You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
105 lines
3.7 KiB
105 lines
3.7 KiB
#pragma once |
|
|
|
/// @file AC_PID_2D.h |
|
/// @brief Generic PID algorithm, with EEPROM-backed storage of constants. |
|
|
|
#include <AP_Common/AP_Common.h> |
|
#include <AP_Param/AP_Param.h> |
|
#include <stdlib.h> |
|
#include <cmath> |
|
#include <AP_Logger/AP_Logger.h> |
|
|
|
/// @class AC_PID_2D |
|
/// @brief Copter PID control class |
|
class AC_PID_2D { |
|
public: |
|
|
|
// Constructor for PID |
|
AC_PID_2D(float initial_kP, float initial_kI, float initial_kD, float initial_kFF, float initial_imax, float initial_filt_hz, float initial_filt_d_hz, float dt); |
|
|
|
CLASS_NO_COPY(AC_PID_2D); |
|
|
|
// set time step in seconds |
|
void set_dt(float dt) { _dt = dt; } |
|
|
|
// update_all - set target and measured inputs to PID controller and calculate outputs |
|
// target and error are filtered |
|
// the derivative is then calculated and filtered |
|
// the integral is then updated if it does not increase in the direction of the limit vector |
|
Vector2f update_all(const Vector2f &target, const Vector2f &measurement, const Vector2f &limit); |
|
Vector2f update_all(const Vector3f &target, const Vector3f &measurement, const Vector3f &limit); |
|
|
|
// update the integral |
|
// if the limit flag is set the integral is only allowed to shrink |
|
void update_i(const Vector2f &limit); |
|
|
|
// get results from pid controller |
|
Vector2f get_p() const; |
|
const Vector2f& get_i() const; |
|
Vector2f get_d() const; |
|
Vector2f get_ff(); |
|
const Vector2f& get_error() const { return _error; } |
|
|
|
// reset the integrator |
|
void reset_I() { _integrator.zero(); }; |
|
|
|
// reset_filter - input and D term filter will be reset to the next value provided to set_input() |
|
void reset_filter() { _reset_filter = true; } |
|
|
|
// save gain to eeprom |
|
void save_gains(); |
|
|
|
// get accessors |
|
AP_Float &kP() { return _kp; } |
|
AP_Float &kI() { return _ki; } |
|
AP_Float &kD() { return _kd; } |
|
AP_Float &ff() { return _kff;} |
|
AP_Float &filt_E_hz() { return _filt_E_hz; } |
|
AP_Float &filt_D_hz() { return _filt_D_hz; } |
|
float imax() const { return _kimax.get(); } |
|
float get_filt_E_alpha() const; |
|
float get_filt_D_alpha() const; |
|
|
|
// set accessors |
|
void kP(float v) { _kp.set(v); } |
|
void kI(float v) { _ki.set(v); } |
|
void kD(float v) { _kd.set(v); } |
|
void ff(float v) { _kff.set(v); } |
|
void imax(float v) { _kimax.set(fabsf(v)); } |
|
void filt_E_hz(float hz) { _filt_E_hz.set(fabsf(hz)); } |
|
void filt_D_hz(float hz) { _filt_D_hz.set(fabsf(hz)); } |
|
|
|
// integrator setting functions |
|
void set_integrator(const Vector2f& target, const Vector2f& measurement, const Vector2f& i); |
|
void set_integrator(const Vector2f& error, const Vector2f& i); |
|
void set_integrator(const Vector3f& i) { set_integrator(Vector2f{i.x, i.y}); } |
|
void set_integrator(const Vector2f& i); |
|
|
|
const AP_Logger::PID_Info& get_pid_info_x(void) const { return _pid_info_x; } |
|
const AP_Logger::PID_Info& get_pid_info_y(void) const { return _pid_info_y; } |
|
|
|
// parameter var table |
|
static const struct AP_Param::GroupInfo var_info[]; |
|
|
|
protected: |
|
|
|
// parameters |
|
AP_Float _kp; |
|
AP_Float _ki; |
|
AP_Float _kd; |
|
AP_Float _kff; |
|
AP_Float _kimax; |
|
AP_Float _filt_E_hz; // PID error filter frequency in Hz |
|
AP_Float _filt_D_hz; // PID derivative filter frequency in Hz |
|
|
|
// internal variables |
|
float _dt; // timestep in seconds |
|
Vector2f _target; // target value to enable filtering |
|
Vector2f _error; // error value to enable filtering |
|
Vector2f _derivative; // last derivative from low-pass filter |
|
Vector2f _integrator; // integrator value |
|
bool _reset_filter; // true when input filter should be reset during next call to update_all |
|
|
|
AP_Logger::PID_Info _pid_info_x; |
|
AP_Logger::PID_Info _pid_info_y; |
|
};
|
|
|