You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
883 lines
32 KiB
883 lines
32 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
//**************************************************************** |
|
// Function that controls aileron/rudder, elevator, rudder (if 4 channel control) and throttle to produce desired attitude and airspeed. |
|
//**************************************************************** |
|
|
|
|
|
/* |
|
get a speed scaling number for control surfaces. This is applied to |
|
PIDs to change the scaling of the PID with speed. At high speed we |
|
move the surfaces less, and at low speeds we move them more. |
|
*/ |
|
static float get_speed_scaler(void) |
|
{ |
|
float aspeed, speed_scaler; |
|
if (ahrs.airspeed_estimate(&aspeed)) { |
|
if (aspeed > 0) { |
|
speed_scaler = g.scaling_speed / aspeed; |
|
} else { |
|
speed_scaler = 2.0; |
|
} |
|
speed_scaler = constrain_float(speed_scaler, 0.5, 2.0); |
|
} else { |
|
if (channel_throttle->servo_out > 0) { |
|
speed_scaler = 0.5 + ((float)THROTTLE_CRUISE / channel_throttle->servo_out / 2.0); // First order taylor expansion of square root |
|
// Should maybe be to the 2/7 power, but we aren't goint to implement that... |
|
}else{ |
|
speed_scaler = 1.67; |
|
} |
|
// This case is constrained tighter as we don't have real speed info |
|
speed_scaler = constrain_float(speed_scaler, 0.6, 1.67); |
|
} |
|
return speed_scaler; |
|
} |
|
|
|
/* |
|
return true if the current settings and mode should allow for stick mixing |
|
*/ |
|
static bool stick_mixing_enabled(void) |
|
{ |
|
if (auto_throttle_mode) { |
|
// we're in an auto mode. Check the stick mixing flag |
|
if (g.stick_mixing != STICK_MIXING_DISABLED && |
|
geofence_stickmixing() && |
|
failsafe == FAILSAFE_NONE && |
|
(g.throttle_fs_enabled == 0 || |
|
channel_throttle->radio_in >= g.throttle_fs_value)) { |
|
// we're in an auto mode, and haven't triggered failsafe |
|
return true; |
|
} else { |
|
return false; |
|
} |
|
} |
|
// non-auto mode. Always do stick mixing |
|
return true; |
|
} |
|
|
|
|
|
/* |
|
this is the main roll stabilization function. It takes the |
|
previously set nav_roll calculates roll servo_out to try to |
|
stabilize the plane at the given roll |
|
*/ |
|
static void stabilize_roll(float speed_scaler) |
|
{ |
|
if (inverted_flight) { |
|
// we want to fly upside down. We need to cope with wrap of |
|
// the roll_sensor interfering with wrap of nav_roll, which |
|
// would really confuse the PID code. The easiest way to |
|
// handle this is to ensure both go in the same direction from |
|
// zero |
|
nav_roll_cd += 18000; |
|
if (ahrs.roll_sensor < 0) nav_roll_cd -= 36000; |
|
} |
|
|
|
channel_roll->servo_out = g.rollController.get_servo_out(nav_roll_cd - ahrs.roll_sensor, |
|
speed_scaler, |
|
control_mode == STABILIZE); |
|
} |
|
|
|
/* |
|
this is the main pitch stabilization function. It takes the |
|
previously set nav_pitch and calculates servo_out values to try to |
|
stabilize the plane at the given attitude. |
|
*/ |
|
static void stabilize_pitch(float speed_scaler) |
|
{ |
|
int32_t demanded_pitch = nav_pitch_cd + g.pitch_trim_cd + channel_throttle->servo_out * g.kff_throttle_to_pitch; |
|
channel_pitch->servo_out = g.pitchController.get_servo_out(demanded_pitch - ahrs.pitch_sensor, |
|
speed_scaler, |
|
control_mode == STABILIZE); |
|
} |
|
|
|
/* |
|
this gives the user control of the aircraft in stabilization modes |
|
*/ |
|
static void stabilize_stick_mixing_direct() |
|
{ |
|
if (!stick_mixing_enabled() || |
|
control_mode == ACRO || |
|
control_mode == FLY_BY_WIRE_A || |
|
control_mode == FLY_BY_WIRE_B || |
|
control_mode == CRUISE || |
|
control_mode == TRAINING) { |
|
return; |
|
} |
|
// do direct stick mixing on aileron/elevator |
|
float ch1_inf; |
|
float ch2_inf; |
|
|
|
ch1_inf = (float)channel_roll->radio_in - (float)channel_roll->radio_trim; |
|
ch1_inf = fabsf(ch1_inf); |
|
ch1_inf = min(ch1_inf, 400.0); |
|
ch1_inf = ((400.0 - ch1_inf) /400.0); |
|
|
|
ch2_inf = (float)channel_pitch->radio_in - channel_pitch->radio_trim; |
|
ch2_inf = fabsf(ch2_inf); |
|
ch2_inf = min(ch2_inf, 400.0); |
|
ch2_inf = ((400.0 - ch2_inf) /400.0); |
|
|
|
// scale the sensor input based on the stick input |
|
// ----------------------------------------------- |
|
channel_roll->servo_out *= ch1_inf; |
|
channel_pitch->servo_out *= ch2_inf; |
|
|
|
// Mix in stick inputs |
|
// ------------------- |
|
channel_roll->servo_out += channel_roll->pwm_to_angle(); |
|
channel_pitch->servo_out += channel_pitch->pwm_to_angle(); |
|
} |
|
|
|
/* |
|
this gives the user control of the aircraft in stabilization modes |
|
using FBW style controls |
|
*/ |
|
static void stabilize_stick_mixing_fbw() |
|
{ |
|
if (!stick_mixing_enabled() || |
|
control_mode == ACRO || |
|
control_mode == FLY_BY_WIRE_A || |
|
control_mode == FLY_BY_WIRE_B || |
|
control_mode == CRUISE || |
|
control_mode == TRAINING) { |
|
return; |
|
} |
|
// do FBW style stick mixing. We don't treat it linearly |
|
// however. For inputs up to half the maximum, we use linear |
|
// addition to the nav_roll and nav_pitch. Above that it goes |
|
// non-linear and ends up as 2x the maximum, to ensure that |
|
// the user can direct the plane in any direction with stick |
|
// mixing. |
|
float roll_input = channel_roll->norm_input(); |
|
if (roll_input > 0.5f) { |
|
roll_input = (3*roll_input - 1); |
|
} else if (roll_input < -0.5f) { |
|
roll_input = (3*roll_input + 1); |
|
} |
|
nav_roll_cd += roll_input * g.roll_limit_cd; |
|
nav_roll_cd = constrain_int32(nav_roll_cd, -g.roll_limit_cd.get(), g.roll_limit_cd.get()); |
|
|
|
float pitch_input = channel_pitch->norm_input(); |
|
if (fabsf(pitch_input) > 0.5f) { |
|
pitch_input = (3*pitch_input - 1); |
|
} |
|
if (inverted_flight) { |
|
pitch_input = -pitch_input; |
|
} |
|
if (pitch_input > 0) { |
|
nav_pitch_cd += pitch_input * aparm.pitch_limit_max_cd; |
|
} else { |
|
nav_pitch_cd += -(pitch_input * aparm.pitch_limit_min_cd); |
|
} |
|
nav_pitch_cd = constrain_int32(nav_pitch_cd, aparm.pitch_limit_min_cd.get(), aparm.pitch_limit_max_cd.get()); |
|
} |
|
|
|
|
|
/* |
|
stabilize the yaw axis |
|
*/ |
|
static void stabilize_yaw(float speed_scaler) |
|
{ |
|
float ch4_inf = 1.0; |
|
|
|
if (stick_mixing_enabled()) { |
|
// stick mixing performed for rudder for all cases including FBW |
|
// important for steering on the ground during landing |
|
// ----------------------------------------------- |
|
ch4_inf = (float)channel_rudder->radio_in - (float)channel_rudder->radio_trim; |
|
ch4_inf = fabsf(ch4_inf); |
|
ch4_inf = min(ch4_inf, 400.0); |
|
ch4_inf = ((400.0 - ch4_inf) /400.0); |
|
} |
|
|
|
// Apply output to Rudder |
|
calc_nav_yaw(speed_scaler, ch4_inf); |
|
channel_rudder->servo_out *= ch4_inf; |
|
channel_rudder->servo_out += channel_rudder->pwm_to_angle(); |
|
} |
|
|
|
|
|
/* |
|
a special stabilization function for training mode |
|
*/ |
|
static void stabilize_training(float speed_scaler) |
|
{ |
|
if (training_manual_roll) { |
|
channel_roll->servo_out = channel_roll->control_in; |
|
} else { |
|
// calculate what is needed to hold |
|
stabilize_roll(speed_scaler); |
|
if ((nav_roll_cd > 0 && channel_roll->control_in < channel_roll->servo_out) || |
|
(nav_roll_cd < 0 && channel_roll->control_in > channel_roll->servo_out)) { |
|
// allow user to get out of the roll |
|
channel_roll->servo_out = channel_roll->control_in; |
|
} |
|
} |
|
|
|
if (training_manual_pitch) { |
|
channel_pitch->servo_out = channel_pitch->control_in; |
|
} else { |
|
stabilize_pitch(speed_scaler); |
|
if ((nav_pitch_cd > 0 && channel_pitch->control_in < channel_pitch->servo_out) || |
|
(nav_pitch_cd < 0 && channel_pitch->control_in > channel_pitch->servo_out)) { |
|
// allow user to get back to level |
|
channel_pitch->servo_out = channel_pitch->control_in; |
|
} |
|
} |
|
|
|
stabilize_yaw(speed_scaler); |
|
} |
|
|
|
|
|
/* |
|
this is the ACRO mode stabilization function. It does rate |
|
stabilization on roll and pitch axes |
|
*/ |
|
static void stabilize_acro(float speed_scaler) |
|
{ |
|
float roll_rate = (channel_roll->control_in/4500.0f) * g.acro_roll_rate; |
|
float pitch_rate = (channel_pitch->control_in/4500.0f) * g.acro_pitch_rate; |
|
|
|
/* |
|
check for special roll handling near the pitch poles |
|
*/ |
|
if (roll_rate == 0) { |
|
/* |
|
we have no roll stick input, so we will enter "roll locked" |
|
mode, and hold the roll we had when the stick was released |
|
*/ |
|
if (!acro_state.locked_roll) { |
|
acro_state.locked_roll = true; |
|
acro_state.locked_roll_err = 0; |
|
} else { |
|
acro_state.locked_roll_err += ahrs.get_gyro().x * 0.02f; |
|
} |
|
int32_t roll_error_cd = -ToDeg(acro_state.locked_roll_err)*100; |
|
nav_roll_cd = ahrs.roll_sensor + roll_error_cd; |
|
// try to reduce the integrated angular error to zero. We set |
|
// 'stabilze' to true, which disables the roll integrator |
|
channel_roll->servo_out = g.rollController.get_servo_out(roll_error_cd, |
|
speed_scaler, |
|
true); |
|
} else { |
|
/* |
|
aileron stick is non-zero, use pure rate control until the |
|
user releases the stick |
|
*/ |
|
acro_state.locked_roll = false; |
|
channel_roll->servo_out = g.rollController.get_rate_out(roll_rate, speed_scaler); |
|
} |
|
|
|
if (pitch_rate == 0) { |
|
/* |
|
user has zero pitch stick input, so we lock pitch at the |
|
point they release the stick |
|
*/ |
|
if (!acro_state.locked_pitch) { |
|
acro_state.locked_pitch = true; |
|
acro_state.locked_pitch_cd = ahrs.pitch_sensor; |
|
} |
|
// try to hold the locked pitch. Note that we have the pitch |
|
// integrator enabled, which helps with inverted flight |
|
nav_pitch_cd = acro_state.locked_pitch_cd; |
|
channel_pitch->servo_out = g.pitchController.get_servo_out(nav_pitch_cd - ahrs.pitch_sensor, |
|
speed_scaler, |
|
false); |
|
} else { |
|
/* |
|
user has non-zero pitch input, use a pure rate controller |
|
*/ |
|
acro_state.locked_pitch = false; |
|
channel_pitch->servo_out = g.pitchController.get_rate_out(pitch_rate, speed_scaler); |
|
} |
|
|
|
/* |
|
call the normal yaw stabilize for now. This allows for manual |
|
rudder input, plus automatic coordinated turn handling. For |
|
knife-edge we'll need to do something quite different |
|
*/ |
|
stabilize_yaw(speed_scaler); |
|
} |
|
|
|
/* |
|
main stabilization function for all 3 axes |
|
*/ |
|
static void stabilize() |
|
{ |
|
if (control_mode == MANUAL) { |
|
// nothing to do |
|
return; |
|
} |
|
float speed_scaler = get_speed_scaler(); |
|
|
|
if (control_mode == TRAINING) { |
|
stabilize_training(speed_scaler); |
|
} else if (control_mode == ACRO) { |
|
stabilize_acro(speed_scaler); |
|
} else { |
|
if (g.stick_mixing == STICK_MIXING_FBW && control_mode != STABILIZE) { |
|
stabilize_stick_mixing_fbw(); |
|
} |
|
stabilize_roll(speed_scaler); |
|
stabilize_pitch(speed_scaler); |
|
if (g.stick_mixing == STICK_MIXING_DIRECT || control_mode == STABILIZE) { |
|
stabilize_stick_mixing_direct(); |
|
} |
|
stabilize_yaw(speed_scaler); |
|
} |
|
|
|
/* |
|
see if we should zero the attitude controller integrators. |
|
*/ |
|
if (channel_throttle->control_in == 0 && |
|
relative_altitude_abs_cm() < 500 && |
|
fabs(barometer.get_climb_rate()) < 0.5f && |
|
g_gps->ground_speed_cm < 300) { |
|
// we are low, with no climb rate, and zero throttle, and very |
|
// low ground speed. Zero the attitude controller |
|
// integrators. This prevents integrator buildup pre-takeoff. |
|
g.rollController.reset_I(); |
|
g.pitchController.reset_I(); |
|
g.yawController.reset_I(); |
|
} |
|
} |
|
|
|
|
|
static void calc_throttle() |
|
{ |
|
if (aparm.throttle_cruise <= 1) { |
|
// user has asked for zero throttle - this may be done by a |
|
// mission which wants to turn off the engine for a parachute |
|
// landing |
|
channel_throttle->servo_out = 0; |
|
return; |
|
} |
|
|
|
if (g.alt_control_algorithm == ALT_CONTROL_TECS || g.alt_control_algorithm == ALT_CONTROL_DEFAULT) { |
|
channel_throttle->servo_out = SpdHgt_Controller->get_throttle_demand(); |
|
} else if (!alt_control_airspeed()) { |
|
int16_t throttle_target = aparm.throttle_cruise + throttle_nudge; |
|
|
|
// TODO: think up an elegant way to bump throttle when |
|
// groundspeed_undershoot > 0 in the no airspeed sensor case; PID |
|
// control? |
|
|
|
// no airspeed sensor, we use nav pitch to determine the proper throttle output |
|
// AUTO, RTL, etc |
|
// --------------------------------------------------------------------------- |
|
if (nav_pitch_cd >= 0) { |
|
channel_throttle->servo_out = throttle_target + (aparm.throttle_max - throttle_target) * nav_pitch_cd / aparm.pitch_limit_max_cd; |
|
} else { |
|
channel_throttle->servo_out = throttle_target - (throttle_target - aparm.throttle_min) * nav_pitch_cd / aparm.pitch_limit_min_cd; |
|
} |
|
|
|
channel_throttle->servo_out = constrain_int16(channel_throttle->servo_out, aparm.throttle_min.get(), aparm.throttle_max.get()); |
|
} else { |
|
// throttle control with airspeed compensation |
|
// ------------------------------------------- |
|
energy_error = airspeed_energy_error + altitude_error_cm * 0.098f; |
|
|
|
// positive energy errors make the throttle go higher |
|
channel_throttle->servo_out = aparm.throttle_cruise + g.pidTeThrottle.get_pid(energy_error); |
|
channel_throttle->servo_out += (channel_pitch->servo_out * g.kff_pitch_to_throttle); |
|
|
|
channel_throttle->servo_out = constrain_int16(channel_throttle->servo_out, |
|
aparm.throttle_min.get(), aparm.throttle_max.get()); |
|
} |
|
|
|
|
|
} |
|
|
|
/***************************************** |
|
* Calculate desired roll/pitch/yaw angles (in medium freq loop) |
|
*****************************************/ |
|
|
|
// Yaw is separated into a function for heading hold on rolling take-off |
|
// ---------------------------------------------------------------------- |
|
static void calc_nav_yaw(float speed_scaler, float ch4_inf) |
|
{ |
|
if (hold_course_cd != -1) { |
|
// steering on or close to ground |
|
int32_t bearing_error_cd = nav_controller->bearing_error_cd(); |
|
channel_rudder->servo_out = g.pidWheelSteer.get_pid_4500(bearing_error_cd, speed_scaler) + |
|
g.kff_rudder_mix * channel_roll->servo_out; |
|
channel_rudder->servo_out = constrain_int16(channel_rudder->servo_out, -4500, 4500); |
|
return; |
|
} |
|
|
|
channel_rudder->servo_out = g.yawController.get_servo_out(speed_scaler, |
|
control_mode == STABILIZE); |
|
|
|
// add in rudder mixing from roll |
|
channel_rudder->servo_out += channel_roll->servo_out * g.kff_rudder_mix; |
|
channel_rudder->servo_out = constrain_int16(channel_rudder->servo_out, -4500, 4500); |
|
} |
|
|
|
|
|
static void calc_nav_pitch() |
|
{ |
|
// Calculate the Pitch of the plane |
|
// -------------------------------- |
|
if (g.alt_control_algorithm == ALT_CONTROL_TECS || g.alt_control_algorithm == ALT_CONTROL_DEFAULT) { |
|
nav_pitch_cd = SpdHgt_Controller->get_pitch_demand(); |
|
} else if (alt_control_airspeed()) { |
|
nav_pitch_cd = -g.pidNavPitchAirspeed.get_pid(airspeed_error_cm); |
|
} else { |
|
nav_pitch_cd = g.pidNavPitchAltitude.get_pid(altitude_error_cm); |
|
} |
|
nav_pitch_cd = constrain_int32(nav_pitch_cd, aparm.pitch_limit_min_cd.get(), aparm.pitch_limit_max_cd.get()); |
|
} |
|
|
|
|
|
static void calc_nav_roll() |
|
{ |
|
nav_roll_cd = nav_controller->nav_roll_cd(); |
|
nav_roll_cd = constrain_int32(nav_roll_cd, -g.roll_limit_cd.get(), g.roll_limit_cd.get()); |
|
} |
|
|
|
|
|
/***************************************** |
|
* Roll servo slew limit |
|
*****************************************/ |
|
/* |
|
* float roll_slew_limit(float servo) |
|
* { |
|
* static float last; |
|
* float temp = constrain_float(servo, last-ROLL_SLEW_LIMIT * delta_ms_fast_loop/1000.f, last + ROLL_SLEW_LIMIT * delta_ms_fast_loop/1000.f); |
|
* last = servo; |
|
* return temp; |
|
* }*/ |
|
|
|
/***************************************** |
|
* Throttle slew limit |
|
*****************************************/ |
|
static void throttle_slew_limit(int16_t last_throttle) |
|
{ |
|
// if slew limit rate is set to zero then do not slew limit |
|
if (aparm.throttle_slewrate) { |
|
// limit throttle change by the given percentage per second |
|
float temp = aparm.throttle_slewrate * G_Dt * 0.01 * fabsf(channel_throttle->radio_max - channel_throttle->radio_min); |
|
// allow a minimum change of 1 PWM per cycle |
|
if (temp < 1) { |
|
temp = 1; |
|
} |
|
channel_throttle->radio_out = constrain_int16(channel_throttle->radio_out, last_throttle - temp, last_throttle + temp); |
|
} |
|
} |
|
|
|
|
|
/* |
|
check for automatic takeoff conditions being met |
|
*/ |
|
static bool auto_takeoff_check(void) |
|
{ |
|
#if 1 |
|
if (g_gps == NULL || g_gps->status() != GPS::GPS_OK_FIX_3D) { |
|
// no auto takeoff without GPS lock |
|
return false; |
|
} |
|
if (g_gps->ground_speed_cm < g.takeoff_throttle_min_speed*100.0f) { |
|
// we haven't reached the minimum ground speed |
|
return false; |
|
} |
|
|
|
if (g.takeoff_throttle_min_accel > 0.0f) { |
|
float xaccel = ins.get_accel().x; |
|
if (ahrs.pitch_sensor > -3000 && |
|
ahrs.pitch_sensor < 4500 && |
|
abs(ahrs.roll_sensor) < 3000 && |
|
xaccel >= g.takeoff_throttle_min_accel) { |
|
// trigger with minimum acceleration when flat |
|
// Thanks to Chris Miser for this suggestion |
|
gcs_send_text_fmt(PSTR("Triggered AUTO xaccel=%.1f"), xaccel); |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
// we're good for takeoff |
|
return true; |
|
|
|
#else |
|
// this is a more advanced check that relies on TECS |
|
uint32_t now = hal.scheduler->micros(); |
|
static bool launchCountStarted; |
|
static uint32_t last_tkoff_arm_time; |
|
|
|
if (g_gps == NULL || g_gps->status() != GPS::GPS_OK_FIX_3D) |
|
{ |
|
// no auto takeoff without GPS lock |
|
return false; |
|
} |
|
if (SpdHgt_Controller->get_VXdot() >= g.takeoff_throttle_min_accel || g.takeoff_throttle_min_accel == 0.0 || launchCountStarted) |
|
{ |
|
if (!launchCountStarted) |
|
{ |
|
launchCountStarted = true; |
|
last_tkoff_arm_time = now; |
|
gcs_send_text_fmt(PSTR("Armed AUTO, xaccel = %.1f m/s/s, waiting %.1f sec"), SpdHgt_Controller->get_VXdot(), 0.1f*float(min(g.takeoff_throttle_delay,15))); |
|
} |
|
if ((now - last_tkoff_arm_time) <= 2500000) |
|
{ |
|
|
|
if ((g_gps->ground_speed > g.takeoff_throttle_min_speed*100.0f || g.takeoff_throttle_min_speed == 0.0) && ((now -last_tkoff_arm_time) >= min(uint32_t(g.takeoff_throttle_delay*100000),1500000))) |
|
{ |
|
gcs_send_text_fmt(PSTR("Triggered AUTO, GPSspd = %.1f"), g_gps->ground_speed*100.0f); |
|
launchCountStarted = false; |
|
last_tkoff_arm_time = 0; |
|
return true; |
|
} |
|
else |
|
{ |
|
launchCountStarted = true; |
|
return false; |
|
} |
|
} |
|
else |
|
{ |
|
gcs_send_text_fmt(PSTR("Timeout AUTO")); |
|
launchCountStarted = false; |
|
last_tkoff_arm_time = 0; |
|
return false; |
|
} |
|
} |
|
launchCountStarted = false; |
|
last_tkoff_arm_time = 0; |
|
return false; |
|
#endif |
|
} |
|
|
|
|
|
/* We want to supress the throttle if we think we are on the ground and in an autopilot controlled throttle mode. |
|
|
|
Disable throttle if following conditions are met: |
|
* 1 - We are in Circle mode (which we use for short term failsafe), or in FBW-B or higher |
|
* AND |
|
* 2 - Our reported altitude is within 10 meters of the home altitude. |
|
* 3 - Our reported speed is under 5 meters per second. |
|
* 4 - We are not performing a takeoff in Auto mode or takeoff speed/accel not yet reached |
|
* OR |
|
* 5 - Home location is not set |
|
*/ |
|
static bool suppress_throttle(void) |
|
{ |
|
if (!throttle_suppressed) { |
|
// we've previously met a condition for unsupressing the throttle |
|
return false; |
|
} |
|
if (!auto_throttle_mode) { |
|
// the user controls the throttle |
|
throttle_suppressed = false; |
|
return false; |
|
} |
|
|
|
if (control_mode==AUTO && takeoff_complete == false && auto_takeoff_check()) { |
|
// we're in auto takeoff |
|
throttle_suppressed = false; |
|
if (hold_course_cd != -1) { |
|
// update takeoff course hold, if already initialised |
|
hold_course_cd = ahrs.yaw_sensor; |
|
gcs_send_text_fmt(PSTR("Holding course %ld"), hold_course_cd); |
|
} |
|
return false; |
|
} |
|
|
|
if (relative_altitude_abs_cm() >= 1000) { |
|
// we're more than 10m from the home altitude |
|
throttle_suppressed = false; |
|
return false; |
|
} |
|
|
|
if (g_gps != NULL && |
|
g_gps->status() >= GPS::GPS_OK_FIX_2D && |
|
g_gps->ground_speed_cm >= 500) { |
|
// if we have an airspeed sensor, then check it too, and |
|
// require 5m/s. This prevents throttle up due to spiky GPS |
|
// groundspeed with bad GPS reception |
|
if (!airspeed.use() || airspeed.get_airspeed() >= 5) { |
|
// we're moving at more than 5 m/s |
|
throttle_suppressed = false; |
|
return false; |
|
} |
|
} |
|
|
|
// throttle remains suppressed |
|
return true; |
|
} |
|
|
|
/* |
|
implement a software VTail or elevon mixer. There are 4 different mixing modes |
|
*/ |
|
static void channel_output_mixer(uint8_t mixing_type, int16_t &chan1_out, int16_t &chan2_out) |
|
{ |
|
int16_t c1, c2; |
|
int16_t v1, v2; |
|
|
|
// first get desired elevator and rudder as -500..500 values |
|
c1 = chan1_out - 1500; |
|
c2 = chan2_out - 1500; |
|
|
|
v1 = (c1 - c2) * g.mixing_gain; |
|
v2 = (c1 + c2) * g.mixing_gain; |
|
|
|
// now map to mixed output |
|
switch (mixing_type) { |
|
case MIXING_DISABLED: |
|
return; |
|
|
|
case MIXING_UPUP: |
|
break; |
|
|
|
case MIXING_UPDN: |
|
v2 = -v2; |
|
break; |
|
|
|
case MIXING_DNUP: |
|
v1 = -v1; |
|
break; |
|
|
|
case MIXING_DNDN: |
|
v1 = -v1; |
|
v2 = -v2; |
|
break; |
|
} |
|
|
|
// scale for a 1500 center and 900..2100 range, symmetric |
|
v1 = constrain_int16(v1, -600, 600); |
|
v2 = constrain_int16(v2, -600, 600); |
|
|
|
chan1_out = 1500 + v1; |
|
chan2_out = 1500 + v2; |
|
} |
|
|
|
/***************************************** |
|
* Set the flight control servos based on the current calculated values |
|
*****************************************/ |
|
static void set_servos(void) |
|
{ |
|
int16_t last_throttle = channel_throttle->radio_out; |
|
|
|
if (control_mode == MANUAL) { |
|
// do a direct pass through of radio values |
|
if (g.mix_mode == 0 || g.elevon_output != MIXING_DISABLED) { |
|
channel_roll->radio_out = channel_roll->radio_in; |
|
channel_pitch->radio_out = channel_pitch->radio_in; |
|
} else { |
|
channel_roll->radio_out = channel_roll->read(); |
|
channel_pitch->radio_out = channel_pitch->read(); |
|
} |
|
channel_throttle->radio_out = channel_throttle->radio_in; |
|
channel_rudder->radio_out = channel_rudder->radio_in; |
|
|
|
// setup extra channels. We want this to come from the |
|
// main input channel, but using the 2nd channels dead |
|
// zone, reverse and min/max settings. We need to use |
|
// pwm_to_angle_dz() to ensure we don't trim the value for the |
|
// deadzone of the main aileron channel, otherwise the 2nd |
|
// aileron won't quite follow the first one |
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_aileron, channel_roll->pwm_to_angle_dz(0)); |
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_elevator, channel_pitch->pwm_to_angle_dz(0)); |
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_rudder, channel_rudder->pwm_to_angle_dz(0)); |
|
|
|
// this variant assumes you have the corresponding |
|
// input channel setup in your transmitter for manual control |
|
// of the 2nd aileron |
|
RC_Channel_aux::copy_radio_in_out(RC_Channel_aux::k_aileron_with_input); |
|
RC_Channel_aux::copy_radio_in_out(RC_Channel_aux::k_elevator_with_input); |
|
RC_Channel_aux::copy_radio_in_out(RC_Channel_aux::k_flap_auto); |
|
|
|
if (g.mix_mode == 0 && g.elevon_output == MIXING_DISABLED) { |
|
// set any differential spoilers to follow the elevons in |
|
// manual mode. |
|
RC_Channel_aux::set_radio(RC_Channel_aux::k_dspoiler1, channel_roll->radio_out); |
|
RC_Channel_aux::set_radio(RC_Channel_aux::k_dspoiler2, channel_pitch->radio_out); |
|
} |
|
} else { |
|
if (g.mix_mode == 0) { |
|
// both types of secondary aileron are slaved to the roll servo out |
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_aileron, channel_roll->servo_out); |
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_aileron_with_input, channel_roll->servo_out); |
|
|
|
// both types of secondary elevator are slaved to the pitch servo out |
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_elevator, channel_pitch->servo_out); |
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_elevator_with_input, channel_pitch->servo_out); |
|
|
|
// setup secondary rudder |
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_rudder, channel_rudder->servo_out); |
|
}else{ |
|
/*Elevon mode*/ |
|
float ch1; |
|
float ch2; |
|
ch1 = channel_pitch->servo_out - (BOOL_TO_SIGN(g.reverse_elevons) * channel_roll->servo_out); |
|
ch2 = channel_pitch->servo_out + (BOOL_TO_SIGN(g.reverse_elevons) * channel_roll->servo_out); |
|
|
|
/* Differential Spoilers |
|
If differential spoilers are setup, then we translate |
|
rudder control into splitting of the two ailerons on |
|
the side of the aircraft where we want to induce |
|
additional drag. |
|
*/ |
|
if (RC_Channel_aux::function_assigned(RC_Channel_aux::k_dspoiler1) && RC_Channel_aux::function_assigned(RC_Channel_aux::k_dspoiler2)) { |
|
float ch3 = ch1; |
|
float ch4 = ch2; |
|
if ( BOOL_TO_SIGN(g.reverse_elevons) * channel_rudder->servo_out < 0) { |
|
ch1 += abs(channel_rudder->servo_out); |
|
ch3 -= abs(channel_rudder->servo_out); |
|
} else { |
|
ch2 += abs(channel_rudder->servo_out); |
|
ch4 -= abs(channel_rudder->servo_out); |
|
} |
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_dspoiler1, ch3); |
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_dspoiler2, ch4); |
|
} |
|
|
|
// directly set the radio_out values for elevon mode |
|
channel_roll->radio_out = elevon.trim1 + (BOOL_TO_SIGN(g.reverse_ch1_elevon) * (ch1 * 500.0/ SERVO_MAX)); |
|
channel_pitch->radio_out = elevon.trim2 + (BOOL_TO_SIGN(g.reverse_ch2_elevon) * (ch2 * 500.0/ SERVO_MAX)); |
|
} |
|
|
|
#if OBC_FAILSAFE == ENABLED |
|
// this is to allow the failsafe module to deliberately crash |
|
// the plane. Only used in extreme circumstances to meet the |
|
// OBC rules |
|
if (obc.crash_plane()) { |
|
channel_roll->servo_out = -4500; |
|
channel_pitch->servo_out = -4500; |
|
channel_rudder->servo_out = -4500; |
|
channel_throttle->servo_out = 0; |
|
} |
|
#endif |
|
|
|
|
|
// push out the PWM values |
|
if (g.mix_mode == 0) { |
|
channel_roll->calc_pwm(); |
|
channel_pitch->calc_pwm(); |
|
} |
|
channel_rudder->calc_pwm(); |
|
|
|
#if THROTTLE_OUT == 0 |
|
channel_throttle->servo_out = 0; |
|
#else |
|
// convert 0 to 100% into PWM |
|
channel_throttle->servo_out = constrain_int16(channel_throttle->servo_out, |
|
aparm.throttle_min.get(), |
|
aparm.throttle_max.get()); |
|
|
|
if (suppress_throttle()) { |
|
// throttle is suppressed in auto mode |
|
channel_throttle->servo_out = 0; |
|
if (g.throttle_suppress_manual) { |
|
// manual pass through of throttle while throttle is suppressed |
|
channel_throttle->radio_out = channel_throttle->radio_in; |
|
} else { |
|
channel_throttle->calc_pwm(); |
|
} |
|
} else if (g.throttle_passthru_stabilize && |
|
(control_mode == STABILIZE || |
|
control_mode == TRAINING || |
|
control_mode == ACRO || |
|
control_mode == FLY_BY_WIRE_A)) { |
|
// manual pass through of throttle while in FBWA or |
|
// STABILIZE mode with THR_PASS_STAB set |
|
channel_throttle->radio_out = channel_throttle->radio_in; |
|
} else { |
|
// normal throttle calculation based on servo_out |
|
channel_throttle->calc_pwm(); |
|
} |
|
#endif |
|
} |
|
|
|
// Auto flap deployment |
|
if(control_mode < FLY_BY_WIRE_B) { |
|
RC_Channel_aux::copy_radio_in_out(RC_Channel_aux::k_flap_auto); |
|
} else if (control_mode >= FLY_BY_WIRE_B) { |
|
int16_t flapSpeedSource = 0; |
|
|
|
// FIXME: use target_airspeed in both FBW_B and g.airspeed_enabled cases - Doug? |
|
if (control_mode == FLY_BY_WIRE_B) { |
|
flapSpeedSource = target_airspeed_cm * 0.01; |
|
} else if (airspeed.use()) { |
|
flapSpeedSource = g.airspeed_cruise_cm * 0.01; |
|
} else { |
|
flapSpeedSource = aparm.throttle_cruise; |
|
} |
|
if ( g.flap_1_speed != 0 && flapSpeedSource > g.flap_1_speed) { |
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_flap_auto, 0); |
|
} else if (g.flap_2_speed != 0 && flapSpeedSource > g.flap_2_speed) { |
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_flap_auto, g.flap_1_percent); |
|
} else { |
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_flap_auto, g.flap_2_percent); |
|
} |
|
} |
|
|
|
if (control_mode >= FLY_BY_WIRE_B) { |
|
/* only do throttle slew limiting in modes where throttle |
|
* control is automatic */ |
|
throttle_slew_limit(last_throttle); |
|
} |
|
|
|
if (control_mode == TRAINING) { |
|
// copy rudder in training mode |
|
channel_rudder->radio_out = channel_rudder->radio_in; |
|
} |
|
|
|
#if HIL_MODE != HIL_MODE_DISABLED |
|
if (!g.hil_servos) { |
|
return; |
|
} |
|
#endif |
|
|
|
if (g.vtail_output != MIXING_DISABLED) { |
|
channel_output_mixer(g.vtail_output, channel_pitch->radio_out, channel_rudder->radio_out); |
|
} else if (g.elevon_output != MIXING_DISABLED) { |
|
channel_output_mixer(g.elevon_output, channel_pitch->radio_out, channel_roll->radio_out); |
|
} |
|
|
|
// send values to the PWM timers for output |
|
// ---------------------------------------- |
|
channel_roll->output(); |
|
channel_pitch->output(); |
|
channel_throttle->output(); |
|
channel_rudder->output(); |
|
// Route configurable aux. functions to their respective servos |
|
g.rc_5.output_ch(CH_5); |
|
g.rc_6.output_ch(CH_6); |
|
g.rc_7.output_ch(CH_7); |
|
g.rc_8.output_ch(CH_8); |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 |
|
g.rc_9.output_ch(CH_9); |
|
#endif |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2 || CONFIG_HAL_BOARD == HAL_BOARD_PX4 |
|
g.rc_10.output_ch(CH_10); |
|
g.rc_11.output_ch(CH_11); |
|
#endif |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 |
|
g.rc_12.output_ch(CH_12); |
|
# endif |
|
} |
|
|
|
static bool demoing_servos; |
|
|
|
static void demo_servos(uint8_t i) |
|
{ |
|
while(i > 0) { |
|
gcs_send_text_P(SEVERITY_LOW,PSTR("Demo Servos!")); |
|
demoing_servos = true; |
|
servo_write(1, 1400); |
|
mavlink_delay(400); |
|
servo_write(1, 1600); |
|
mavlink_delay(200); |
|
servo_write(1, 1500); |
|
demoing_servos = false; |
|
mavlink_delay(400); |
|
i--; |
|
} |
|
} |
|
|
|
// return true if we should use airspeed for altitude/throttle control |
|
static bool alt_control_airspeed(void) |
|
{ |
|
return airspeed.use() && g.alt_control_algorithm == ALT_CONTROL_AIRSPEED; |
|
}
|
|
|