You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
260 lines
9.2 KiB
260 lines
9.2 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
#include <AP_HAL/AP_HAL.h> |
|
#include "AC_Circle.h" |
|
#include <AP_Math/AP_Math.h> |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
const AP_Param::GroupInfo AC_Circle::var_info[] = { |
|
// @Param: RADIUS |
|
// @DisplayName: Circle Radius |
|
// @Description: Defines the radius of the circle the vehicle will fly when in Circle flight mode |
|
// @Units: cm |
|
// @Range: 0 10000 |
|
// @Increment: 100 |
|
// @User: Standard |
|
AP_GROUPINFO("RADIUS", 0, AC_Circle, _radius, AC_CIRCLE_RADIUS_DEFAULT), |
|
|
|
// @Param: RATE |
|
// @DisplayName: Circle rate |
|
// @Description: Circle mode's turn rate in deg/sec. Positive to turn clockwise, negative for counter clockwise |
|
// @Units: deg/s |
|
// @Range: -90 90 |
|
// @Increment: 1 |
|
// @User: Standard |
|
AP_GROUPINFO("RATE", 1, AC_Circle, _rate, AC_CIRCLE_RATE_DEFAULT), |
|
|
|
AP_GROUPEND |
|
}; |
|
|
|
// Default constructor. |
|
// Note that the Vector/Matrix constructors already implicitly zero |
|
// their values. |
|
// |
|
AC_Circle::AC_Circle(const AP_InertialNav& inav, const AP_AHRS& ahrs, AC_PosControl& pos_control) : |
|
_inav(inav), |
|
_ahrs(ahrs), |
|
_pos_control(pos_control), |
|
_last_update(0), |
|
_yaw(0.0f), |
|
_angle(0.0f), |
|
_angle_total(0.0f), |
|
_angular_vel(0.0f), |
|
_angular_vel_max(0.0f), |
|
_angular_accel(0.0f) |
|
{ |
|
AP_Param::setup_object_defaults(this, var_info); |
|
|
|
// init flags |
|
_flags.panorama = false; |
|
} |
|
|
|
/// init - initialise circle controller setting center specifically |
|
/// caller should set the position controller's x,y and z speeds and accelerations before calling this |
|
void AC_Circle::init(const Vector3f& center) |
|
{ |
|
_center = center; |
|
|
|
// initialise position controller (sets target roll angle, pitch angle and I terms based on vehicle current lean angles) |
|
_pos_control.init_xy_controller(); |
|
|
|
// set initial position target to reasonable stopping point |
|
_pos_control.set_target_to_stopping_point_xy(); |
|
_pos_control.set_target_to_stopping_point_z(); |
|
|
|
// calculate velocities |
|
calc_velocities(true); |
|
|
|
// set start angle from position |
|
init_start_angle(false); |
|
} |
|
|
|
/// init - initialise circle controller setting center using stopping point and projecting out based on the copter's heading |
|
/// caller should set the position controller's x,y and z speeds and accelerations before calling this |
|
void AC_Circle::init() |
|
{ |
|
// initialise position controller (sets target roll angle, pitch angle and I terms based on vehicle current lean angles) |
|
_pos_control.init_xy_controller(); |
|
|
|
// set initial position target to reasonable stopping point |
|
_pos_control.set_target_to_stopping_point_xy(); |
|
_pos_control.set_target_to_stopping_point_z(); |
|
|
|
// get stopping point |
|
const Vector3f& stopping_point = _pos_control.get_pos_target(); |
|
|
|
// set circle center to circle_radius ahead of stopping point |
|
_center.x = stopping_point.x + _radius * _ahrs.cos_yaw(); |
|
_center.y = stopping_point.y + _radius * _ahrs.sin_yaw(); |
|
_center.z = stopping_point.z; |
|
|
|
// calculate velocities |
|
calc_velocities(true); |
|
|
|
// set starting angle from vehicle heading |
|
init_start_angle(true); |
|
} |
|
|
|
/// set_circle_rate - set circle rate in degrees per second |
|
void AC_Circle::set_rate(float deg_per_sec) |
|
{ |
|
if (!is_equal(deg_per_sec,_rate)) { |
|
_rate = deg_per_sec; |
|
calc_velocities(false); |
|
} |
|
} |
|
|
|
/// update - update circle controller |
|
void AC_Circle::update() |
|
{ |
|
// calculate dt |
|
float dt = _pos_control.time_since_last_xy_update(); |
|
|
|
// update circle position at poscontrol update rate |
|
if (dt >= _pos_control.get_dt_xy()) { |
|
|
|
// double check dt is reasonable |
|
if (dt >= 0.2f) { |
|
dt = 0.0f; |
|
} |
|
|
|
// ramp angular velocity to maximum |
|
if (_angular_vel < _angular_vel_max) { |
|
_angular_vel += fabsf(_angular_accel) * dt; |
|
_angular_vel = min(_angular_vel, _angular_vel_max); |
|
} |
|
if (_angular_vel > _angular_vel_max) { |
|
_angular_vel -= fabsf(_angular_accel) * dt; |
|
_angular_vel = max(_angular_vel, _angular_vel_max); |
|
} |
|
|
|
// update the target angle and total angle traveled |
|
float angle_change = _angular_vel * dt; |
|
_angle += angle_change; |
|
_angle = wrap_PI(_angle); |
|
_angle_total += angle_change; |
|
|
|
// if the circle_radius is zero we are doing panorama so no need to update loiter target |
|
if (!is_zero(_radius)) { |
|
// calculate target position |
|
Vector3f target; |
|
target.x = _center.x + _radius * cosf(-_angle); |
|
target.y = _center.y - _radius * sinf(-_angle); |
|
target.z = _pos_control.get_alt_target(); |
|
|
|
// update position controller target |
|
_pos_control.set_xy_target(target.x, target.y); |
|
|
|
// heading is 180 deg from vehicles target position around circle |
|
_yaw = wrap_PI(_angle-PI) * AC_CIRCLE_DEGX100; |
|
}else{ |
|
// set target position to center |
|
Vector3f target; |
|
target.x = _center.x; |
|
target.y = _center.y; |
|
target.z = _pos_control.get_alt_target(); |
|
|
|
// update position controller target |
|
_pos_control.set_xy_target(target.x, target.y); |
|
|
|
// heading is same as _angle but converted to centi-degrees |
|
_yaw = _angle * AC_CIRCLE_DEGX100; |
|
} |
|
|
|
// update position controller |
|
_pos_control.update_xy_controller(AC_PosControl::XY_MODE_POS_ONLY, 1.0f, false); |
|
} |
|
} |
|
|
|
// get_closest_point_on_circle - returns closest point on the circle |
|
// circle's center should already have been set |
|
// closest point on the circle will be placed in result |
|
// result's altitude (i.e. z) will be set to the circle_center's altitude |
|
// if vehicle is at the center of the circle, the edge directly behind vehicle will be returned |
|
void AC_Circle::get_closest_point_on_circle(Vector3f &result) |
|
{ |
|
// return center if radius is zero |
|
if (_radius <= 0) { |
|
result = _center; |
|
return; |
|
} |
|
|
|
// get current position |
|
const Vector3f &curr_pos = _inav.get_position(); |
|
|
|
// calc vector from current location to circle center |
|
Vector2f vec; // vector from circle center to current location |
|
vec.x = (curr_pos.x - _center.x); |
|
vec.y = (curr_pos.y - _center.y); |
|
float dist = pythagorous2(vec.x, vec.y); |
|
|
|
// if current location is exactly at the center of the circle return edge directly behind vehicle |
|
if (is_zero(dist)) { |
|
result.x = _center.x - _radius * _ahrs.cos_yaw(); |
|
result.y = _center.y - _radius * _ahrs.sin_yaw(); |
|
result.z = _center.z; |
|
return; |
|
} |
|
|
|
// calculate closest point on edge of circle |
|
result.x = _center.x + vec.x / dist * _radius; |
|
result.y = _center.y + vec.y / dist * _radius; |
|
result.z = _center.z; |
|
} |
|
|
|
// calc_velocities - calculate angular velocity max and acceleration based on radius and rate |
|
// this should be called whenever the radius or rate are changed |
|
// initialises the yaw and current position around the circle |
|
void AC_Circle::calc_velocities(bool init_velocity) |
|
{ |
|
// if we are doing a panorama set the circle_angle to the current heading |
|
if (_radius <= 0) { |
|
_angular_vel_max = ToRad(_rate); |
|
_angular_accel = max(fabsf(_angular_vel_max),ToRad(AC_CIRCLE_ANGULAR_ACCEL_MIN)); // reach maximum yaw velocity in 1 second |
|
}else{ |
|
// calculate max velocity based on waypoint speed ensuring we do not use more than half our max acceleration for accelerating towards the center of the circle |
|
float velocity_max = min(_pos_control.get_speed_xy(), safe_sqrt(0.5f*_pos_control.get_accel_xy()*_radius)); |
|
|
|
// angular_velocity in radians per second |
|
_angular_vel_max = velocity_max/_radius; |
|
_angular_vel_max = constrain_float(ToRad(_rate),-_angular_vel_max,_angular_vel_max); |
|
|
|
// angular_velocity in radians per second |
|
_angular_accel = max(_pos_control.get_accel_xy()/_radius, ToRad(AC_CIRCLE_ANGULAR_ACCEL_MIN)); |
|
} |
|
|
|
// initialise angular velocity |
|
if (init_velocity) { |
|
_angular_vel = 0; |
|
} |
|
} |
|
|
|
// init_start_angle - sets the starting angle around the circle and initialises the angle_total |
|
// if use_heading is true the vehicle's heading will be used to init the angle causing minimum yaw movement |
|
// if use_heading is false the vehicle's position from the center will be used to initialise the angle |
|
void AC_Circle::init_start_angle(bool use_heading) |
|
{ |
|
// initialise angle total |
|
_angle_total = 0; |
|
|
|
// if the radius is zero we are doing panorama so init angle to the current heading |
|
if (_radius <= 0) { |
|
_angle = _ahrs.yaw; |
|
return; |
|
} |
|
|
|
// if use_heading is true |
|
if (use_heading) { |
|
_angle = wrap_PI(_ahrs.yaw-PI); |
|
} else { |
|
// if we are exactly at the center of the circle, init angle to directly behind vehicle (so vehicle will backup but not change heading) |
|
const Vector3f &curr_pos = _inav.get_position(); |
|
if (is_equal(curr_pos.x,_center.x) && is_equal(curr_pos.y,_center.y)) { |
|
_angle = wrap_PI(_ahrs.yaw-PI); |
|
} else { |
|
// get bearing from circle center to vehicle in radians |
|
float bearing_rad = atan2f(curr_pos.y-_center.y,curr_pos.x-_center.x); |
|
_angle = wrap_PI(bearing_rad); |
|
} |
|
} |
|
}
|
|
|