You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
312 lines
12 KiB
312 lines
12 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
/* |
|
* AP_MotorsSingle.cpp - ArduCopter motors library |
|
* Code by RandyMackay. DIYDrones.com |
|
* |
|
*/ |
|
|
|
#include <AP_HAL/AP_HAL.h> |
|
#include <AP_Math/AP_Math.h> |
|
#include "AP_MotorsCoax.h" |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
|
|
const AP_Param::GroupInfo AP_MotorsCoax::var_info[] = { |
|
// variables from parent vehicle |
|
AP_NESTEDGROUPINFO(AP_MotorsMulticopter, 0), |
|
|
|
// parameters 1 ~ 29 were reserved for tradheli |
|
// parameters 30 ~ 39 reserved for tricopter |
|
// parameters 40 ~ 49 for single copter and coax copter (these have identical parameter files) |
|
|
|
// 40 was ROLL_SV_REV |
|
// 41 was PITCH_SV_REV |
|
// 42 was YAW_SV_REV |
|
|
|
// @Param: SV_SPEED |
|
// @DisplayName: Servo speed |
|
// @Description: Servo update speed |
|
// @Units: Hz |
|
AP_GROUPINFO("SV_SPEED", 43, AP_MotorsCoax, _servo_speed, AP_MOTORS_SINGLE_SPEED_DIGITAL_SERVOS), |
|
|
|
// @Group: SV1_ |
|
// @Path: ../RC_Channel/RC_Channel.cpp |
|
AP_SUBGROUPINFO(_servo1, "SV1_", 44, AP_MotorsCoax, RC_Channel), |
|
// @Group: SV2_ |
|
// @Path: ../RC_Channel/RC_Channel.cpp |
|
AP_SUBGROUPINFO(_servo2, "SV2_", 45, AP_MotorsCoax, RC_Channel), |
|
// @Group: SV3_ |
|
// @Path: ../RC_Channel/RC_Channel.cpp |
|
AP_SUBGROUPINFO(_servo3, "SV3_", 46, AP_MotorsCoax, RC_Channel), |
|
// @Group: SV4_ |
|
// @Path: ../RC_Channel/RC_Channel.cpp |
|
AP_SUBGROUPINFO(_servo4, "SV4_", 47, AP_MotorsCoax, RC_Channel), |
|
|
|
AP_GROUPEND |
|
}; |
|
// init |
|
void AP_MotorsCoax::Init() |
|
{ |
|
// set update rate for the 3 motors (but not the servo on channel 7) |
|
set_update_rate(_speed_hz); |
|
|
|
// set the motor_enabled flag so that the main ESC can be calibrated like other frame types |
|
motor_enabled[AP_MOTORS_MOT_5] = true; |
|
motor_enabled[AP_MOTORS_MOT_6] = true; |
|
|
|
// we set four servos to angle |
|
_servo1.set_type(RC_CHANNEL_TYPE_ANGLE); |
|
_servo2.set_type(RC_CHANNEL_TYPE_ANGLE); |
|
_servo3.set_type(RC_CHANNEL_TYPE_ANGLE); |
|
_servo4.set_type(RC_CHANNEL_TYPE_ANGLE); |
|
_servo1.set_angle(AP_MOTORS_COAX_SERVO_INPUT_RANGE); |
|
_servo2.set_angle(AP_MOTORS_COAX_SERVO_INPUT_RANGE); |
|
_servo3.set_angle(AP_MOTORS_COAX_SERVO_INPUT_RANGE); |
|
_servo4.set_angle(AP_MOTORS_COAX_SERVO_INPUT_RANGE); |
|
} |
|
|
|
// set update rate to motors - a value in hertz |
|
void AP_MotorsCoax::set_update_rate( uint16_t speed_hz ) |
|
{ |
|
// record requested speed |
|
_speed_hz = speed_hz; |
|
|
|
// set update rate for the 4 servos and 2 motors |
|
uint32_t mask = |
|
1U << AP_MOTORS_MOT_1 | |
|
1U << AP_MOTORS_MOT_2 | |
|
1U << AP_MOTORS_MOT_3 | |
|
1U << AP_MOTORS_MOT_4 ; |
|
rc_set_freq(mask, _servo_speed); |
|
uint32_t mask2 = |
|
1U << AP_MOTORS_MOT_5 | |
|
1U << AP_MOTORS_MOT_6 ; |
|
rc_set_freq(mask2, _speed_hz); |
|
} |
|
|
|
// enable - starts allowing signals to be sent to motors |
|
void AP_MotorsCoax::enable() |
|
{ |
|
// enable output channels |
|
rc_enable_ch(AP_MOTORS_MOT_1); |
|
rc_enable_ch(AP_MOTORS_MOT_2); |
|
rc_enable_ch(AP_MOTORS_MOT_3); |
|
rc_enable_ch(AP_MOTORS_MOT_4); |
|
rc_enable_ch(AP_MOTORS_MOT_5); |
|
rc_enable_ch(AP_MOTORS_MOT_6); |
|
} |
|
|
|
void AP_MotorsCoax::output_to_motors() |
|
{ |
|
switch (_multicopter_flags.spool_mode) { |
|
case SHUT_DOWN: |
|
// sends minimum values out to the motors |
|
hal.rcout->cork(); |
|
rc_write(AP_MOTORS_MOT_1, calc_pwm_output_1to1(_roll_radio_passthrough, _servo1)); |
|
rc_write(AP_MOTORS_MOT_2, calc_pwm_output_1to1(_pitch_radio_passthrough, _servo2)); |
|
rc_write(AP_MOTORS_MOT_3, calc_pwm_output_1to1(_roll_radio_passthrough, _servo3)); |
|
rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(_pitch_radio_passthrough, _servo4)); |
|
rc_write(AP_MOTORS_MOT_5, _throttle_radio_min); |
|
rc_write(AP_MOTORS_MOT_6, _throttle_radio_min); |
|
hal.rcout->push(); |
|
break; |
|
case SPIN_WHEN_ARMED: |
|
// sends output to motors when armed but not flying |
|
hal.rcout->cork(); |
|
rc_write(AP_MOTORS_MOT_1, calc_pwm_output_1to1(_throttle_low_end_pct * _actuator_out[0], _servo1)); |
|
rc_write(AP_MOTORS_MOT_2, calc_pwm_output_1to1(_throttle_low_end_pct * _actuator_out[1], _servo2)); |
|
rc_write(AP_MOTORS_MOT_3, calc_pwm_output_1to1(_throttle_low_end_pct * _actuator_out[2], _servo3)); |
|
rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(_throttle_low_end_pct * _actuator_out[3], _servo4)); |
|
rc_write(AP_MOTORS_MOT_5, constrain_int16(_throttle_radio_min + _throttle_low_end_pct * _min_throttle, _throttle_radio_min, _throttle_radio_min + _min_throttle)); |
|
rc_write(AP_MOTORS_MOT_6, constrain_int16(_throttle_radio_min + _throttle_low_end_pct * _min_throttle, _throttle_radio_min, _throttle_radio_min + _min_throttle)); |
|
hal.rcout->push(); |
|
break; |
|
case SPOOL_UP: |
|
case THROTTLE_UNLIMITED: |
|
case SPOOL_DOWN: |
|
// set motor output based on thrust requests |
|
hal.rcout->cork(); |
|
rc_write(AP_MOTORS_MOT_1, calc_pwm_output_1to1(_actuator_out[0], _servo1)); |
|
rc_write(AP_MOTORS_MOT_2, calc_pwm_output_1to1(_actuator_out[1], _servo2)); |
|
rc_write(AP_MOTORS_MOT_3, calc_pwm_output_1to1(_actuator_out[2], _servo3)); |
|
rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(_actuator_out[3], _servo4)); |
|
rc_write(AP_MOTORS_MOT_5, calc_thrust_to_pwm(_thrust_yt_ccw)); |
|
rc_write(AP_MOTORS_MOT_6, calc_thrust_to_pwm(_thrust_yt_cw)); |
|
hal.rcout->push(); |
|
break; |
|
} |
|
} |
|
|
|
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used) |
|
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict |
|
uint16_t AP_MotorsCoax::get_motor_mask() |
|
{ |
|
uint32_t mask = |
|
1U << AP_MOTORS_MOT_1 | |
|
1U << AP_MOTORS_MOT_2 | |
|
1U << AP_MOTORS_MOT_3 | |
|
1U << AP_MOTORS_MOT_4 | |
|
1U << AP_MOTORS_MOT_5 | |
|
1U << AP_MOTORS_MOT_6; |
|
return rc_map_mask(mask); |
|
} |
|
|
|
// sends commands to the motors |
|
void AP_MotorsCoax::output_armed_stabilizing() |
|
{ |
|
float roll_thrust; // roll thrust input value, +/- 1.0 |
|
float pitch_thrust; // pitch thrust input value, +/- 1.0 |
|
float yaw_thrust; // yaw thrust input value, +/- 1.0 |
|
float throttle_thrust; // throttle thrust input value, 0.0 - 1.0 |
|
float thrust_min_rp; // the minimum throttle setting that will not limit the roll and pitch output |
|
float thr_adj; // the difference between the pilot's desired throttle and throttle_thrust_best_rpy |
|
float thrust_out; // |
|
float throttle_thrust_hover = get_hover_throttle_as_high_end_pct(); // throttle hover thrust value, 0.0 - 1.0 |
|
float throttle_thrust_rpy_mix; // partial calculation of throttle_thrust_best_rpy |
|
float rpy_scale = 1.0f; // this is used to scale the roll, pitch and yaw to fit within the motor limits |
|
float actuator_allowed = 0.0f; // amount of yaw we can fit in |
|
|
|
// apply voltage and air pressure compensation |
|
roll_thrust = _roll_in * get_compensation_gain(); |
|
pitch_thrust = _pitch_in * get_compensation_gain(); |
|
yaw_thrust = _yaw_in * get_compensation_gain(); |
|
throttle_thrust = get_throttle() * get_compensation_gain(); |
|
|
|
// sanity check throttle is above zero and below current limited throttle |
|
if (throttle_thrust <= 0.0f) { |
|
throttle_thrust = 0.0f; |
|
limit.throttle_lower = true; |
|
} |
|
if (throttle_thrust >= _throttle_thrust_max) { |
|
throttle_thrust = _throttle_thrust_max; |
|
limit.throttle_upper = true; |
|
} |
|
throttle_thrust_rpy_mix = MAX(throttle_thrust, throttle_thrust*MAX(0.0f,1.0f-_throttle_rpy_mix)+throttle_thrust_hover*_throttle_rpy_mix); |
|
|
|
float rp_thrust_max = MAX(fabsf(roll_thrust), fabsf(pitch_thrust)); |
|
|
|
// calculate how much roll and pitch must be scaled to leave enough range for the minimum yaw |
|
if (is_zero(roll_thrust) && is_zero(pitch_thrust)) { |
|
rpy_scale = 1.0f; |
|
} else { |
|
rpy_scale = constrain_float((1.0f - MIN(fabsf(yaw_thrust), 0.5f*(float)_yaw_headroom/1000.0f)) / rp_thrust_max, 0.0f, 1.0f); |
|
if (rpy_scale < 1.0f) { |
|
limit.roll_pitch = true; |
|
} |
|
} |
|
|
|
actuator_allowed = 1.0f - rpy_scale * rp_thrust_max; |
|
if (fabsf(yaw_thrust) > actuator_allowed) { |
|
yaw_thrust = constrain_float(yaw_thrust, -2.0f * actuator_allowed, 2.0f * actuator_allowed); |
|
limit.yaw = true; |
|
} |
|
|
|
// calculate the minimum thrust that doesn't limit the roll, pitch and yaw forces |
|
thrust_min_rp = MAX(fabsf(rpy_scale * roll_thrust), fabsf(rpy_scale * pitch_thrust)); |
|
|
|
thr_adj = throttle_thrust - throttle_thrust_rpy_mix; |
|
if (thr_adj < (thrust_min_rp - throttle_thrust_rpy_mix)) { |
|
// Throttle can't be reduced to the desired level because this would mean roll or pitch control |
|
// would not be able to reach the desired level because of lack of thrust. |
|
thr_adj = MIN(thrust_min_rp, throttle_thrust_rpy_mix) - throttle_thrust_rpy_mix; |
|
} |
|
|
|
// calculate the throttle setting for the lift fan |
|
thrust_out = MIN(throttle_thrust_rpy_mix + thr_adj, 1.0f-(0.5*yaw_thrust)); |
|
|
|
_thrust_yt_ccw = thrust_out + 0.5f * yaw_thrust; |
|
_thrust_yt_cw = thrust_out - 0.5f * yaw_thrust; |
|
|
|
if (is_zero(thrust_out)) { |
|
limit.roll_pitch = true; |
|
if (roll_thrust < 0.0f) { |
|
_actuator_out[0] = -1.0f; |
|
} else if (roll_thrust > 0.0f) { |
|
_actuator_out[0] = 1.0f; |
|
} else { |
|
_actuator_out[0] = 0.0f; |
|
} |
|
if (roll_thrust < 0.0f) { |
|
_actuator_out[1] = -1.0f; |
|
} else if (roll_thrust > 0.0f) { |
|
_actuator_out[1] = 1.0f; |
|
} else { |
|
_actuator_out[1] = 0.0f; |
|
} |
|
} else { |
|
// force of a lifting surface is approximately equal to the angle of attack times the airflow velocity squared |
|
// static thrust is proportional to the airflow velocity squared |
|
// therefore the torque of the roll and pitch actuators should be approximately proportional to |
|
// the angle of attack multiplied by the static thrust. |
|
_actuator_out[0] = roll_thrust/thrust_out; |
|
_actuator_out[1] = pitch_thrust/thrust_out; |
|
if (fabsf(_actuator_out[0]) > 1.0f) { |
|
limit.roll_pitch = true; |
|
_actuator_out[0] = constrain_float(_actuator_out[0], -1.0f, 1.0f); |
|
} |
|
if (fabsf(_actuator_out[1]) > 1.0f) { |
|
limit.roll_pitch = true; |
|
_actuator_out[1] = constrain_float(_actuator_out[1], -1.0f, 1.0f); |
|
} |
|
} |
|
_actuator_out[2] = -_actuator_out[0]; |
|
_actuator_out[3] = -_actuator_out[1]; |
|
} |
|
|
|
// output_test - spin a motor at the pwm value specified |
|
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame |
|
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 |
|
void AP_MotorsCoax::output_test(uint8_t motor_seq, int16_t pwm) |
|
{ |
|
// exit immediately if not armed |
|
if (!armed()) { |
|
return; |
|
} |
|
|
|
// output to motors and servos |
|
switch (motor_seq) { |
|
case 1: |
|
// flap servo 1 |
|
rc_write(AP_MOTORS_MOT_1, pwm); |
|
break; |
|
case 2: |
|
// flap servo 2 |
|
rc_write(AP_MOTORS_MOT_2, pwm); |
|
break; |
|
case 3: |
|
// flap servo 3 |
|
rc_write(AP_MOTORS_MOT_3, pwm); |
|
break; |
|
case 4: |
|
// flap servo 4 |
|
rc_write(AP_MOTORS_MOT_4, pwm); |
|
break; |
|
case 5: |
|
// motor 1 |
|
rc_write(AP_MOTORS_MOT_5, pwm); |
|
break; |
|
case 6: |
|
// motor 2 |
|
rc_write(AP_MOTORS_MOT_6, pwm); |
|
break; |
|
default: |
|
// do nothing |
|
break; |
|
} |
|
}
|
|
|