You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
238 lines
6.6 KiB
238 lines
6.6 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
#include <AP_HAL.h> |
|
#if (CONFIG_HAL_BOARD == HAL_BOARD_APM1 || CONFIG_HAL_BOARD == HAL_BOARD_APM2) |
|
|
|
#include <avr/io.h> |
|
#include <avr/wdt.h> |
|
#include <avr/interrupt.h> |
|
|
|
#include "Scheduler.h" |
|
#include "ISRRegistry.h" |
|
using namespace AP_HAL_AVR; |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
/* AVRScheduler timer interrupt period is controlled by TCNT2. |
|
* 256-62 gives a 1kHz period. */ |
|
#define RESET_TCNT2_VALUE (256 - 62) |
|
|
|
/* Static AVRScheduler variables: */ |
|
AVRTimer AVRScheduler::_timer; |
|
|
|
AP_HAL::TimedProc AVRScheduler::_failsafe = NULL; |
|
volatile bool AVRScheduler::_timer_suspended = false; |
|
volatile bool AVRScheduler::_timer_event_missed = false; |
|
volatile bool AVRScheduler::_in_timer_proc = false; |
|
AP_HAL::TimedProc AVRScheduler::_timer_proc[AVR_SCHEDULER_MAX_TIMER_PROCS] = {NULL}; |
|
uint8_t AVRScheduler::_num_timer_procs = 0; |
|
|
|
|
|
AVRScheduler::AVRScheduler() : |
|
_delay_cb(NULL), |
|
_min_delay_cb_ms(65535), |
|
_initialized(false) |
|
{} |
|
|
|
void AVRScheduler::init(void* _isrregistry) { |
|
ISRRegistry* isrregistry = (ISRRegistry*) _isrregistry; |
|
|
|
/* _timer: sets up timer hardware to Arduino defaults, and |
|
* uses TIMER0 to implement millis & micros */ |
|
_timer.init(); |
|
|
|
/* TIMER2: Setup the overflow interrupt to occur at 1khz. */ |
|
TIMSK2 = 0; /* Disable timer interrupt */ |
|
TCCR2A = 0; /* Normal counting mode */ |
|
TCCR2B = _BV(CS21) | _BV(CS22); /* Prescaler to clk/256 */ |
|
TCNT2 = 0; /* Set count to 0 */ |
|
TIFR2 = _BV(TOV2); /* Clear pending interrupts */ |
|
TIMSK2 = _BV(TOIE2); /* Enable overflow interrupt*/ |
|
/* Register _timer_isr_event to trigger on overflow */ |
|
isrregistry->register_signal(ISR_REGISTRY_TIMER2_OVF, _timer_isr_event); |
|
} |
|
|
|
uint32_t AVRScheduler::micros() { |
|
return _timer.micros(); |
|
} |
|
|
|
uint32_t AVRScheduler::millis() { |
|
return _timer.millis(); |
|
} |
|
|
|
void AVRScheduler::delay_microseconds(uint16_t us) { |
|
_timer.delay_microseconds(us); |
|
} |
|
|
|
void AVRScheduler::delay(uint16_t ms) |
|
{ |
|
uint32_t start = _timer.micros(); |
|
|
|
while (ms > 0) { |
|
while ((_timer.micros() - start) >= 1000) { |
|
ms--; |
|
if (ms == 0) break; |
|
start += 1000; |
|
} |
|
if (_min_delay_cb_ms <= ms) { |
|
if (_delay_cb) { |
|
_delay_cb(); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void AVRScheduler::register_delay_callback(AP_HAL::Proc proc, |
|
uint16_t min_time_ms) { |
|
_delay_cb = proc; |
|
_min_delay_cb_ms = min_time_ms; |
|
} |
|
|
|
void AVRScheduler::register_timer_process(AP_HAL::TimedProc proc) { |
|
for (int i = 0; i < _num_timer_procs; i++) { |
|
if (_timer_proc[i] == proc) { |
|
return; |
|
} |
|
} |
|
|
|
if (_num_timer_procs < AVR_SCHEDULER_MAX_TIMER_PROCS) { |
|
/* this write to _timer_proc can be outside the critical section |
|
* because that memory won't be used until _num_timer_procs is |
|
* incremented. */ |
|
_timer_proc[_num_timer_procs] = proc; |
|
/* _num_timer_procs is used from interrupt, and multiple bytes long. */ |
|
cli(); |
|
_num_timer_procs++; |
|
sei(); |
|
} |
|
|
|
} |
|
|
|
void AVRScheduler::register_io_process(AP_HAL::TimedProc proc) |
|
{ |
|
// IO processes not supported on AVR |
|
} |
|
|
|
void AVRScheduler::register_timer_failsafe( |
|
AP_HAL::TimedProc failsafe, uint32_t period_us) { |
|
/* XXX Assert period_us == 1000 */ |
|
_failsafe = failsafe; |
|
} |
|
|
|
void AVRScheduler::suspend_timer_procs() { |
|
_timer_suspended = true; |
|
} |
|
|
|
void AVRScheduler::resume_timer_procs() { |
|
_timer_suspended = false; |
|
if (_timer_event_missed == true) { |
|
_run_timer_procs(false); |
|
_timer_event_missed = false; |
|
} |
|
} |
|
|
|
bool AVRScheduler::in_timerprocess() { |
|
return _in_timer_proc; |
|
} |
|
|
|
void AVRScheduler::_timer_isr_event() { |
|
// we enable the interrupt again immediately and also enable |
|
// interrupts. This allows other time critical interrupts to |
|
// run (such as the serial receive interrupt). We catch the |
|
// timer calls taking too long using _in_timer_call. |
|
// This approach also gives us a nice uniform spacing between |
|
// timer calls |
|
|
|
TCNT2 = RESET_TCNT2_VALUE; |
|
sei(); |
|
_run_timer_procs(true); |
|
} |
|
|
|
void AVRScheduler::_run_timer_procs(bool called_from_isr) { |
|
|
|
uint32_t tnow = _timer.micros(); |
|
if (_in_timer_proc) { |
|
// the timer calls took longer than the period of the |
|
// timer. This is bad, and may indicate a serious |
|
// driver failure. We can't just call the drivers |
|
// again, as we could run out of stack. So we only |
|
// call the _failsafe call. It's job is to detect if |
|
// the drivers or the main loop are indeed dead and to |
|
// activate whatever failsafe it thinks may help if |
|
// need be. We assume the failsafe code can't |
|
// block. If it does then we will recurse and die when |
|
// we run out of stack |
|
if (_failsafe != NULL) { |
|
_failsafe(tnow); |
|
} |
|
return; |
|
} |
|
|
|
_in_timer_proc = true; |
|
|
|
if (!_timer_suspended) { |
|
// now call the timer based drivers |
|
for (int i = 0; i < _num_timer_procs; i++) { |
|
if (_timer_proc[i] != NULL) { |
|
_timer_proc[i](tnow); |
|
} |
|
} |
|
} else if (called_from_isr) { |
|
_timer_event_missed = true; |
|
} |
|
|
|
// and the failsafe, if one is setup |
|
if (_failsafe != NULL) { |
|
_failsafe(tnow); |
|
} |
|
|
|
_in_timer_proc = false; |
|
} |
|
|
|
bool AVRScheduler::system_initializing() { |
|
return !_initialized; |
|
} |
|
|
|
void AVRScheduler::system_initialized() { |
|
if (_initialized) { |
|
panic(PSTR("PANIC: scheduler::system_initialized called" |
|
"more than once")); |
|
} |
|
_initialized = true; |
|
} |
|
|
|
void AVRScheduler::panic(const prog_char_t* errormsg) { |
|
/* Suspend timer processes. We still want the timer event to go off |
|
* to run the _failsafe code, however. */ |
|
_timer_suspended = true; |
|
/* Print the error message on both ports */ |
|
hal.uartA->println_P(errormsg); |
|
hal.uartC->println_P(errormsg); |
|
/* Spin forever. */ |
|
for(;;); |
|
} |
|
|
|
void AVRScheduler::reboot() { |
|
hal.uartA->println_P(PSTR("GOING DOWN FOR A REBOOT\r\n")); |
|
hal.scheduler->delay(100); |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2 |
|
/* The APM2 bootloader will reset the watchdog shortly after |
|
* starting, so we can use the watchdog to force a reboot |
|
*/ |
|
cli(); |
|
wdt_enable(WDTO_15MS); |
|
for(;;); |
|
#else |
|
cli(); |
|
/* Making a null pointer call will cause all AVRs to reboot |
|
* but they may not come back alive properly - we need to setup |
|
* the IO the way the bootloader would. |
|
*/ |
|
void (*fn)(void) = NULL; |
|
fn(); |
|
for(;;); |
|
#endif |
|
|
|
} |
|
|
|
#endif
|
|
|