignition only for gas helis |
|
bool ignition_enabled = gas_heli?(input.servos[6] > 1500):true; |
|
|
|
float thrust = 0; |
|
float roll_rate = 0; |
|
float pitch_rate = 0; |
|
float yaw_rate = 0; |
|
float torque_effect_accel = 0; |
|
float lateral_x_thrust = 0; |
|
float lateral_y_thrust = 0; |
|
|
|
float swash1 = (input.servos[0]-1000) / 1000.0f; |
|
float swash2 = (input.servos[1]-1000) / 1000.0f; |
|
float swash3 = (input.servos[2]-1000) / 1000.0f; |
|
|
|
if (!ignition_enabled) { |
|
rsc = 0; |
|
} |
|
|
|
switch (frame_type) { |
|
case HELI_FRAME_CONVENTIONAL: { |
|
// simulate a traditional helicopter |
|
|
|
float tail_rotor = (input.servos[3]-1000) / 1000.0f; |
|
|
|
thrust = (rsc/rsc_setpoint) * (swash1+swash2+swash3) / 3.0f; |
|
torque_effect_accel = (rsc_scale+thrust) * rotor_rot_accel; |
|
|
|
roll_rate = swash1 - swash2; |
|
pitch_rate = (swash1+swash2) / 2.0f - swash3; |
|
yaw_rate = tail_rotor - 0.5f; |
|
|
|
lateral_y_thrust = yaw_rate * rsc_scale * tail_thrust_scale; |
|
break; |
|
} |
|
|
|
case HELI_FRAME_DUAL: { |
|
// simulate a tandem helicopter |
|
|
|
float swash4 = (input.servos[3]-1000) / 1000.0f; |
|
float swash5 = (input.servos[4]-1000) / 1000.0f; |
|
float swash6 = (input.servos[5]-1000) / 1000.0f; |
|
|
|
thrust = (rsc / rsc_setpoint) * (swash1+swash2+swash3+swash4+swash5+swash6) / 6.0f; |
|
torque_effect_accel = (rsc_scale + rsc / rsc_setpoint) * rotor_rot_accel * ((swash1+swash2+swash3) - (swash4+swash5+swash6)); |
|
|
|
roll_rate = (swash1-swash2) + (swash4-swash5); |
|
pitch_rate = (swash1+swash2+swash3) - (swash4+swash5+swash6); |
|
yaw_rate = (swash1-swash2) + (swash5-swash4); |
|
break; |
|
} |
|
|
|
case HELI_FRAME_COMPOUND: { |
|
// simulate a compound helicopter |
|
|
|
float right_rotor = (input.servos[3]-1000) / 1000.0f; |
|
float left_rotor = (input.servos[4]-1000) / 1000.0f; |
|
|
|
thrust = (rsc/rsc_setpoint) * (swash1+swash2+swash3) / 3.0f; |
|
torque_effect_accel = (rsc_scale+thrust) * rotor_rot_accel; |
|
|
|
roll_rate = swash1 - swash2; |
|
pitch_rate = (swash1+swash2) / 2.0f - swash3; |
|
yaw_rate = right_rotor - left_rotor; |
|
|
|
lateral_x_thrust = (left_rotor+right_rotor-1) * rsc_scale * tail_thrust_scale; |
|
break; |
|
} |
|
} |
|
|
|
roll_rate *= rsc_scale; |
|
pitch_rate *= rsc_scale; |
|
yaw_rate *= rsc_scale; |
|
|
|
// rotational acceleration, in rad/s/s, in body frame |
|
Vector3f rot_accel; |
|
rot_accel.x = roll_rate * roll_rate_max; |
|
rot_accel.y = pitch_rate * pitch_rate_max; |
|
rot_accel.z = yaw_rate * yaw_rate_max; |
|
|
|
// rotational air resistance |
|
rot_accel.x -= gyro.x * radians(5000.0) / terminal_rotation_rate; |
|
rot_accel.y -= gyro.y * radians(5000.0) / terminal_rotation_rate; |
|
rot_accel.z -= gyro.z * radians(400.0) / terminal_rotation_rate; |
|
|
|
// torque effect on tail |
|
rot_accel.z += torque_effect_accel; |
|
|
|
// update rotational rates in body frame |
|
gyro += rot_accel * delta_time; |
|
|
|
// update attitude |
|
dcm.rotate(gyro * delta_time); |
|
dcm.normalize(); |
|
|
|
// air resistance |
|
Vector3f air_resistance = -velocity_ef * (GRAVITY_MSS/terminal_velocity); |
|
|
|
// scale thrust to newtons |
|
thrust *= thrust_scale; |
|
|
|
accel_body = Vector3f(lateral_x_thrust, lateral_y_thrust, -thrust / mass); |
|
Vector3f accel_earth = dcm * accel_body; |
|
accel_earth += Vector3f(0, 0, GRAVITY_MSS); |
|
accel_earth += air_resistance; |
|
|
|
// if we're on the ground, then our vertical acceleration is limited |
|
// to zero. This effectively adds the force of the ground on the aircraft |
|
if (on_ground(position) && accel_earth.z > 0) { |
|
accel_earth.z = 0; |
|
} |
|
|
|
// work out acceleration as seen by the accelerometers. It sees the kinematic |
|
// acceleration (ie. real movement), plus gravity |
|
accel_body = dcm.transposed() * (accel_earth + Vector3f(0, 0, -GRAVITY_MSS)); |
|
|
|
// add some noise |
|
add_noise(thrust / thrust_scale); |
|
|
|
// new velocity vector |
|
velocity_ef += accel_earth * delta_time; |
|
|
|
// new position vector |
|
Vector3f old_position = position; |
|
position += velocity_ef * delta_time; |
|
|
|
// assume zero wind for now |
|
airspeed = velocity_ef.length(); |
|
|
|
// constrain height to the ground |
|
if (on_ground(position)) { |
|
if (!on_ground(old_position)) { |
|
printf("Hit ground at %f m/s\n", velocity_ef.z); |
|
|
|
velocity_ef.zero(); |
|
|
|
// zero roll/pitch, but keep yaw |
|
float r, p, y; |
|
dcm.to_euler(&r, &p, &y); |
|
dcm.from_euler(0, 0, y); |
|
|
|
position.z = -(ground_level + frame_height - home.alt*0.01f); |
|
} |
|
} |
|
|
|
// update lat/lon/altitude |
|
update_position(); |
|
} |
|
#endif // CONFIG_HAL_BOARD
|
|
|