You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
972 lines
32 KiB
972 lines
32 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
// |
|
// Swift Navigation GPS driver for ArduPilot |
|
// Origin code by Niels Joubert njoubert.com |
|
// |
|
|
|
|
|
#include <AP_GPS.h> |
|
#include "AP_GPS_SBP.h" |
|
#include <DataFlash.h> |
|
|
|
#if GPS_RTK_AVAILABLE |
|
|
|
#define SBP_DEBUGGING 0 |
|
#define SBP_FAKE_3DLOCK 0 |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
#define SBP_MILLIS_BETWEEN_HEALTHCHECKS 2000U |
|
#define SBP_BASELINE_TIMEOUT_MS 1000U |
|
#define SBP_FIX_TIMEOUT_MS 1000U |
|
#define SBP_HEARTBEAT_TIMEOUT_MS 5000U |
|
|
|
#define SBP_MILLIS_BETWEEN_TRACKING_LOG 1800U |
|
|
|
#define SBP_DEBUGGING 0 |
|
#if SBP_DEBUGGING |
|
# define Debug(fmt, args ...) do {hal.console->printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args); hal.scheduler->delay(1); } while(0) |
|
#else |
|
# define Debug(fmt, args ...) |
|
#endif |
|
|
|
/* |
|
only do detailed hardware logging on boards likely to have more log |
|
storage space |
|
*/ |
|
#if GPS_RTK_AVAILABLE |
|
#define SBP_HW_LOGGING 1 |
|
#else |
|
#define SBP_HW_LOGGING 0 |
|
#endif |
|
|
|
bool AP_GPS_SBP::logging_started = false; |
|
|
|
AP_GPS_SBP::AP_GPS_SBP(AP_GPS &_gps, AP_GPS::GPS_State &_state, AP_HAL::UARTDriver *_port) : |
|
AP_GPS_Backend(_gps, _state, _port), |
|
|
|
last_baseline_received_ms(0), |
|
last_heatbeat_received_ms(0), |
|
last_tracking_state_ms(0), |
|
iar_num_hypotheses(-1), |
|
baseline_recv_rate(0), |
|
|
|
dgps_corrections_incoming(false), |
|
rtk_corrections_incoming(false), |
|
|
|
has_new_pos_llh(false), |
|
has_new_vel_ned(false), |
|
has_new_baseline_ecef(false), |
|
|
|
has_rtk_base_pos(false), |
|
|
|
pos_msg_counter(0), |
|
vel_msg_counter(0), |
|
baseline_msg_counter(0), |
|
full_update_counter(0), |
|
crc_error_counter(0), |
|
last_healthcheck_millis(0) |
|
{ |
|
|
|
parser_state.state = sbp_parser_state_t::WAITING; |
|
|
|
state.status = AP_GPS::NO_FIX; |
|
state.have_vertical_velocity = true; |
|
|
|
state.last_gps_time_ms = last_heatbeat_received_ms = last_healthcheck_millis = hal.scheduler->millis(); |
|
|
|
} |
|
|
|
bool |
|
AP_GPS_SBP::can_calculate_base_pos(void) |
|
{ |
|
return (rtk_corrections_incoming && !has_rtk_base_pos); |
|
}; |
|
|
|
|
|
void |
|
AP_GPS_SBP::calculate_base_pos(void) |
|
{ |
|
//INVARIANT: |
|
// Only ever capture home with motors not armed! |
|
// External driver checks whether can_raise_fix_level becomes true |
|
// and only if it can, AND motors are not armed, will be capture home! |
|
if (state.status < AP_GPS::GPS_OK_FIX_3D) { |
|
Debug("Attempting to capture home without GPS Fix available. Can't do RTK without home lat-lon."); |
|
return; |
|
} |
|
|
|
if (!rtk_corrections_incoming) { |
|
Debug("Attempting to capture home baseline without rtk corrections being received."); |
|
return; |
|
} |
|
|
|
Vector3d current_llh; |
|
Vector3d current_ecef; |
|
Vector3d current_baseline_ecef; |
|
|
|
current_llh[0] = last_sbp_pos_llh_msg.lat * DEG_TO_RAD_DOUBLE; |
|
current_llh[1] = last_sbp_pos_llh_msg.lon * DEG_TO_RAD_DOUBLE; |
|
current_llh[2] = last_sbp_pos_llh_msg.height; |
|
|
|
wgsllh2ecef(current_llh, current_ecef); |
|
|
|
current_baseline_ecef[0] = ((double)last_sbp_baseline_ecef_msg.x) / 1000.0; |
|
current_baseline_ecef[1] = ((double)last_sbp_baseline_ecef_msg.y) / 1000.0; |
|
current_baseline_ecef[2] = ((double)last_sbp_baseline_ecef_msg.z) / 1000.0; |
|
|
|
base_pos_ecef = current_ecef - current_baseline_ecef; |
|
has_rtk_base_pos = true; |
|
|
|
Debug("SBP Got Base Position! has_rtk_base_pos=%d, (%.2f, %.2f, %.2f)", has_rtk_base_pos, |
|
base_pos_ecef[0], |
|
base_pos_ecef[1], |
|
base_pos_ecef[2]); |
|
} |
|
void |
|
AP_GPS_SBP::invalidate_base_pos() |
|
{ |
|
has_rtk_base_pos = false; |
|
} |
|
|
|
bool |
|
AP_GPS_SBP::read(void) |
|
{ |
|
//Invariant: Calling this function processes *all* data current in the UART buffer. |
|
// |
|
//IMPORTANT NOTICE: This function is NOT CALLED for several seconds |
|
// during arming. That should not cause the driver to die. Process *all* waiting messages |
|
|
|
bool full_update = false; |
|
do { |
|
//Attempt to process one message at a time |
|
bool new_message = sbp_process(); |
|
|
|
//Attempt to update our internal state with this new message. |
|
if (update_state(new_message)) { |
|
full_update = true; |
|
full_update_counter += 1; |
|
} |
|
|
|
} while (port->available() > 0); |
|
|
|
uint32_t now = hal.scheduler->millis(); |
|
uint32_t elapsed = now - last_healthcheck_millis; |
|
if (elapsed > SBP_MILLIS_BETWEEN_HEALTHCHECKS) { |
|
last_healthcheck_millis = now; |
|
|
|
float pos_msg_hz = pos_msg_counter / (float) elapsed * 1000; |
|
float vel_msg_hz = vel_msg_counter / (float) elapsed * 1000; |
|
float baseline_msg_hz = baseline_msg_counter / (float) elapsed * 1000; |
|
float full_update_hz = full_update_counter / (float) elapsed * 1000; |
|
|
|
baseline_recv_rate = uint8_t (baseline_msg_hz * 10); |
|
|
|
pos_msg_counter = 0; |
|
vel_msg_counter = 0; |
|
baseline_msg_counter = 0; |
|
full_update_counter = 0; |
|
|
|
Debug("SBP GPS perf: Fix=(%d) CRC=(%d) Pos=(%.2fHz) Vel=(%.2fHz) Baseline=(%.2fHz) Update=(%.2fHz) DGPS=(%d) RTK=(%d) RTK_HOME=(%d) IAR=(%d)", |
|
state.status, |
|
crc_error_counter, |
|
pos_msg_hz, |
|
vel_msg_hz, |
|
baseline_msg_hz, |
|
full_update_hz, |
|
dgps_corrections_incoming, |
|
rtk_corrections_incoming, |
|
has_rtk_base_pos, |
|
iar_num_hypotheses); |
|
|
|
#if SBP_HW_LOGGING |
|
logging_log_health(pos_msg_hz, |
|
vel_msg_hz, |
|
baseline_msg_hz, |
|
full_update_hz); |
|
#endif |
|
|
|
} |
|
|
|
return full_update; |
|
} |
|
|
|
//This consolidates all the latest messages, |
|
//and the current mode the driver is in |
|
// |
|
// INVARIANT: |
|
// If in a fix mode >= 3, |
|
// returns true only if a full position and velocity update happened. |
|
// If in fix mode 0 or 1, |
|
// returns true if messages are being received or we haven't timed out |
|
bool |
|
AP_GPS_SBP::update_state(bool has_new_message) |
|
{ |
|
|
|
uint32_t now = hal.scheduler->millis(); |
|
|
|
//Determine the current mode the GPS is in: DGPS or plain |
|
//Notice that this is sticky. |
|
if (has_new_baseline_ecef && (now - last_baseline_received_ms < SBP_BASELINE_TIMEOUT_MS)) { |
|
dgps_corrections_incoming = true; |
|
if (gps._min_dgps >= 100) { |
|
//Allow only IntegerRTK baselines |
|
rtk_corrections_incoming = dgps_corrections_incoming && (last_sbp_baseline_ecef_msg.flags & 0x1); |
|
} else { |
|
//Allow floatRTK baselines |
|
rtk_corrections_incoming = dgps_corrections_incoming; |
|
} |
|
} |
|
|
|
//Currently we only use relative positioning if we have RTK-level fixes, |
|
//we ignore float-level fixes |
|
bool using_relative_positioning = rtk_corrections_incoming && has_rtk_base_pos; |
|
|
|
//Drop out of RTK mode if we haven't seen a baseline for a while... |
|
if (using_relative_positioning && (now - last_baseline_received_ms > SBP_BASELINE_TIMEOUT_MS)) { |
|
dgps_corrections_incoming = false; |
|
rtk_corrections_incoming = false; |
|
using_relative_positioning = false; |
|
} |
|
|
|
//UPDATE POSITION AND VELOCITY |
|
if (!using_relative_positioning && |
|
(has_new_pos_llh && has_new_vel_ned) && |
|
(last_sbp_pos_llh_msg.tow == last_sbp_vel_ned_msg.tow)) { |
|
|
|
state.last_gps_time_ms = hal.scheduler->millis(); |
|
|
|
state.time_week_ms = last_sbp_pos_llh_msg.tow; |
|
state.location.lat = (int32_t) (last_sbp_pos_llh_msg.lat*1e7); |
|
state.location.lng = (int32_t) (last_sbp_pos_llh_msg.lon*1e7); |
|
state.location.alt = (int32_t) (last_sbp_pos_llh_msg.height*1e2); |
|
state.num_sats = last_sbp_pos_llh_msg.n_sats; |
|
|
|
update_state_velocity(); |
|
|
|
has_new_pos_llh = false; |
|
|
|
state.status = AP_GPS::GPS_OK_FIX_3D; |
|
|
|
return true; |
|
|
|
} else if (using_relative_positioning && |
|
(has_new_baseline_ecef && has_new_vel_ned) && |
|
(last_sbp_baseline_ecef_msg.tow == last_sbp_vel_ned_msg.tow)) { |
|
|
|
state.last_gps_time_ms = hal.scheduler->millis(); |
|
|
|
//Generate a new lat-lon from baseline |
|
|
|
//Grab the current baseline |
|
Vector3d current_baseline_ecef; //units are currently in mm |
|
current_baseline_ecef[0] = ((double)last_sbp_baseline_ecef_msg.x) / 1000.0; |
|
current_baseline_ecef[1] = ((double)last_sbp_baseline_ecef_msg.y) / 1000.0; |
|
current_baseline_ecef[2] = ((double)last_sbp_baseline_ecef_msg.z) / 1000.0; |
|
|
|
//Offset the reference point from that |
|
Vector3d current_pos_ecef; |
|
current_pos_ecef = base_pos_ecef + current_baseline_ecef; |
|
|
|
Vector3d current_pos_llh; |
|
wgsecef2llh(current_pos_ecef, current_pos_llh); |
|
|
|
current_pos_llh[0] *= RAD_TO_DEG_DOUBLE; |
|
current_pos_llh[1] *= RAD_TO_DEG_DOUBLE; |
|
|
|
state.time_week_ms = last_sbp_baseline_ecef_msg.tow; |
|
state.location.lat = (int32_t) (current_pos_llh[0] * 1e7); |
|
state.location.lng = (int32_t) (current_pos_llh[1] * 1e7); |
|
state.location.alt = (int32_t) (current_pos_llh[2] * 1e3); |
|
state.num_sats = last_sbp_baseline_ecef_msg.n_sats; |
|
|
|
update_state_velocity(); |
|
|
|
has_new_baseline_ecef = false; |
|
|
|
state.status = AP_GPS::GPS_OK_FIX_3D_RTK; |
|
|
|
return true; |
|
} |
|
|
|
|
|
//If we get here, |
|
//We have not been able to update the GPS state yet for this process call. |
|
//Check whether the GPS is still alive and processing messages! |
|
|
|
if (!using_relative_positioning && (now - state.last_gps_time_ms > SBP_FIX_TIMEOUT_MS)) { |
|
state.status = AP_GPS::NO_FIX; |
|
return (now - last_heatbeat_received_ms < SBP_HEARTBEAT_TIMEOUT_MS); |
|
} |
|
|
|
if (now - last_heatbeat_received_ms > SBP_HEARTBEAT_TIMEOUT_MS) { |
|
state.status = AP_GPS::NO_GPS; |
|
return false; |
|
} |
|
|
|
if (state.status < AP_GPS::GPS_OK_FIX_3D) { |
|
//If we are receiving messages, but dont have a fix yet, thats okay. |
|
return has_new_message; |
|
} else { |
|
//If we have a fix and we got here, then we're in between message synchronizations |
|
return false; |
|
} |
|
return true; |
|
|
|
} |
|
|
|
void |
|
AP_GPS_SBP::update_state_velocity(void) |
|
{ |
|
|
|
state.time_week_ms = last_sbp_vel_ned_msg.tow; |
|
state.velocity[0] = (float)(last_sbp_vel_ned_msg.n / 1000.0); |
|
state.velocity[1] = (float)(last_sbp_vel_ned_msg.e / 1000.0); |
|
state.velocity[2] = (float)(last_sbp_vel_ned_msg.d / 1000.0); |
|
|
|
float ground_vector_sq = state.velocity[0]*state.velocity[0] + state.velocity[1]*state.velocity[1]; |
|
state.ground_speed = safe_sqrt(ground_vector_sq); |
|
|
|
state.ground_course_cd = (int32_t) 100*ToDeg(atan2f(state.velocity[1], state.velocity[0])); |
|
if (state.ground_course_cd < 0) { |
|
state.ground_course_cd += 36000; |
|
} |
|
|
|
has_new_vel_ned = false; |
|
|
|
} |
|
|
|
//This attempts to read a SINGLE SBP messages from the incoming port. |
|
//Returns true if a new message was read, false if we failed to read a message. |
|
bool |
|
AP_GPS_SBP::sbp_process() |
|
{ |
|
while (port->available() > 0) { |
|
uint8_t temp = port->read(); |
|
uint16_t crc; |
|
|
|
|
|
//This switch reads one character at a time, |
|
//parsing it into buffers until a full message is dispatched |
|
switch(parser_state.state) { |
|
case sbp_parser_state_t::WAITING: |
|
if (temp == SBP_PREAMBLE) { |
|
parser_state.n_read = 0; |
|
parser_state.state = sbp_parser_state_t::GET_TYPE; |
|
} |
|
break; |
|
|
|
case sbp_parser_state_t::GET_TYPE: |
|
*((uint8_t*)&(parser_state.msg_type) + parser_state.n_read) = temp; |
|
parser_state.n_read += 1; |
|
if (parser_state.n_read >= 2) { |
|
parser_state.n_read = 0; |
|
parser_state.state = sbp_parser_state_t::GET_SENDER; |
|
} |
|
break; |
|
|
|
case sbp_parser_state_t::GET_SENDER: |
|
*((uint8_t*)&(parser_state.sender_id) + parser_state.n_read) = temp; |
|
parser_state.n_read += 1; |
|
if (parser_state.n_read >= 2) { |
|
parser_state.n_read = 0; |
|
parser_state.state = sbp_parser_state_t::GET_LEN; |
|
} |
|
break; |
|
|
|
case sbp_parser_state_t::GET_LEN: |
|
parser_state.msg_len = temp; |
|
parser_state.n_read = 0; |
|
parser_state.state = sbp_parser_state_t::GET_MSG; |
|
break; |
|
|
|
case sbp_parser_state_t::GET_MSG: |
|
*((uint8_t*)&(parser_state.msg_buff) + parser_state.n_read) = temp; |
|
parser_state.n_read += 1; |
|
if (parser_state.n_read >= parser_state.msg_len) { |
|
parser_state.n_read = 0; |
|
parser_state.state = sbp_parser_state_t::GET_CRC; |
|
} |
|
break; |
|
|
|
case sbp_parser_state_t::GET_CRC: |
|
*((uint8_t*)&(parser_state.crc) + parser_state.n_read) = temp; |
|
parser_state.n_read += 1; |
|
if (parser_state.n_read >= 2) { |
|
parser_state.state = sbp_parser_state_t::WAITING; |
|
|
|
crc = crc16_ccitt((uint8_t*)&(parser_state.msg_type), 2, 0); |
|
crc = crc16_ccitt((uint8_t*)&(parser_state.sender_id), 2, crc); |
|
crc = crc16_ccitt(&(parser_state.msg_len), 1, crc); |
|
crc = crc16_ccitt(parser_state.msg_buff, parser_state.msg_len, crc); |
|
if (parser_state.crc == crc) { |
|
//OK, we have a valid message. Dispatch the appropriate function: |
|
switch(parser_state.msg_type) { |
|
case SBP_POS_ECEF_MSGTYPE: |
|
sbp_process_pos_ecef(parser_state.msg_buff); |
|
break; |
|
case SBP_POS_LLH_MSGTYPE: |
|
sbp_process_pos_llh(parser_state.msg_buff); |
|
break; |
|
case SBP_BASELINE_ECEF_MSGTYPE: |
|
sbp_process_baseline_ecef(parser_state.msg_buff); |
|
break; |
|
case SBP_BASELINE_NED_MSGTYPE: |
|
sbp_process_baseline_ned(parser_state.msg_buff); |
|
break; |
|
case SBP_VEL_ECEF_MSGTYPE: |
|
sbp_process_vel_ecef(parser_state.msg_buff); |
|
break; |
|
case SBP_VEL_NED_MSGTYPE: |
|
sbp_process_vel_ned(parser_state.msg_buff); |
|
break; |
|
case SBP_GPS_TIME_MSGTYPE: |
|
sbp_process_gpstime(parser_state.msg_buff); |
|
break; |
|
case SBP_DOPS_MSGTYPE: |
|
sbp_process_dops(parser_state.msg_buff); |
|
break; |
|
case SBP_TRACKING_STATE_MSGTYPE: |
|
sbp_process_tracking_state(parser_state.msg_buff, parser_state.msg_len); |
|
break; |
|
case SBP_IAR_STATE_MSGTYPE: |
|
sbp_process_iar_state(parser_state.msg_buff); |
|
break; |
|
case SBP_HEARTBEAT_MSGTYPE: |
|
sbp_process_heartbeat(parser_state.msg_buff); |
|
break; |
|
case SBP_STARTUP_MSGTYPE: |
|
sbp_process_startup(parser_state.msg_buff); |
|
break; |
|
} |
|
return true; |
|
|
|
} else { |
|
Debug("CRC Error Occurred!"); |
|
crc_error_counter += 1; |
|
} |
|
|
|
} |
|
break; |
|
|
|
default: |
|
parser_state.state = sbp_parser_state_t::WAITING; |
|
break; |
|
} |
|
} |
|
//We have parsed all the waiting messages |
|
return false; |
|
} |
|
|
|
void |
|
AP_GPS_SBP::sbp_process_heartbeat(uint8_t* msg) |
|
{ |
|
last_heatbeat_received_ms = hal.scheduler->millis(); |
|
} |
|
|
|
void |
|
AP_GPS_SBP::sbp_process_gpstime(uint8_t* msg) |
|
{ |
|
struct sbp_gps_time_t* t = (struct sbp_gps_time_t*)msg; |
|
state.time_week = t->wn; |
|
state.time_week_ms = t->tow; |
|
} |
|
|
|
void |
|
AP_GPS_SBP::sbp_process_dops(uint8_t* msg) |
|
{ |
|
struct sbp_dops_t* d = (struct sbp_dops_t*) msg; |
|
state.time_week_ms = d->tow; |
|
state.hdop = d->hdop; |
|
} |
|
|
|
void |
|
AP_GPS_SBP::sbp_process_pos_ecef(uint8_t* msg) |
|
{ |
|
//Using LLH, not ECEF |
|
} |
|
|
|
void |
|
AP_GPS_SBP::sbp_process_pos_llh(uint8_t* msg) |
|
{ |
|
struct sbp_pos_llh_t* pos = (struct sbp_pos_llh_t*)msg; |
|
last_sbp_pos_llh_msg = *pos; |
|
|
|
has_new_pos_llh = true; |
|
|
|
#if SBP_DEBUGGING || SBP_HW_LOGGING |
|
pos_msg_counter += 1; |
|
#endif |
|
|
|
#if SBP_HW_LOGGING |
|
logging_log_llh(pos); |
|
#endif |
|
} |
|
|
|
void |
|
AP_GPS_SBP::sbp_process_baseline_ecef(uint8_t* msg) |
|
{ |
|
struct sbp_baseline_ecef_t* b = (struct sbp_baseline_ecef_t*)msg; |
|
last_sbp_baseline_ecef_msg = *b; |
|
|
|
last_baseline_received_ms = hal.scheduler->millis(); |
|
has_new_baseline_ecef = true; |
|
|
|
#if SBP_DEBUGGING || SBP_HW_LOGGING |
|
baseline_msg_counter += 1; |
|
#endif |
|
|
|
#if SBP_HW_LOGGING |
|
logging_log_baseline_ecef(b); |
|
#endif |
|
} |
|
|
|
void |
|
AP_GPS_SBP::sbp_process_baseline_ned(uint8_t* msg) |
|
{ |
|
//Currently we use ECEF baselines. |
|
//This is just for logging purposes. |
|
struct sbp_baseline_ned_t* b = (struct sbp_baseline_ned_t*)msg; |
|
last_sbp_baseline_ned_msg = *b; |
|
|
|
} |
|
|
|
void |
|
AP_GPS_SBP::sbp_process_vel_ecef(uint8_t* msg) |
|
{ |
|
//Currently we use NED velocity. |
|
} |
|
|
|
void |
|
AP_GPS_SBP::sbp_process_vel_ned(uint8_t* msg) |
|
{ |
|
struct sbp_vel_ned_t* vel = (struct sbp_vel_ned_t*)msg; |
|
last_sbp_vel_ned_msg = *vel; |
|
|
|
has_new_vel_ned = true; |
|
|
|
#if SBP_DEBUGGING || SBP_HW_LOGGING |
|
vel_msg_counter += 1; |
|
#endif |
|
} |
|
|
|
void |
|
AP_GPS_SBP::sbp_process_tracking_state(uint8_t* msg, uint8_t len) |
|
{ |
|
uint32_t now = hal.scheduler->millis(); |
|
|
|
struct sbp_tracking_state_t* tracking_state = (struct sbp_tracking_state_t*)msg; |
|
last_sbp_tracking_state_msg = *tracking_state; |
|
|
|
uint8_t num = len / sizeof(sbp_tracking_state_t); |
|
last_sbp_tracking_state_msg_num = num; |
|
|
|
//Rate-limit the tracking state messages to no more than 1.8 seconds |
|
if (now - last_tracking_state_ms > SBP_MILLIS_BETWEEN_TRACKING_LOG) { |
|
last_tracking_state_ms = now; |
|
|
|
#ifdef SBP_HW_LOGGING |
|
logging_log_tracking_state(tracking_state, num); |
|
#endif |
|
|
|
} |
|
|
|
} |
|
|
|
void |
|
AP_GPS_SBP::sbp_process_iar_state(uint8_t* msg) |
|
{ |
|
struct sbp_iar_state_t* iar_state = (struct sbp_iar_state_t*)msg; |
|
iar_num_hypotheses = (int32_t) iar_state->num_hypotheses; |
|
} |
|
|
|
void |
|
AP_GPS_SBP::sbp_process_startup(uint8_t* msg) |
|
{ |
|
invalidate_base_pos(); |
|
} |
|
|
|
bool |
|
AP_GPS_SBP::_detect(struct SBP_detect_state &state, uint8_t data) |
|
{ |
|
//This switch reads one character at a time, |
|
//if we find something that looks like our preamble |
|
//we'll try to read the full message length, calculating the CRC. |
|
//If the CRC matches, we have a SBP GPS! |
|
switch(state.state) { |
|
case SBP_detect_state::WAITING: |
|
if (data == SBP_PREAMBLE) { |
|
state.n_read = 0; |
|
state.crc_so_far = 0; |
|
state.state = SBP_detect_state::GET_TYPE; |
|
} |
|
break; |
|
|
|
case SBP_detect_state::GET_TYPE: |
|
state.crc_so_far = crc16_ccitt(&data, 1, state.crc_so_far); |
|
state.n_read += 1; |
|
if (state.n_read >= 2) { |
|
state.n_read = 0; |
|
state.state = SBP_detect_state::GET_SENDER; |
|
} |
|
break; |
|
|
|
case SBP_detect_state::GET_SENDER: |
|
state.crc_so_far = crc16_ccitt(&data, 1, state.crc_so_far); |
|
state.n_read += 1; |
|
if (state.n_read >= 2) { |
|
state.n_read = 0; |
|
state.state = SBP_detect_state::GET_LEN; |
|
} |
|
break; |
|
|
|
case SBP_detect_state::GET_LEN: |
|
state.crc_so_far = crc16_ccitt(&data, 1, state.crc_so_far); |
|
state.msg_len = data; |
|
state.n_read = 0; |
|
state.state = SBP_detect_state::GET_MSG; |
|
break; |
|
|
|
case SBP_detect_state::GET_MSG: |
|
state.crc_so_far = crc16_ccitt(&data, 1, state.crc_so_far); |
|
state.n_read += 1; |
|
if (state.n_read >= state.msg_len) { |
|
state.n_read = 0; |
|
state.state = SBP_detect_state::GET_CRC; |
|
} |
|
break; |
|
|
|
case SBP_detect_state::GET_CRC: |
|
*((uint8_t*)&(state.crc) + state.n_read) = data; |
|
state.n_read += 1; |
|
if (state.n_read >= 2) { |
|
state.state = SBP_detect_state::WAITING; |
|
return state.crc == state.crc_so_far; |
|
} |
|
break; |
|
|
|
default: |
|
state.state = SBP_detect_state::WAITING; |
|
break; |
|
} |
|
return false; |
|
} |
|
|
|
void |
|
AP_GPS_SBP::send_mavlink_gps_rtk(mavlink_channel_t chan) |
|
{ |
|
|
|
uint8_t health = dgps_corrections_incoming | |
|
(rtk_corrections_incoming << 1) | |
|
(has_rtk_base_pos << 2); |
|
|
|
mavlink_msg_gps_rtk_send( |
|
chan, |
|
last_baseline_received_ms, // Time since boot of last baseline message received in ms. |
|
AP_GPS::GPS_TYPE_SBP, // Identification of connected RTK receiver. |
|
state.time_week, // GPS Week Number of last baseline |
|
last_sbp_baseline_ned_msg.tow, // GPS Time of Week of last baseline |
|
health, // GPS-specific health report for RTK data. |
|
baseline_recv_rate, // Rate of baseline messages being received by GPS, in HZ*10 |
|
last_sbp_baseline_ned_msg.n_sats, // Current number of sats used for RTK calculation. |
|
1, // Coordinate system of baseline. 0 == ECEF, 1 == NED |
|
last_sbp_baseline_ned_msg.n, // Current baseline in ECEF x or NED north component in mm |
|
last_sbp_baseline_ned_msg.e, // Current baseline in ECEF y or NED east component in mm |
|
last_sbp_baseline_ned_msg.d, // Current baseline in ECEF z or NED down component in mm |
|
last_sbp_baseline_ned_msg.h_accuracy, // Current estimate of baseline accuracy. |
|
iar_num_hypotheses // Current number of integer ambiguity hypotheses. |
|
); |
|
|
|
} |
|
|
|
#if GPS_MAX_INSTANCES > 1 |
|
void |
|
AP_GPS_SBP::send_mavlink_gps2_rtk(mavlink_channel_t chan) |
|
{ |
|
|
|
uint8_t health = dgps_corrections_incoming | |
|
(rtk_corrections_incoming << 1) | |
|
(has_rtk_base_pos << 2); |
|
|
|
mavlink_msg_gps2_rtk_send( |
|
chan, |
|
last_baseline_received_ms, // Time since boot of last baseline message received in ms. |
|
AP_GPS::GPS_TYPE_SBP, // Identification of connected RTK receiver. |
|
state.time_week, // GPS Week Number of last baseline |
|
last_sbp_baseline_ned_msg.tow, // GPS Time of Week of last baseline |
|
health, // GPS-specific health report for RTK data. |
|
baseline_recv_rate, // Rate of baseline messages being received by GPS, in HZ*10 |
|
last_sbp_baseline_ned_msg.n_sats, // Current number of sats used for RTK calculation. |
|
1, // Coordinate system of baseline. 0 == ECEF, 1 == NED |
|
last_sbp_baseline_ned_msg.n, // Current baseline in ECEF x or NED north component in mm |
|
last_sbp_baseline_ned_msg.e, // Current baseline in ECEF y or NED east component in mm |
|
last_sbp_baseline_ned_msg.d, // Current baseline in ECEF z or NED down component in mm |
|
last_sbp_baseline_ned_msg.h_accuracy, // Current estimate of baseline accuracy. |
|
iar_num_hypotheses // Current number of integer ambiguity hypotheses. |
|
); |
|
} |
|
#endif |
|
|
|
#if SBP_HW_LOGGING |
|
|
|
#define LOG_MSG_SBPHEALTH 202 |
|
#define LOG_MSG_SBPLLH 203 |
|
#define LOG_MSG_SBPBASELINE 204 |
|
#define LOG_MSG_SBPTRACKING1 205 |
|
#define LOG_MSG_SBPTRACKING2 206 |
|
|
|
struct PACKED log_SbpHealth { |
|
LOG_PACKET_HEADER; |
|
uint32_t timestamp; |
|
float pos_msg_hz; |
|
float vel_msg_hz; |
|
float baseline_msg_hz; |
|
float full_update_hz; |
|
uint32_t crc_error_counter; |
|
uint8_t dgps_corrections_incoming; |
|
uint8_t rtk_corrections_incoming; |
|
uint8_t has_rtk_base_pos; |
|
int32_t iar_num_hypotheses; |
|
}; |
|
|
|
struct PACKED log_SbpLLH { |
|
LOG_PACKET_HEADER; |
|
uint32_t timestamp; |
|
uint32_t tow; |
|
int32_t lat; |
|
int32_t lon; |
|
int32_t alt; |
|
uint8_t n_sats; |
|
}; |
|
|
|
struct PACKED log_SbpBaseline { |
|
LOG_PACKET_HEADER; |
|
uint32_t timestamp; |
|
uint32_t tow; //< GPS Time of Week of ECEF Baseline (unit: ms) |
|
int32_t x; //< Baseline ECEF X coordinate |
|
int32_t y; //< Baseline ECEF Y coordinate |
|
int32_t z; //< Baseline ECEF Z coordinate |
|
int32_t length; //< Baseline length |
|
uint16_t accuracy; //< Horizontal position accuracy estimate (unit: mm) |
|
uint8_t n_sats; //< Number of satellites used in solution |
|
uint8_t flags; //< Status flags (reserved) |
|
}; |
|
|
|
struct PACKED log_SbpTracking1 { |
|
LOG_PACKET_HEADER; |
|
uint32_t timestamp; |
|
uint8_t ch1_prn; |
|
float ch1_cn0; |
|
uint8_t ch2_prn; |
|
float ch2_cn0; |
|
uint8_t ch3_prn; |
|
float ch3_cn0; |
|
uint8_t ch4_prn; |
|
float ch4_cn0; |
|
uint8_t ch5_prn; |
|
float ch5_cn0; |
|
uint8_t ch6_prn; |
|
float ch6_cn0; |
|
uint8_t ch7_prn; |
|
float ch7_cn0; |
|
}; |
|
|
|
struct PACKED log_SbpTracking2 { |
|
LOG_PACKET_HEADER; |
|
uint32_t timestamp; |
|
uint8_t ch8_prn; |
|
float ch8_cn0; |
|
uint8_t ch9_prn; |
|
float ch9_cn0; |
|
uint8_t ch10_prn; |
|
float ch10_cn0; |
|
uint8_t ch11_prn; |
|
float ch11_cn0; |
|
uint8_t ch12_prn; |
|
float ch12_cn0; |
|
uint8_t ch13_prn; |
|
float ch13_cn0; |
|
uint8_t ch14_prn; |
|
float ch14_cn0; |
|
}; |
|
|
|
static const struct LogStructure sbp_log_structures[] PROGMEM = { |
|
{ LOG_MSG_SBPHEALTH, sizeof(log_SbpHealth), |
|
"SBPH", "IffffIBBBi", "TimeMS,PHz,VHz,BHz,UpHz,CrcError,dgpsOn,rtkOn,hasRtkBase,IAR" }, |
|
{ LOG_MSG_SBPLLH, sizeof(log_SbpLLH), |
|
"SBPL", "IIiiiB", "TimeMS,tow,lat,lon,alt,num_sats" }, |
|
{ LOG_MSG_SBPBASELINE, sizeof(log_SbpBaseline), |
|
"SBPB", "IIiiiiHBB", "TimeMS,tow,x,y,z,len,acc,num_sats,flags" }, |
|
{ LOG_MSG_SBPTRACKING1, sizeof(log_SbpTracking1), |
|
"SBT1", "IBfBfBfBfBfBfBf", "TimeMS,s1,c1,s2,c2,s3,c3,s4,c4,s5,c5,s6,c6,s7,c7" }, |
|
{ LOG_MSG_SBPTRACKING2, sizeof(log_SbpTracking2), |
|
"SBT2", "IBfBfBfBfBfBfBf", "TimeMS,s8,c8,s9,c9,s10,c10,s11,c11,s12,c12,s13,c13,s14,c14" } |
|
|
|
}; |
|
|
|
void |
|
AP_GPS_SBP::logging_write_headers(void) |
|
{ |
|
if (!logging_started) { |
|
logging_started = true; |
|
gps._DataFlash->AddLogFormats(sbp_log_structures, sizeof(sbp_log_structures) / sizeof(LogStructure)); |
|
} |
|
} |
|
|
|
void |
|
AP_GPS_SBP::logging_log_health(float pos_msg_hz, float vel_msg_hz, float baseline_msg_hz, float full_update_hz) |
|
{ |
|
|
|
if (gps._DataFlash == NULL || !gps._DataFlash->logging_started()) { |
|
return; |
|
} |
|
|
|
logging_write_headers(); |
|
|
|
struct log_SbpHealth pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_MSG_SBPHEALTH), |
|
timestamp : hal.scheduler->millis(), |
|
pos_msg_hz : pos_msg_hz, |
|
vel_msg_hz : vel_msg_hz, |
|
baseline_msg_hz : baseline_msg_hz, |
|
full_update_hz : full_update_hz, |
|
crc_error_counter : crc_error_counter, |
|
dgps_corrections_incoming : dgps_corrections_incoming, |
|
rtk_corrections_incoming : rtk_corrections_incoming, |
|
has_rtk_base_pos : has_rtk_base_pos, |
|
iar_num_hypotheses : iar_num_hypotheses |
|
}; |
|
gps._DataFlash->WriteBlock(&pkt, sizeof(pkt)); |
|
|
|
}; |
|
|
|
void |
|
AP_GPS_SBP::logging_log_llh(struct sbp_pos_llh_t* p) |
|
{ |
|
|
|
if (gps._DataFlash == NULL || !gps._DataFlash->logging_started()) { |
|
return; |
|
} |
|
|
|
logging_write_headers(); |
|
|
|
struct log_SbpLLH pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_MSG_SBPLLH), |
|
timestamp : hal.scheduler->millis(), |
|
tow : p->tow, |
|
lat : (int32_t) (p->lat*1e7), |
|
lon : (int32_t) (p->lon*1e7), |
|
alt : (int32_t) (p->height*1e2), |
|
n_sats : p->n_sats, |
|
}; |
|
gps._DataFlash->WriteBlock(&pkt, sizeof(pkt)); |
|
|
|
}; |
|
|
|
void |
|
AP_GPS_SBP::logging_log_baseline_ecef(struct sbp_baseline_ecef_t* b) |
|
{ |
|
|
|
if (gps._DataFlash == NULL || !gps._DataFlash->logging_started()) { |
|
return; |
|
} |
|
|
|
logging_write_headers(); |
|
|
|
float x = b->x / 1000.0; |
|
float y = b->y / 1000.0; |
|
float z = b->z / 1000.0; |
|
int32_t len = (int32_t) (safe_sqrt(x*x+y*y+z*z) * 1000.0f); |
|
|
|
struct log_SbpBaseline pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_MSG_SBPBASELINE), |
|
timestamp : hal.scheduler->millis(), |
|
tow : b->tow, |
|
x : b->x, |
|
y : b->y, |
|
z : b->z, |
|
length : len, |
|
accuracy : b->accuracy, |
|
n_sats : b->n_sats, |
|
flags : b->flags |
|
}; |
|
|
|
gps._DataFlash->WriteBlock(&pkt, sizeof(pkt)); |
|
|
|
}; |
|
|
|
|
|
void |
|
AP_GPS_SBP::logging_log_tracking_state(struct sbp_tracking_state_t* tstate, uint8_t num) |
|
{ |
|
if (gps._DataFlash == NULL || !gps._DataFlash->logging_started()) { |
|
return; |
|
} |
|
|
|
logging_write_headers(); |
|
|
|
struct log_SbpTracking1 pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_MSG_SBPTRACKING1), |
|
timestamp : hal.scheduler->millis(), |
|
ch1_prn : tstate[0].prn, |
|
ch1_cn0 : tstate[0].cn0, |
|
ch2_prn : (uint8_t)(num < 1 ? 0 : tstate[1].prn), |
|
ch2_cn0 : num < 1 ? 0 : tstate[1].cn0, |
|
ch3_prn : (uint8_t)(num < 2 ? 0 : tstate[2].prn), |
|
ch3_cn0 : num < 2 ? 0 : tstate[2].cn0, |
|
ch4_prn : (uint8_t)(num < 3 ? 0 : tstate[3].prn), |
|
ch4_cn0 : num < 3 ? 0 : tstate[3].cn0, |
|
ch5_prn : (uint8_t)(num < 4 ? 0 : tstate[4].prn), |
|
ch5_cn0 : num < 4 ? 0 : tstate[4].cn0, |
|
ch6_prn : (uint8_t)(num < 5 ? 0 : tstate[5].prn), |
|
ch6_cn0 : num < 5 ? 0 : tstate[5].cn0, |
|
ch7_prn : (uint8_t)(num < 6 ? 0 : tstate[6].prn), |
|
ch7_cn0 : num < 6 ? 0 : tstate[6].cn0, |
|
}; |
|
gps._DataFlash->WriteBlock(&pkt, sizeof(pkt)); |
|
|
|
if (num > 6) { |
|
|
|
struct log_SbpTracking2 pkt2 = { |
|
LOG_PACKET_HEADER_INIT(LOG_MSG_SBPTRACKING2), |
|
timestamp : hal.scheduler->millis(), |
|
ch8_prn : (uint8_t)(num < 7 ? 0 : tstate[7].prn), |
|
ch8_cn0 : num < 7 ? 0 : tstate[7].cn0, |
|
ch9_prn : (uint8_t)(num < 8 ? 0 : tstate[8].prn), |
|
ch9_cn0 : num < 8 ? 0 : tstate[8].cn0, |
|
ch10_prn : (uint8_t)(num < 9 ? 0 : tstate[9].prn), |
|
ch10_cn0 : num < 9 ? 0 : tstate[9].cn0, |
|
ch11_prn : (uint8_t)(num < 10 ? 0 : tstate[10].prn), |
|
ch11_cn0 : num < 10 ? 0 : tstate[10].cn0, |
|
ch12_prn : (uint8_t)(num < 11 ? 0 : tstate[11].prn), |
|
ch12_cn0 : num < 11 ? 0 : tstate[11].cn0, |
|
ch13_prn : (uint8_t)(num < 12 ? 0 : tstate[12].prn), |
|
ch13_cn0 : num < 12 ? 0 : tstate[12].cn0, |
|
ch14_prn : (uint8_t)(num < 13 ? 0 : tstate[13].prn), |
|
ch14_cn0 : num < 13 ? 0 : tstate[13].cn0, |
|
}; |
|
gps._DataFlash->WriteBlock(&pkt2, sizeof(pkt)); |
|
|
|
}; |
|
|
|
|
|
}; |
|
|
|
#endif // SBP_HW_LOGGING |
|
|
|
#endif // GPS_RTK_AVAILABLE
|
|
|