You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1696 lines
62 KiB
1696 lines
62 KiB
#include <stdlib.h> |
|
|
|
#include <AP_AHRS/AP_AHRS.h> |
|
#include <AP_Baro/AP_Baro.h> |
|
#include <AP_BattMonitor/AP_BattMonitor.h> |
|
#include <AP_Compass/AP_Compass.h> |
|
#include <AP_HAL/AP_HAL.h> |
|
#include <AP_Math/AP_Math.h> |
|
#include <AP_Param/AP_Param.h> |
|
#include <AP_Motors/AP_Motors.h> |
|
#include <AC_AttitudeControl/AC_AttitudeControl.h> |
|
#include <AC_AttitudeControl/AC_PosControl.h> |
|
#include <AP_RSSI/AP_RSSI.h> |
|
|
|
#include "AP_Logger.h" |
|
#include "AP_Logger_File.h" |
|
#include "AP_Logger_MAVLink.h" |
|
#include "LoggerMessageWriter.h" |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
|
|
/* |
|
write a structure format to the log - should be in frontend |
|
*/ |
|
void AP_Logger_Backend::Fill_Format(const struct LogStructure *s, struct log_Format &pkt) |
|
{ |
|
memset(&pkt, 0, sizeof(pkt)); |
|
pkt.head1 = HEAD_BYTE1; |
|
pkt.head2 = HEAD_BYTE2; |
|
pkt.msgid = LOG_FORMAT_MSG; |
|
pkt.type = s->msg_type; |
|
pkt.length = s->msg_len; |
|
strncpy(pkt.name, s->name, sizeof(pkt.name)); |
|
strncpy(pkt.format, s->format, sizeof(pkt.format)); |
|
strncpy(pkt.labels, s->labels, sizeof(pkt.labels)); |
|
} |
|
|
|
/* |
|
Pack a LogStructure packet into a structure suitable to go to the logfile: |
|
*/ |
|
void AP_Logger_Backend::Fill_Format_Units(const struct LogStructure *s, struct log_Format_Units &pkt) |
|
{ |
|
memset(&pkt, 0, sizeof(pkt)); |
|
pkt.head1 = HEAD_BYTE1; |
|
pkt.head2 = HEAD_BYTE2; |
|
pkt.msgid = LOG_FORMAT_UNITS_MSG; |
|
pkt.time_us = AP_HAL::micros64(); |
|
pkt.format_type = s->msg_type; |
|
strncpy(pkt.units, s->units, sizeof(pkt.units)); |
|
strncpy(pkt.multipliers, s->multipliers, sizeof(pkt.multipliers)); |
|
} |
|
|
|
/* |
|
write a structure format to the log |
|
*/ |
|
bool AP_Logger_Backend::Write_Format(const struct LogStructure *s) |
|
{ |
|
struct log_Format pkt; |
|
Fill_Format(s, pkt); |
|
return WriteCriticalBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
/* |
|
write a unit definition |
|
*/ |
|
bool AP_Logger_Backend::Write_Unit(const struct UnitStructure *s) |
|
{ |
|
struct log_Unit pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_UNIT_MSG), |
|
time_us : AP_HAL::micros64(), |
|
type : s->ID, |
|
unit : { } |
|
}; |
|
strncpy(pkt.unit, s->unit, sizeof(pkt.unit)); |
|
|
|
return WriteCriticalBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
/* |
|
write a unit-multiplier definition |
|
*/ |
|
bool AP_Logger_Backend::Write_Multiplier(const struct MultiplierStructure *s) |
|
{ |
|
struct log_Format_Multiplier pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_MULT_MSG), |
|
time_us : AP_HAL::micros64(), |
|
type : s->ID, |
|
multiplier : s->multiplier, |
|
}; |
|
|
|
return WriteCriticalBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
/* |
|
write the units for a format to the log |
|
*/ |
|
bool AP_Logger_Backend::Write_Format_Units(const struct LogStructure *s) |
|
{ |
|
struct log_Format_Units pkt; |
|
Fill_Format_Units(s, pkt); |
|
return WriteCriticalBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
/* |
|
write a parameter to the log |
|
*/ |
|
bool AP_Logger_Backend::Write_Parameter(const char *name, float value) |
|
{ |
|
struct log_Parameter pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_PARAMETER_MSG), |
|
time_us : AP_HAL::micros64(), |
|
name : {}, |
|
value : value |
|
}; |
|
strncpy(pkt.name, name, sizeof(pkt.name)); |
|
return WriteCriticalBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
/* |
|
write a parameter to the log |
|
*/ |
|
bool AP_Logger_Backend::Write_Parameter(const AP_Param *ap, |
|
const AP_Param::ParamToken &token, |
|
enum ap_var_type type) |
|
{ |
|
char name[16]; |
|
ap->copy_name_token(token, &name[0], sizeof(name), true); |
|
return Write_Parameter(name, ap->cast_to_float(type)); |
|
} |
|
|
|
// Write an GPS packet |
|
void AP_Logger::Write_GPS(uint8_t i, uint64_t time_us) |
|
{ |
|
const AP_GPS &gps = AP::gps(); |
|
if (time_us == 0) { |
|
time_us = AP_HAL::micros64(); |
|
} |
|
const struct Location &loc = gps.location(i); |
|
struct log_GPS pkt = { |
|
LOG_PACKET_HEADER_INIT((uint8_t)(LOG_GPS_MSG+i)), |
|
time_us : time_us, |
|
status : (uint8_t)gps.status(i), |
|
gps_week_ms : gps.time_week_ms(i), |
|
gps_week : gps.time_week(i), |
|
num_sats : gps.num_sats(i), |
|
hdop : gps.get_hdop(i), |
|
latitude : loc.lat, |
|
longitude : loc.lng, |
|
altitude : loc.alt, |
|
ground_speed : gps.ground_speed(i), |
|
ground_course : gps.ground_course(i), |
|
vel_z : gps.velocity(i).z, |
|
used : (uint8_t)(gps.primary_sensor() == i) |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
|
|
/* write auxiliary accuracy information as well */ |
|
float hacc = 0, vacc = 0, sacc = 0; |
|
gps.horizontal_accuracy(i, hacc); |
|
gps.vertical_accuracy(i, vacc); |
|
gps.speed_accuracy(i, sacc); |
|
struct log_GPA pkt2 = { |
|
LOG_PACKET_HEADER_INIT((uint8_t)(LOG_GPA_MSG+i)), |
|
time_us : time_us, |
|
vdop : gps.get_vdop(i), |
|
hacc : (uint16_t)MIN((hacc*100), UINT16_MAX), |
|
vacc : (uint16_t)MIN((vacc*100), UINT16_MAX), |
|
sacc : (uint16_t)MIN((sacc*100), UINT16_MAX), |
|
have_vv : (uint8_t)gps.have_vertical_velocity(i), |
|
sample_ms : gps.last_message_time_ms(i), |
|
delta_ms : gps.last_message_delta_time_ms(i) |
|
}; |
|
WriteBlock(&pkt2, sizeof(pkt2)); |
|
} |
|
|
|
|
|
// Write an RCIN packet |
|
void AP_Logger::Write_RCIN(void) |
|
{ |
|
uint16_t values[14] = {}; |
|
rc().get_radio_in(values, ARRAY_SIZE(values)); |
|
struct log_RCIN pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_RCIN_MSG), |
|
time_us : AP_HAL::micros64(), |
|
chan1 : values[0], |
|
chan2 : values[1], |
|
chan3 : values[2], |
|
chan4 : values[3], |
|
chan5 : values[4], |
|
chan6 : values[5], |
|
chan7 : values[6], |
|
chan8 : values[7], |
|
chan9 : values[8], |
|
chan10 : values[9], |
|
chan11 : values[10], |
|
chan12 : values[11], |
|
chan13 : values[12], |
|
chan14 : values[13] |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
// Write an SERVO packet |
|
void AP_Logger::Write_RCOUT(void) |
|
{ |
|
struct log_RCOUT pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_RCOUT_MSG), |
|
time_us : AP_HAL::micros64(), |
|
chan1 : hal.rcout->read(0), |
|
chan2 : hal.rcout->read(1), |
|
chan3 : hal.rcout->read(2), |
|
chan4 : hal.rcout->read(3), |
|
chan5 : hal.rcout->read(4), |
|
chan6 : hal.rcout->read(5), |
|
chan7 : hal.rcout->read(6), |
|
chan8 : hal.rcout->read(7), |
|
chan9 : hal.rcout->read(8), |
|
chan10 : hal.rcout->read(9), |
|
chan11 : hal.rcout->read(10), |
|
chan12 : hal.rcout->read(11), |
|
chan13 : hal.rcout->read(12), |
|
chan14 : hal.rcout->read(13) |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
// Write an RSSI packet |
|
void AP_Logger::Write_RSSI() |
|
{ |
|
AP_RSSI *rssi = AP::rssi(); |
|
if (rssi == nullptr) { |
|
return; |
|
} |
|
|
|
struct log_RSSI pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_RSSI_MSG), |
|
time_us : AP_HAL::micros64(), |
|
RXRSSI : rssi->read_receiver_rssi() |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
void AP_Logger::Write_Baro_instance(uint64_t time_us, uint8_t baro_instance, enum LogMessages type) |
|
{ |
|
AP_Baro &baro = AP::baro(); |
|
float climbrate = baro.get_climb_rate(); |
|
float drift_offset = baro.get_baro_drift_offset(); |
|
float ground_temp = baro.get_ground_temperature(); |
|
struct log_BARO pkt = { |
|
LOG_PACKET_HEADER_INIT(type), |
|
time_us : time_us, |
|
altitude : baro.get_altitude(baro_instance), |
|
pressure : baro.get_pressure(baro_instance), |
|
temperature : (int16_t)(baro.get_temperature(baro_instance) * 100 + 0.5f), |
|
climbrate : climbrate, |
|
sample_time_ms: baro.get_last_update(baro_instance), |
|
drift_offset : drift_offset, |
|
ground_temp : ground_temp, |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
// Write a BARO packet |
|
void AP_Logger::Write_Baro(uint64_t time_us) |
|
{ |
|
if (time_us == 0) { |
|
time_us = AP_HAL::micros64(); |
|
} |
|
const AP_Baro &baro = AP::baro(); |
|
Write_Baro_instance(time_us, 0, LOG_BARO_MSG); |
|
if (baro.num_instances() > 1 && baro.healthy(1)) { |
|
Write_Baro_instance(time_us, 1, LOG_BAR2_MSG); |
|
} |
|
if (baro.num_instances() > 2 && baro.healthy(2)) { |
|
Write_Baro_instance(time_us, 2, LOG_BAR3_MSG); |
|
} |
|
} |
|
|
|
void AP_Logger::Write_IMU_instance(const uint64_t time_us, const uint8_t imu_instance, const enum LogMessages type) |
|
{ |
|
const AP_InertialSensor &ins = AP::ins(); |
|
const Vector3f &gyro = ins.get_gyro(imu_instance); |
|
const Vector3f &accel = ins.get_accel(imu_instance); |
|
struct log_IMU pkt = { |
|
LOG_PACKET_HEADER_INIT(type), |
|
time_us : time_us, |
|
gyro_x : gyro.x, |
|
gyro_y : gyro.y, |
|
gyro_z : gyro.z, |
|
accel_x : accel.x, |
|
accel_y : accel.y, |
|
accel_z : accel.z, |
|
gyro_error : ins.get_gyro_error_count(imu_instance), |
|
accel_error : ins.get_accel_error_count(imu_instance), |
|
temperature : ins.get_temperature(imu_instance), |
|
gyro_health : (uint8_t)ins.get_gyro_health(imu_instance), |
|
accel_health : (uint8_t)ins.get_accel_health(imu_instance), |
|
gyro_rate : ins.get_gyro_rate_hz(imu_instance), |
|
accel_rate : ins.get_accel_rate_hz(imu_instance), |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
// Write an raw accel/gyro data packet |
|
void AP_Logger::Write_IMU() |
|
{ |
|
uint64_t time_us = AP_HAL::micros64(); |
|
|
|
const AP_InertialSensor &ins = AP::ins(); |
|
|
|
Write_IMU_instance(time_us, 0, LOG_IMU_MSG); |
|
if (ins.get_gyro_count() < 2 && ins.get_accel_count() < 2) { |
|
return; |
|
} |
|
|
|
Write_IMU_instance(time_us, 1, LOG_IMU2_MSG); |
|
|
|
if (ins.get_gyro_count() < 3 && ins.get_accel_count() < 3) { |
|
return; |
|
} |
|
|
|
Write_IMU_instance(time_us, 2, LOG_IMU3_MSG); |
|
} |
|
|
|
// Write an accel/gyro delta time data packet |
|
void AP_Logger::Write_IMUDT_instance(const uint64_t time_us, const uint8_t imu_instance, const enum LogMessages type) |
|
{ |
|
const AP_InertialSensor &ins = AP::ins(); |
|
float delta_t = ins.get_delta_time(); |
|
float delta_vel_t = ins.get_delta_velocity_dt(imu_instance); |
|
float delta_ang_t = ins.get_delta_angle_dt(imu_instance); |
|
Vector3f delta_angle, delta_velocity; |
|
ins.get_delta_angle(imu_instance, delta_angle); |
|
ins.get_delta_velocity(imu_instance, delta_velocity); |
|
|
|
struct log_IMUDT pkt = { |
|
LOG_PACKET_HEADER_INIT(type), |
|
time_us : time_us, |
|
delta_time : delta_t, |
|
delta_vel_dt : delta_vel_t, |
|
delta_ang_dt : delta_ang_t, |
|
delta_ang_x : delta_angle.x, |
|
delta_ang_y : delta_angle.y, |
|
delta_ang_z : delta_angle.z, |
|
delta_vel_x : delta_velocity.x, |
|
delta_vel_y : delta_velocity.y, |
|
delta_vel_z : delta_velocity.z |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
void AP_Logger::Write_IMUDT(uint64_t time_us, uint8_t imu_mask) |
|
{ |
|
const AP_InertialSensor &ins = AP::ins(); |
|
if (imu_mask & 1) { |
|
Write_IMUDT_instance(time_us, 0, LOG_IMUDT_MSG); |
|
} |
|
if ((ins.get_gyro_count() < 2 && ins.get_accel_count() < 2) || !ins.use_gyro(1)) { |
|
return; |
|
} |
|
|
|
if (imu_mask & 2) { |
|
Write_IMUDT_instance(time_us, 1, LOG_IMUDT2_MSG); |
|
} |
|
|
|
if ((ins.get_gyro_count() < 3 && ins.get_accel_count() < 3) || !ins.use_gyro(2)) { |
|
return; |
|
} |
|
|
|
if (imu_mask & 4) { |
|
Write_IMUDT_instance(time_us, 2, LOG_IMUDT3_MSG); |
|
} |
|
} |
|
|
|
void AP_Logger::Write_Vibration() |
|
{ |
|
uint64_t time_us = AP_HAL::micros64(); |
|
const AP_InertialSensor &ins = AP::ins(); |
|
const Vector3f vibration = ins.get_vibration_levels(); |
|
struct log_Vibe pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_VIBE_MSG), |
|
time_us : time_us, |
|
vibe_x : vibration.x, |
|
vibe_y : vibration.y, |
|
vibe_z : vibration.z, |
|
clipping_0 : ins.get_accel_clip_count(0), |
|
clipping_1 : ins.get_accel_clip_count(1), |
|
clipping_2 : ins.get_accel_clip_count(2) |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
bool AP_Logger_Backend::Write_Mission_Cmd(const AP_Mission &mission, |
|
const AP_Mission::Mission_Command &cmd) |
|
{ |
|
mavlink_mission_item_int_t mav_cmd = {}; |
|
AP_Mission::mission_cmd_to_mavlink_int(cmd,mav_cmd); |
|
struct log_Cmd pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_CMD_MSG), |
|
time_us : AP_HAL::micros64(), |
|
command_total : mission.num_commands(), |
|
sequence : mav_cmd.seq, |
|
command : mav_cmd.command, |
|
param1 : mav_cmd.param1, |
|
param2 : mav_cmd.param2, |
|
param3 : mav_cmd.param3, |
|
param4 : mav_cmd.param4, |
|
latitude : mav_cmd.x, |
|
longitude : mav_cmd.y, |
|
altitude : mav_cmd.z, |
|
frame : mav_cmd.frame |
|
}; |
|
return WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
void AP_Logger_Backend::Write_EntireMission() |
|
{ |
|
LoggerMessageWriter_WriteEntireMission writer; |
|
writer.set_logger_backend(this); |
|
writer.process(); |
|
} |
|
|
|
// Write a text message to the log |
|
bool AP_Logger_Backend::Write_Message(const char *message) |
|
{ |
|
struct log_Message pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_MESSAGE_MSG), |
|
time_us : AP_HAL::micros64(), |
|
msg : {} |
|
}; |
|
strncpy(pkt.msg, message, sizeof(pkt.msg)); |
|
return WriteCriticalBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
void AP_Logger::Write_Power(void) |
|
{ |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS |
|
uint8_t safety_and_armed = uint8_t(hal.util->safety_switch_state()); |
|
if (hal.util->get_soft_armed()) { |
|
// encode armed state in bit 3 |
|
safety_and_armed |= 1U<<2; |
|
} |
|
struct log_POWR pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_POWR_MSG), |
|
time_us : AP_HAL::micros64(), |
|
Vcc : hal.analogin->board_voltage(), |
|
Vservo : hal.analogin->servorail_voltage(), |
|
flags : hal.analogin->power_status_flags(), |
|
safety_and_arm : safety_and_armed |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
#endif |
|
} |
|
|
|
// Write an AHRS2 packet |
|
void AP_Logger::Write_AHRS2(AP_AHRS &ahrs) |
|
{ |
|
Vector3f euler; |
|
struct Location loc; |
|
Quaternion quat; |
|
if (!ahrs.get_secondary_attitude(euler) || !ahrs.get_secondary_position(loc) || !ahrs.get_secondary_quaternion(quat)) { |
|
return; |
|
} |
|
struct log_AHRS pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_AHR2_MSG), |
|
time_us : AP_HAL::micros64(), |
|
roll : (int16_t)(degrees(euler.x)*100), |
|
pitch : (int16_t)(degrees(euler.y)*100), |
|
yaw : (uint16_t)(wrap_360_cd(degrees(euler.z)*100)), |
|
alt : loc.alt*1.0e-2f, |
|
lat : loc.lat, |
|
lng : loc.lng, |
|
q1 : quat.q1, |
|
q2 : quat.q2, |
|
q3 : quat.q3, |
|
q4 : quat.q4, |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
// Write a POS packet |
|
void AP_Logger::Write_POS(AP_AHRS &ahrs) |
|
{ |
|
Location loc; |
|
if (!ahrs.get_position(loc)) { |
|
return; |
|
} |
|
float home, origin; |
|
ahrs.get_relative_position_D_home(home); |
|
struct log_POS pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_POS_MSG), |
|
time_us : AP_HAL::micros64(), |
|
lat : loc.lat, |
|
lng : loc.lng, |
|
alt : loc.alt*1.0e-2f, |
|
rel_home_alt : -home, |
|
rel_origin_alt : ahrs.get_relative_position_D_origin(origin) ? -origin : quiet_nanf(), |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
#if AP_AHRS_NAVEKF_AVAILABLE |
|
void AP_Logger::Write_EKF(AP_AHRS_NavEKF &ahrs) |
|
{ |
|
// only log EKF2 if enabled |
|
if (ahrs.get_NavEKF2().activeCores() > 0) { |
|
Write_EKF2(ahrs); |
|
} |
|
// only log EKF3 if enabled |
|
if (ahrs.get_NavEKF3().activeCores() > 0) { |
|
Write_EKF3(ahrs); |
|
} |
|
} |
|
|
|
|
|
/* |
|
write an EKF timing message |
|
*/ |
|
void AP_Logger::Write_EKF_Timing(const char *name, uint64_t time_us, const struct ekf_timing &timing) |
|
{ |
|
Write(name, |
|
"TimeUS,Cnt,IMUMin,IMUMax,EKFMin,EKFMax,AngMin,AngMax,VMin,VMax", |
|
"QIffffffff", |
|
time_us, |
|
timing.count, |
|
(double)timing.dtIMUavg_min, |
|
(double)timing.dtIMUavg_max, |
|
(double)timing.dtEKFavg_min, |
|
(double)timing.dtEKFavg_max, |
|
(double)timing.delAngDT_min, |
|
(double)timing.delAngDT_max, |
|
(double)timing.delVelDT_min, |
|
(double)timing.delVelDT_max); |
|
} |
|
|
|
void AP_Logger::Write_EKF2(AP_AHRS_NavEKF &ahrs) |
|
{ |
|
uint64_t time_us = AP_HAL::micros64(); |
|
// Write first EKF packet |
|
Vector3f euler; |
|
Vector2f posNE; |
|
float posD; |
|
Vector3f velNED; |
|
Vector3f gyroBias; |
|
float posDownDeriv; |
|
Location originLLH; |
|
ahrs.get_NavEKF2().getEulerAngles(0,euler); |
|
ahrs.get_NavEKF2().getVelNED(0,velNED); |
|
ahrs.get_NavEKF2().getPosNE(0,posNE); |
|
ahrs.get_NavEKF2().getPosD(0,posD); |
|
ahrs.get_NavEKF2().getGyroBias(0,gyroBias); |
|
posDownDeriv = ahrs.get_NavEKF2().getPosDownDerivative(0); |
|
if (!ahrs.get_NavEKF2().getOriginLLH(0,originLLH)) { |
|
originLLH.alt = 0; |
|
} |
|
struct log_EKF1 pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_NKF1_MSG), |
|
time_us : time_us, |
|
roll : (int16_t)(100*degrees(euler.x)), // roll angle (centi-deg, displayed as deg due to format string) |
|
pitch : (int16_t)(100*degrees(euler.y)), // pitch angle (centi-deg, displayed as deg due to format string) |
|
yaw : (uint16_t)wrap_360_cd(100*degrees(euler.z)), // yaw angle (centi-deg, displayed as deg due to format string) |
|
velN : (float)(velNED.x), // velocity North (m/s) |
|
velE : (float)(velNED.y), // velocity East (m/s) |
|
velD : (float)(velNED.z), // velocity Down (m/s) |
|
posD_dot : (float)(posDownDeriv), // first derivative of down position |
|
posN : (float)(posNE.x), // metres North |
|
posE : (float)(posNE.y), // metres East |
|
posD : (float)(posD), // metres Down |
|
gyrX : (int16_t)(100*degrees(gyroBias.x)), // cd/sec, displayed as deg/sec due to format string |
|
gyrY : (int16_t)(100*degrees(gyroBias.y)), // cd/sec, displayed as deg/sec due to format string |
|
gyrZ : (int16_t)(100*degrees(gyroBias.z)), // cd/sec, displayed as deg/sec due to format string |
|
originHgt : originLLH.alt // WGS-84 altitude of EKF origin in cm |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
|
|
// Write second EKF packet |
|
float azbias = 0; |
|
Vector3f wind; |
|
Vector3f magNED; |
|
Vector3f magXYZ; |
|
Vector3f gyroScaleFactor; |
|
uint8_t magIndex = ahrs.get_NavEKF2().getActiveMag(0); |
|
ahrs.get_NavEKF2().getAccelZBias(0,azbias); |
|
ahrs.get_NavEKF2().getWind(0,wind); |
|
ahrs.get_NavEKF2().getMagNED(0,magNED); |
|
ahrs.get_NavEKF2().getMagXYZ(0,magXYZ); |
|
ahrs.get_NavEKF2().getGyroScaleErrorPercentage(0,gyroScaleFactor); |
|
struct log_NKF2 pkt2 = { |
|
LOG_PACKET_HEADER_INIT(LOG_NKF2_MSG), |
|
time_us : time_us, |
|
AZbias : (int8_t)(100*azbias), |
|
scaleX : (int16_t)(100*gyroScaleFactor.x), |
|
scaleY : (int16_t)(100*gyroScaleFactor.y), |
|
scaleZ : (int16_t)(100*gyroScaleFactor.z), |
|
windN : (int16_t)(100*wind.x), |
|
windE : (int16_t)(100*wind.y), |
|
magN : (int16_t)(magNED.x), |
|
magE : (int16_t)(magNED.y), |
|
magD : (int16_t)(magNED.z), |
|
magX : (int16_t)(magXYZ.x), |
|
magY : (int16_t)(magXYZ.y), |
|
magZ : (int16_t)(magXYZ.z), |
|
index : (uint8_t)(magIndex) |
|
}; |
|
WriteBlock(&pkt2, sizeof(pkt2)); |
|
|
|
// Write third EKF packet |
|
Vector3f velInnov; |
|
Vector3f posInnov; |
|
Vector3f magInnov; |
|
float tasInnov = 0; |
|
float yawInnov = 0; |
|
ahrs.get_NavEKF2().getInnovations(0,velInnov, posInnov, magInnov, tasInnov, yawInnov); |
|
struct log_NKF3 pkt3 = { |
|
LOG_PACKET_HEADER_INIT(LOG_NKF3_MSG), |
|
time_us : time_us, |
|
innovVN : (int16_t)(100*velInnov.x), |
|
innovVE : (int16_t)(100*velInnov.y), |
|
innovVD : (int16_t)(100*velInnov.z), |
|
innovPN : (int16_t)(100*posInnov.x), |
|
innovPE : (int16_t)(100*posInnov.y), |
|
innovPD : (int16_t)(100*posInnov.z), |
|
innovMX : (int16_t)(magInnov.x), |
|
innovMY : (int16_t)(magInnov.y), |
|
innovMZ : (int16_t)(magInnov.z), |
|
innovYaw : (int16_t)(100*degrees(yawInnov)), |
|
innovVT : (int16_t)(100*tasInnov) |
|
}; |
|
WriteBlock(&pkt3, sizeof(pkt3)); |
|
|
|
// Write fourth EKF packet |
|
float velVar = 0; |
|
float posVar = 0; |
|
float hgtVar = 0; |
|
Vector3f magVar; |
|
float tasVar = 0; |
|
Vector2f offset; |
|
uint16_t faultStatus=0; |
|
uint8_t timeoutStatus=0; |
|
nav_filter_status solutionStatus {}; |
|
nav_gps_status gpsStatus {}; |
|
ahrs.get_NavEKF2().getVariances(0,velVar, posVar, hgtVar, magVar, tasVar, offset); |
|
float tempVar = fmaxf(fmaxf(magVar.x,magVar.y),magVar.z); |
|
ahrs.get_NavEKF2().getFilterFaults(0,faultStatus); |
|
ahrs.get_NavEKF2().getFilterTimeouts(0,timeoutStatus); |
|
ahrs.get_NavEKF2().getFilterStatus(0,solutionStatus); |
|
ahrs.get_NavEKF2().getFilterGpsStatus(0,gpsStatus); |
|
float tiltError; |
|
ahrs.get_NavEKF2().getTiltError(0,tiltError); |
|
int8_t primaryIndex = ahrs.get_NavEKF2().getPrimaryCoreIndex(); |
|
struct log_NKF4 pkt4 = { |
|
LOG_PACKET_HEADER_INIT(LOG_NKF4_MSG), |
|
time_us : time_us, |
|
sqrtvarV : (int16_t)(100*velVar), |
|
sqrtvarP : (int16_t)(100*posVar), |
|
sqrtvarH : (int16_t)(100*hgtVar), |
|
sqrtvarM : (int16_t)(100*tempVar), |
|
sqrtvarVT : (int16_t)(100*tasVar), |
|
tiltErr : (float)tiltError, |
|
offsetNorth : (int8_t)(offset.x), |
|
offsetEast : (int8_t)(offset.y), |
|
faults : (uint16_t)(faultStatus), |
|
timeouts : (uint8_t)(timeoutStatus), |
|
solution : (uint16_t)(solutionStatus.value), |
|
gps : (uint16_t)(gpsStatus.value), |
|
primary : (int8_t)primaryIndex |
|
}; |
|
WriteBlock(&pkt4, sizeof(pkt4)); |
|
|
|
// Write fifth EKF packet - take data from the primary instance |
|
float normInnov=0; // normalised innovation variance ratio for optical flow observations fused by the main nav filter |
|
float gndOffset=0; // estimated vertical position of the terrain relative to the nav filter zero datum |
|
float flowInnovX=0, flowInnovY=0; // optical flow LOS rate vector innovations from the main nav filter |
|
float auxFlowInnov=0; // optical flow LOS rate innovation from terrain offset estimator |
|
float HAGL=0; // height above ground level |
|
float rngInnov=0; // range finder innovations |
|
float range=0; // measured range |
|
float gndOffsetErr=0; // filter ground offset state error |
|
Vector3f predictorErrors; // output predictor angle, velocity and position tracking error |
|
ahrs.get_NavEKF2().getFlowDebug(-1,normInnov, gndOffset, flowInnovX, flowInnovY, auxFlowInnov, HAGL, rngInnov, range, gndOffsetErr); |
|
ahrs.get_NavEKF2().getOutputTrackingError(-1,predictorErrors); |
|
struct log_NKF5 pkt5 = { |
|
LOG_PACKET_HEADER_INIT(LOG_NKF5_MSG), |
|
time_us : time_us, |
|
normInnov : (uint8_t)(MIN(100*normInnov,255)), |
|
FIX : (int16_t)(1000*flowInnovX), |
|
FIY : (int16_t)(1000*flowInnovY), |
|
AFI : (int16_t)(1000*auxFlowInnov), |
|
HAGL : (int16_t)(100*HAGL), |
|
offset : (int16_t)(100*gndOffset), |
|
RI : (int16_t)(100*rngInnov), |
|
meaRng : (uint16_t)(100*range), |
|
errHAGL : (uint16_t)(100*gndOffsetErr), |
|
angErr : (float)predictorErrors.x, |
|
velErr : (float)predictorErrors.y, |
|
posErr : (float)predictorErrors.z |
|
}; |
|
WriteBlock(&pkt5, sizeof(pkt5)); |
|
|
|
// log quaternion |
|
Quaternion quat; |
|
ahrs.get_NavEKF2().getQuaternion(0, quat); |
|
struct log_Quaternion pktq1 = { |
|
LOG_PACKET_HEADER_INIT(LOG_NKQ1_MSG), |
|
time_us : time_us, |
|
q1 : quat.q1, |
|
q2 : quat.q2, |
|
q3 : quat.q3, |
|
q4 : quat.q4 |
|
}; |
|
WriteBlock(&pktq1, sizeof(pktq1)); |
|
|
|
// log innovations for the second IMU if enabled |
|
if (ahrs.get_NavEKF2().activeCores() >= 2) { |
|
// Write 6th EKF packet |
|
ahrs.get_NavEKF2().getEulerAngles(1,euler); |
|
ahrs.get_NavEKF2().getVelNED(1,velNED); |
|
ahrs.get_NavEKF2().getPosNE(1,posNE); |
|
ahrs.get_NavEKF2().getPosD(1,posD); |
|
ahrs.get_NavEKF2().getGyroBias(1,gyroBias); |
|
posDownDeriv = ahrs.get_NavEKF2().getPosDownDerivative(1); |
|
if (!ahrs.get_NavEKF2().getOriginLLH(1,originLLH)) { |
|
originLLH.alt = 0; |
|
} |
|
struct log_EKF1 pkt6 = { |
|
LOG_PACKET_HEADER_INIT(LOG_NKF6_MSG), |
|
time_us : time_us, |
|
roll : (int16_t)(100*degrees(euler.x)), // roll angle (centi-deg, displayed as deg due to format string) |
|
pitch : (int16_t)(100*degrees(euler.y)), // pitch angle (centi-deg, displayed as deg due to format string) |
|
yaw : (uint16_t)wrap_360_cd(100*degrees(euler.z)), // yaw angle (centi-deg, displayed as deg due to format string) |
|
velN : (float)(velNED.x), // velocity North (m/s) |
|
velE : (float)(velNED.y), // velocity East (m/s) |
|
velD : (float)(velNED.z), // velocity Down (m/s) |
|
posD_dot : (float)(posDownDeriv), // first derivative of down position |
|
posN : (float)(posNE.x), // metres North |
|
posE : (float)(posNE.y), // metres East |
|
posD : (float)(posD), // metres Down |
|
gyrX : (int16_t)(100*degrees(gyroBias.x)), // cd/sec, displayed as deg/sec due to format string |
|
gyrY : (int16_t)(100*degrees(gyroBias.y)), // cd/sec, displayed as deg/sec due to format string |
|
gyrZ : (int16_t)(100*degrees(gyroBias.z)), // cd/sec, displayed as deg/sec due to format string |
|
originHgt : originLLH.alt // WGS-84 altitude of EKF origin in cm |
|
}; |
|
WriteBlock(&pkt6, sizeof(pkt6)); |
|
|
|
// Write 7th EKF packet |
|
ahrs.get_NavEKF2().getAccelZBias(1,azbias); |
|
ahrs.get_NavEKF2().getWind(1,wind); |
|
ahrs.get_NavEKF2().getMagNED(1,magNED); |
|
ahrs.get_NavEKF2().getMagXYZ(1,magXYZ); |
|
ahrs.get_NavEKF2().getGyroScaleErrorPercentage(1,gyroScaleFactor); |
|
magIndex = ahrs.get_NavEKF2().getActiveMag(1); |
|
struct log_NKF2 pkt7 = { |
|
LOG_PACKET_HEADER_INIT(LOG_NKF7_MSG), |
|
time_us : time_us, |
|
AZbias : (int8_t)(100*azbias), |
|
scaleX : (int16_t)(100*gyroScaleFactor.x), |
|
scaleY : (int16_t)(100*gyroScaleFactor.y), |
|
scaleZ : (int16_t)(100*gyroScaleFactor.z), |
|
windN : (int16_t)(100*wind.x), |
|
windE : (int16_t)(100*wind.y), |
|
magN : (int16_t)(magNED.x), |
|
magE : (int16_t)(magNED.y), |
|
magD : (int16_t)(magNED.z), |
|
magX : (int16_t)(magXYZ.x), |
|
magY : (int16_t)(magXYZ.y), |
|
magZ : (int16_t)(magXYZ.z), |
|
index : (uint8_t)(magIndex) |
|
}; |
|
WriteBlock(&pkt7, sizeof(pkt7)); |
|
|
|
// Write 8th EKF packet |
|
ahrs.get_NavEKF2().getInnovations(1,velInnov, posInnov, magInnov, tasInnov, yawInnov); |
|
struct log_NKF3 pkt8 = { |
|
LOG_PACKET_HEADER_INIT(LOG_NKF8_MSG), |
|
time_us : time_us, |
|
innovVN : (int16_t)(100*velInnov.x), |
|
innovVE : (int16_t)(100*velInnov.y), |
|
innovVD : (int16_t)(100*velInnov.z), |
|
innovPN : (int16_t)(100*posInnov.x), |
|
innovPE : (int16_t)(100*posInnov.y), |
|
innovPD : (int16_t)(100*posInnov.z), |
|
innovMX : (int16_t)(magInnov.x), |
|
innovMY : (int16_t)(magInnov.y), |
|
innovMZ : (int16_t)(magInnov.z), |
|
innovYaw : (int16_t)(100*degrees(yawInnov)), |
|
innovVT : (int16_t)(100*tasInnov) |
|
}; |
|
WriteBlock(&pkt8, sizeof(pkt8)); |
|
|
|
// Write 9th EKF packet |
|
ahrs.get_NavEKF2().getVariances(1,velVar, posVar, hgtVar, magVar, tasVar, offset); |
|
tempVar = fmaxf(fmaxf(magVar.x,magVar.y),magVar.z); |
|
ahrs.get_NavEKF2().getFilterFaults(1,faultStatus); |
|
ahrs.get_NavEKF2().getFilterTimeouts(1,timeoutStatus); |
|
ahrs.get_NavEKF2().getFilterStatus(1,solutionStatus); |
|
ahrs.get_NavEKF2().getFilterGpsStatus(1,gpsStatus); |
|
ahrs.get_NavEKF2().getTiltError(1,tiltError); |
|
struct log_NKF4 pkt9 = { |
|
LOG_PACKET_HEADER_INIT(LOG_NKF9_MSG), |
|
time_us : time_us, |
|
sqrtvarV : (int16_t)(100*velVar), |
|
sqrtvarP : (int16_t)(100*posVar), |
|
sqrtvarH : (int16_t)(100*hgtVar), |
|
sqrtvarM : (int16_t)(100*tempVar), |
|
sqrtvarVT : (int16_t)(100*tasVar), |
|
tiltErr : (float)tiltError, |
|
offsetNorth : (int8_t)(offset.x), |
|
offsetEast : (int8_t)(offset.y), |
|
faults : (uint16_t)(faultStatus), |
|
timeouts : (uint8_t)(timeoutStatus), |
|
solution : (uint16_t)(solutionStatus.value), |
|
gps : (uint16_t)(gpsStatus.value), |
|
primary : (int8_t)primaryIndex |
|
}; |
|
WriteBlock(&pkt9, sizeof(pkt9)); |
|
|
|
ahrs.get_NavEKF2().getQuaternion(1, quat); |
|
struct log_Quaternion pktq2 = { |
|
LOG_PACKET_HEADER_INIT(LOG_NKQ2_MSG), |
|
time_us : time_us, |
|
q1 : quat.q1, |
|
q2 : quat.q2, |
|
q3 : quat.q3, |
|
q4 : quat.q4 |
|
}; |
|
WriteBlock(&pktq2, sizeof(pktq2)); |
|
} |
|
|
|
// write range beacon fusion debug packet if the range value is non-zero |
|
if (ahrs.get_beacon() != nullptr) { |
|
uint8_t ID; |
|
float rng; |
|
float innovVar; |
|
float innov; |
|
float testRatio; |
|
Vector3f beaconPosNED; |
|
float bcnPosOffsetHigh; |
|
float bcnPosOffsetLow; |
|
if (ahrs.get_NavEKF2().getRangeBeaconDebug(-1, ID, rng, innov, innovVar, testRatio, beaconPosNED, bcnPosOffsetHigh, bcnPosOffsetLow)) { |
|
if (rng > 0.0f) { |
|
struct log_RngBcnDebug pkt10 = { |
|
LOG_PACKET_HEADER_INIT(LOG_NKF10_MSG), |
|
time_us : time_us, |
|
ID : (uint8_t)ID, |
|
rng : (int16_t)(100*rng), |
|
innov : (int16_t)(100*innov), |
|
sqrtInnovVar : (uint16_t)(100*safe_sqrt(innovVar)), |
|
testRatio : (uint16_t)(100*constrain_float(testRatio,0.0f,650.0f)), |
|
beaconPosN : (int16_t)(100*beaconPosNED.x), |
|
beaconPosE : (int16_t)(100*beaconPosNED.y), |
|
beaconPosD : (int16_t)(100*beaconPosNED.z), |
|
offsetHigh : (int16_t)(100*bcnPosOffsetHigh), |
|
offsetLow : (int16_t)(100*bcnPosOffsetLow), |
|
posN : 0, |
|
posE : 0, |
|
posD : 0 |
|
}; |
|
WriteBlock(&pkt10, sizeof(pkt10)); |
|
} |
|
} |
|
} |
|
|
|
// log EKF timing statistics every 5s |
|
static uint32_t lastTimingLogTime_ms = 0; |
|
if (AP_HAL::millis() - lastTimingLogTime_ms > 5000) { |
|
lastTimingLogTime_ms = AP_HAL::millis(); |
|
struct ekf_timing timing; |
|
for (uint8_t i=0; i<ahrs.get_NavEKF2().activeCores(); i++) { |
|
ahrs.get_NavEKF2().getTimingStatistics(i, timing); |
|
Write_EKF_Timing(i==0?"NKT1":"NKT2", time_us, timing); |
|
} |
|
} |
|
} |
|
|
|
|
|
void AP_Logger::Write_EKF3(AP_AHRS_NavEKF &ahrs) |
|
{ |
|
uint64_t time_us = AP_HAL::micros64(); |
|
// Write first EKF packet |
|
Vector3f euler; |
|
Vector2f posNE; |
|
float posD; |
|
Vector3f velNED; |
|
Vector3f gyroBias; |
|
float posDownDeriv; |
|
Location originLLH; |
|
ahrs.get_NavEKF3().getEulerAngles(0,euler); |
|
ahrs.get_NavEKF3().getVelNED(0,velNED); |
|
ahrs.get_NavEKF3().getPosNE(0,posNE); |
|
ahrs.get_NavEKF3().getPosD(0,posD); |
|
ahrs.get_NavEKF3().getGyroBias(0,gyroBias); |
|
posDownDeriv = ahrs.get_NavEKF3().getPosDownDerivative(0); |
|
if (!ahrs.get_NavEKF3().getOriginLLH(0,originLLH)) { |
|
originLLH.alt = 0; |
|
} |
|
struct log_EKF1 pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_XKF1_MSG), |
|
time_us : time_us, |
|
roll : (int16_t)(100*degrees(euler.x)), // roll angle (centi-deg, displayed as deg due to format string) |
|
pitch : (int16_t)(100*degrees(euler.y)), // pitch angle (centi-deg, displayed as deg due to format string) |
|
yaw : (uint16_t)wrap_360_cd(100*degrees(euler.z)), // yaw angle (centi-deg, displayed as deg due to format string) |
|
velN : (float)(velNED.x), // velocity North (m/s) |
|
velE : (float)(velNED.y), // velocity East (m/s) |
|
velD : (float)(velNED.z), // velocity Down (m/s) |
|
posD_dot : (float)(posDownDeriv), // first derivative of down position |
|
posN : (float)(posNE.x), // metres North |
|
posE : (float)(posNE.y), // metres East |
|
posD : (float)(posD), // metres Down |
|
gyrX : (int16_t)(100*degrees(gyroBias.x)), // cd/sec, displayed as deg/sec due to format string |
|
gyrY : (int16_t)(100*degrees(gyroBias.y)), // cd/sec, displayed as deg/sec due to format string |
|
gyrZ : (int16_t)(100*degrees(gyroBias.z)), // cd/sec, displayed as deg/sec due to format string |
|
originHgt : originLLH.alt // WGS-84 altitude of EKF origin in cm |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
|
|
// Write second EKF packet |
|
Vector3f accelBias; |
|
Vector3f wind; |
|
Vector3f magNED; |
|
Vector3f magXYZ; |
|
uint8_t magIndex = ahrs.get_NavEKF3().getActiveMag(0); |
|
ahrs.get_NavEKF3().getAccelBias(0,accelBias); |
|
ahrs.get_NavEKF3().getWind(0,wind); |
|
ahrs.get_NavEKF3().getMagNED(0,magNED); |
|
ahrs.get_NavEKF3().getMagXYZ(0,magXYZ); |
|
struct log_NKF2a pkt2 = { |
|
LOG_PACKET_HEADER_INIT(LOG_XKF2_MSG), |
|
time_us : time_us, |
|
accBiasX : (int16_t)(100*accelBias.x), |
|
accBiasY : (int16_t)(100*accelBias.y), |
|
accBiasZ : (int16_t)(100*accelBias.z), |
|
windN : (int16_t)(100*wind.x), |
|
windE : (int16_t)(100*wind.y), |
|
magN : (int16_t)(magNED.x), |
|
magE : (int16_t)(magNED.y), |
|
magD : (int16_t)(magNED.z), |
|
magX : (int16_t)(magXYZ.x), |
|
magY : (int16_t)(magXYZ.y), |
|
magZ : (int16_t)(magXYZ.z), |
|
index : (uint8_t)(magIndex) |
|
}; |
|
WriteBlock(&pkt2, sizeof(pkt2)); |
|
|
|
// Write third EKF packet |
|
Vector3f velInnov; |
|
Vector3f posInnov; |
|
Vector3f magInnov; |
|
float tasInnov = 0; |
|
float yawInnov = 0; |
|
ahrs.get_NavEKF3().getInnovations(0,velInnov, posInnov, magInnov, tasInnov, yawInnov); |
|
struct log_NKF3 pkt3 = { |
|
LOG_PACKET_HEADER_INIT(LOG_XKF3_MSG), |
|
time_us : time_us, |
|
innovVN : (int16_t)(100*velInnov.x), |
|
innovVE : (int16_t)(100*velInnov.y), |
|
innovVD : (int16_t)(100*velInnov.z), |
|
innovPN : (int16_t)(100*posInnov.x), |
|
innovPE : (int16_t)(100*posInnov.y), |
|
innovPD : (int16_t)(100*posInnov.z), |
|
innovMX : (int16_t)(magInnov.x), |
|
innovMY : (int16_t)(magInnov.y), |
|
innovMZ : (int16_t)(magInnov.z), |
|
innovYaw : (int16_t)(100*degrees(yawInnov)), |
|
innovVT : (int16_t)(100*tasInnov) |
|
}; |
|
WriteBlock(&pkt3, sizeof(pkt3)); |
|
|
|
// Write fourth EKF packet |
|
float velVar = 0; |
|
float posVar = 0; |
|
float hgtVar = 0; |
|
Vector3f magVar; |
|
float tasVar = 0; |
|
Vector2f offset; |
|
uint16_t faultStatus=0; |
|
uint8_t timeoutStatus=0; |
|
nav_filter_status solutionStatus {}; |
|
nav_gps_status gpsStatus {}; |
|
ahrs.get_NavEKF3().getVariances(0,velVar, posVar, hgtVar, magVar, tasVar, offset); |
|
float tempVar = fmaxf(fmaxf(magVar.x,magVar.y),magVar.z); |
|
ahrs.get_NavEKF3().getFilterFaults(0,faultStatus); |
|
ahrs.get_NavEKF3().getFilterTimeouts(0,timeoutStatus); |
|
ahrs.get_NavEKF3().getFilterStatus(0,solutionStatus); |
|
ahrs.get_NavEKF3().getFilterGpsStatus(0,gpsStatus); |
|
float tiltError; |
|
ahrs.get_NavEKF3().getTiltError(0,tiltError); |
|
uint8_t primaryIndex = ahrs.get_NavEKF3().getPrimaryCoreIndex(); |
|
struct log_NKF4 pkt4 = { |
|
LOG_PACKET_HEADER_INIT(LOG_XKF4_MSG), |
|
time_us : time_us, |
|
sqrtvarV : (int16_t)(100*velVar), |
|
sqrtvarP : (int16_t)(100*posVar), |
|
sqrtvarH : (int16_t)(100*hgtVar), |
|
sqrtvarM : (int16_t)(100*tempVar), |
|
sqrtvarVT : (int16_t)(100*tasVar), |
|
tiltErr : (float)tiltError, |
|
offsetNorth : (int8_t)(offset.x), |
|
offsetEast : (int8_t)(offset.y), |
|
faults : (uint16_t)(faultStatus), |
|
timeouts : (uint8_t)(timeoutStatus), |
|
solution : (uint16_t)(solutionStatus.value), |
|
gps : (uint16_t)(gpsStatus.value), |
|
primary : (int8_t)primaryIndex |
|
}; |
|
WriteBlock(&pkt4, sizeof(pkt4)); |
|
|
|
// Write fifth EKF packet - take data from the primary instance |
|
float normInnov=0; // normalised innovation variance ratio for optical flow observations fused by the main nav filter |
|
float gndOffset=0; // estimated vertical position of the terrain relative to the nav filter zero datum |
|
float flowInnovX=0, flowInnovY=0; // optical flow LOS rate vector innovations from the main nav filter |
|
float auxFlowInnov=0; // optical flow LOS rate innovation from terrain offset estimator |
|
float HAGL=0; // height above ground level |
|
float rngInnov=0; // range finder innovations |
|
float range=0; // measured range |
|
float gndOffsetErr=0; // filter ground offset state error |
|
Vector3f predictorErrors; // output predictor angle, velocity and position tracking error |
|
ahrs.get_NavEKF3().getFlowDebug(-1,normInnov, gndOffset, flowInnovX, flowInnovY, auxFlowInnov, HAGL, rngInnov, range, gndOffsetErr); |
|
ahrs.get_NavEKF3().getOutputTrackingError(-1,predictorErrors); |
|
struct log_NKF5 pkt5 = { |
|
LOG_PACKET_HEADER_INIT(LOG_XKF5_MSG), |
|
time_us : time_us, |
|
normInnov : (uint8_t)(MIN(100*normInnov,255)), |
|
FIX : (int16_t)(1000*flowInnovX), |
|
FIY : (int16_t)(1000*flowInnovY), |
|
AFI : (int16_t)(1000*auxFlowInnov), |
|
HAGL : (int16_t)(100*HAGL), |
|
offset : (int16_t)(100*gndOffset), |
|
RI : (int16_t)(100*rngInnov), |
|
meaRng : (uint16_t)(100*range), |
|
errHAGL : (uint16_t)(100*gndOffsetErr), |
|
angErr : (float)predictorErrors.x, |
|
velErr : (float)predictorErrors.y, |
|
posErr : (float)predictorErrors.z |
|
}; |
|
WriteBlock(&pkt5, sizeof(pkt5)); |
|
|
|
// log quaternion |
|
Quaternion quat; |
|
ahrs.get_NavEKF3().getQuaternion(0, quat); |
|
struct log_Quaternion pktq1 = { |
|
LOG_PACKET_HEADER_INIT(LOG_XKQ1_MSG), |
|
time_us : time_us, |
|
q1 : quat.q1, |
|
q2 : quat.q2, |
|
q3 : quat.q3, |
|
q4 : quat.q4 |
|
}; |
|
WriteBlock(&pktq1, sizeof(pktq1)); |
|
|
|
// log innovations for the second IMU if enabled |
|
if (ahrs.get_NavEKF3().activeCores() >= 2) { |
|
// Write 6th EKF packet |
|
ahrs.get_NavEKF3().getEulerAngles(1,euler); |
|
ahrs.get_NavEKF3().getVelNED(1,velNED); |
|
ahrs.get_NavEKF3().getPosNE(1,posNE); |
|
ahrs.get_NavEKF3().getPosD(1,posD); |
|
ahrs.get_NavEKF3().getGyroBias(1,gyroBias); |
|
posDownDeriv = ahrs.get_NavEKF3().getPosDownDerivative(1); |
|
if (!ahrs.get_NavEKF3().getOriginLLH(1,originLLH)) { |
|
originLLH.alt = 0; |
|
} |
|
struct log_EKF1 pkt6 = { |
|
LOG_PACKET_HEADER_INIT(LOG_XKF6_MSG), |
|
time_us : time_us, |
|
roll : (int16_t)(100*degrees(euler.x)), // roll angle (centi-deg, displayed as deg due to format string) |
|
pitch : (int16_t)(100*degrees(euler.y)), // pitch angle (centi-deg, displayed as deg due to format string) |
|
yaw : (uint16_t)wrap_360_cd(100*degrees(euler.z)), // yaw angle (centi-deg, displayed as deg due to format string) |
|
velN : (float)(velNED.x), // velocity North (m/s) |
|
velE : (float)(velNED.y), // velocity East (m/s) |
|
velD : (float)(velNED.z), // velocity Down (m/s) |
|
posD_dot : (float)(posDownDeriv), // first derivative of down position |
|
posN : (float)(posNE.x), // metres North |
|
posE : (float)(posNE.y), // metres East |
|
posD : (float)(posD), // metres Down |
|
gyrX : (int16_t)(100*degrees(gyroBias.x)), // cd/sec, displayed as deg/sec due to format string |
|
gyrY : (int16_t)(100*degrees(gyroBias.y)), // cd/sec, displayed as deg/sec due to format string |
|
gyrZ : (int16_t)(100*degrees(gyroBias.z)), // cd/sec, displayed as deg/sec due to format string |
|
originHgt : originLLH.alt // WGS-84 altitude of EKF origin in cm |
|
}; |
|
WriteBlock(&pkt6, sizeof(pkt6)); |
|
|
|
// Write 7th EKF packet |
|
ahrs.get_NavEKF3().getAccelBias(1,accelBias); |
|
ahrs.get_NavEKF3().getWind(1,wind); |
|
ahrs.get_NavEKF3().getMagNED(1,magNED); |
|
ahrs.get_NavEKF3().getMagXYZ(1,magXYZ); |
|
magIndex = ahrs.get_NavEKF3().getActiveMag(1); |
|
struct log_NKF2a pkt7 = { |
|
LOG_PACKET_HEADER_INIT(LOG_XKF7_MSG), |
|
time_us : time_us, |
|
accBiasX : (int16_t)(100*accelBias.x), |
|
accBiasY : (int16_t)(100*accelBias.y), |
|
accBiasZ : (int16_t)(100*accelBias.z), |
|
windN : (int16_t)(100*wind.x), |
|
windE : (int16_t)(100*wind.y), |
|
magN : (int16_t)(magNED.x), |
|
magE : (int16_t)(magNED.y), |
|
magD : (int16_t)(magNED.z), |
|
magX : (int16_t)(magXYZ.x), |
|
magY : (int16_t)(magXYZ.y), |
|
magZ : (int16_t)(magXYZ.z), |
|
index : (uint8_t)(magIndex) |
|
}; |
|
WriteBlock(&pkt7, sizeof(pkt7)); |
|
|
|
// Write 8th EKF packet |
|
ahrs.get_NavEKF3().getInnovations(1,velInnov, posInnov, magInnov, tasInnov, yawInnov); |
|
struct log_NKF3 pkt8 = { |
|
LOG_PACKET_HEADER_INIT(LOG_XKF8_MSG), |
|
time_us : time_us, |
|
innovVN : (int16_t)(100*velInnov.x), |
|
innovVE : (int16_t)(100*velInnov.y), |
|
innovVD : (int16_t)(100*velInnov.z), |
|
innovPN : (int16_t)(100*posInnov.x), |
|
innovPE : (int16_t)(100*posInnov.y), |
|
innovPD : (int16_t)(100*posInnov.z), |
|
innovMX : (int16_t)(magInnov.x), |
|
innovMY : (int16_t)(magInnov.y), |
|
innovMZ : (int16_t)(magInnov.z), |
|
innovYaw : (int16_t)(100*degrees(yawInnov)), |
|
innovVT : (int16_t)(100*tasInnov) |
|
}; |
|
WriteBlock(&pkt8, sizeof(pkt8)); |
|
|
|
// Write 9th EKF packet |
|
ahrs.get_NavEKF3().getVariances(1,velVar, posVar, hgtVar, magVar, tasVar, offset); |
|
tempVar = fmaxf(fmaxf(magVar.x,magVar.y),magVar.z); |
|
ahrs.get_NavEKF3().getFilterFaults(1,faultStatus); |
|
ahrs.get_NavEKF3().getFilterTimeouts(1,timeoutStatus); |
|
ahrs.get_NavEKF3().getFilterStatus(1,solutionStatus); |
|
ahrs.get_NavEKF3().getFilterGpsStatus(1,gpsStatus); |
|
ahrs.get_NavEKF3().getTiltError(1,tiltError); |
|
struct log_NKF4 pkt9 = { |
|
LOG_PACKET_HEADER_INIT(LOG_XKF9_MSG), |
|
time_us : time_us, |
|
sqrtvarV : (int16_t)(100*velVar), |
|
sqrtvarP : (int16_t)(100*posVar), |
|
sqrtvarH : (int16_t)(100*hgtVar), |
|
sqrtvarM : (int16_t)(100*tempVar), |
|
sqrtvarVT : (int16_t)(100*tasVar), |
|
tiltErr : (float)tiltError, |
|
offsetNorth : (int8_t)(offset.x), |
|
offsetEast : (int8_t)(offset.y), |
|
faults : (uint16_t)(faultStatus), |
|
timeouts : (uint8_t)(timeoutStatus), |
|
solution : (uint16_t)(solutionStatus.value), |
|
gps : (uint16_t)(gpsStatus.value), |
|
primary : (int8_t)primaryIndex |
|
}; |
|
WriteBlock(&pkt9, sizeof(pkt9)); |
|
|
|
// log quaternion |
|
ahrs.get_NavEKF3().getQuaternion(1, quat); |
|
struct log_Quaternion pktq2 = { |
|
LOG_PACKET_HEADER_INIT(LOG_XKQ2_MSG), |
|
time_us : time_us, |
|
q1 : quat.q1, |
|
q2 : quat.q2, |
|
q3 : quat.q3, |
|
q4 : quat.q4 |
|
}; |
|
WriteBlock(&pktq2, sizeof(pktq2)); |
|
} |
|
// write range beacon fusion debug packet if the range value is non-zero |
|
uint8_t ID; |
|
float rng; |
|
float innovVar; |
|
float innov; |
|
float testRatio; |
|
Vector3f beaconPosNED; |
|
float bcnPosOffsetHigh; |
|
float bcnPosOffsetLow; |
|
Vector3f posNED; |
|
if (ahrs.get_NavEKF3().getRangeBeaconDebug(-1, ID, rng, innov, innovVar, testRatio, beaconPosNED, bcnPosOffsetHigh, bcnPosOffsetLow, posNED)) { |
|
if (rng > 0.0f) { |
|
struct log_RngBcnDebug pkt10 = { |
|
LOG_PACKET_HEADER_INIT(LOG_XKF10_MSG), |
|
time_us : time_us, |
|
ID : (uint8_t)ID, |
|
rng : (int16_t)(100*rng), |
|
innov : (int16_t)(100*innov), |
|
sqrtInnovVar : (uint16_t)(100*sqrtf(innovVar)), |
|
testRatio : (uint16_t)(100*constrain_float(testRatio,0.0f,650.0f)), |
|
beaconPosN : (int16_t)(100*beaconPosNED.x), |
|
beaconPosE : (int16_t)(100*beaconPosNED.y), |
|
beaconPosD : (int16_t)(100*beaconPosNED.z), |
|
offsetHigh : (int16_t)(100*bcnPosOffsetHigh), |
|
offsetLow : (int16_t)(100*bcnPosOffsetLow), |
|
posN : (int16_t)(100*posNED.x), |
|
posE : (int16_t)(100*posNED.y), |
|
posD : (int16_t)(100*posNED.z) |
|
|
|
}; |
|
WriteBlock(&pkt10, sizeof(pkt10)); |
|
} |
|
} |
|
// write debug data for body frame odometry fusion |
|
Vector3f velBodyInnov,velBodyInnovVar; |
|
static uint32_t lastUpdateTime_ms = 0; |
|
uint32_t updateTime_ms = ahrs.get_NavEKF3().getBodyFrameOdomDebug(-1, velBodyInnov, velBodyInnovVar); |
|
if (updateTime_ms > lastUpdateTime_ms) { |
|
struct log_ekfBodyOdomDebug pkt11 = { |
|
LOG_PACKET_HEADER_INIT(LOG_XKFD_MSG), |
|
time_us : time_us, |
|
velInnovX : velBodyInnov.x, |
|
velInnovY : velBodyInnov.y, |
|
velInnovZ : velBodyInnov.z, |
|
velInnovVarX : velBodyInnovVar.x, |
|
velInnovVarY : velBodyInnovVar.y, |
|
velInnovVarZ : velBodyInnovVar.z |
|
}; |
|
WriteBlock(&pkt11, sizeof(pkt11)); |
|
lastUpdateTime_ms = updateTime_ms; |
|
} |
|
|
|
// log state variances every 0.49s |
|
static uint32_t lastEkfStateVarLogTime_ms = 0; |
|
if (AP_HAL::millis() - lastEkfStateVarLogTime_ms > 490) { |
|
lastEkfStateVarLogTime_ms = AP_HAL::millis(); |
|
float stateVar[24]; |
|
ahrs.get_NavEKF3().getStateVariances(-1, stateVar); |
|
struct log_ekfStateVar pktv1 = { |
|
LOG_PACKET_HEADER_INIT(LOG_XKV1_MSG), |
|
time_us : time_us, |
|
v00 : stateVar[0], |
|
v01 : stateVar[1], |
|
v02 : stateVar[2], |
|
v03 : stateVar[3], |
|
v04 : stateVar[4], |
|
v05 : stateVar[5], |
|
v06 : stateVar[6], |
|
v07 : stateVar[7], |
|
v08 : stateVar[8], |
|
v09 : stateVar[9], |
|
v10 : stateVar[10], |
|
v11 : stateVar[11] |
|
}; |
|
WriteBlock(&pktv1, sizeof(pktv1)); |
|
struct log_ekfStateVar pktv2 = { |
|
LOG_PACKET_HEADER_INIT(LOG_XKV2_MSG), |
|
time_us : time_us, |
|
v00 : stateVar[12], |
|
v01 : stateVar[13], |
|
v02 : stateVar[14], |
|
v03 : stateVar[15], |
|
v04 : stateVar[16], |
|
v05 : stateVar[17], |
|
v06 : stateVar[18], |
|
v07 : stateVar[19], |
|
v08 : stateVar[20], |
|
v09 : stateVar[21], |
|
v10 : stateVar[22], |
|
v11 : stateVar[23] |
|
}; |
|
WriteBlock(&pktv2, sizeof(pktv2)); |
|
} |
|
|
|
|
|
// log EKF timing statistics every 5s |
|
static uint32_t lastTimingLogTime_ms = 0; |
|
if (AP_HAL::millis() - lastTimingLogTime_ms > 5000) { |
|
lastTimingLogTime_ms = AP_HAL::millis(); |
|
struct ekf_timing timing; |
|
for (uint8_t i=0; i<ahrs.get_NavEKF3().activeCores(); i++) { |
|
ahrs.get_NavEKF3().getTimingStatistics(i, timing); |
|
Write_EKF_Timing(i==0?"XKT1":"XKT2", time_us, timing); |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
void AP_Logger::Write_Radio(const mavlink_radio_t &packet) |
|
{ |
|
struct log_Radio pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_RADIO_MSG), |
|
time_us : AP_HAL::micros64(), |
|
rssi : packet.rssi, |
|
remrssi : packet.remrssi, |
|
txbuf : packet.txbuf, |
|
noise : packet.noise, |
|
remnoise : packet.remnoise, |
|
rxerrors : packet.rxerrors, |
|
fixed : packet.fixed |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
// Write a Camera packet |
|
void AP_Logger::Write_CameraInfo(enum LogMessages msg, const AP_AHRS &ahrs, const Location ¤t_loc, uint64_t timestamp_us) |
|
{ |
|
int32_t altitude, altitude_rel, altitude_gps; |
|
if (current_loc.relative_alt) { |
|
altitude = current_loc.alt+ahrs.get_home().alt; |
|
altitude_rel = current_loc.alt; |
|
} else { |
|
altitude = current_loc.alt; |
|
altitude_rel = current_loc.alt - ahrs.get_home().alt; |
|
} |
|
const AP_GPS &gps = AP::gps(); |
|
if (gps.status() >= AP_GPS::GPS_OK_FIX_3D) { |
|
altitude_gps = gps.location().alt; |
|
} else { |
|
altitude_gps = 0; |
|
} |
|
|
|
struct log_Camera pkt = { |
|
LOG_PACKET_HEADER_INIT(static_cast<uint8_t>(msg)), |
|
time_us : timestamp_us?timestamp_us:AP_HAL::micros64(), |
|
gps_time : gps.time_week_ms(), |
|
gps_week : gps.time_week(), |
|
latitude : current_loc.lat, |
|
longitude : current_loc.lng, |
|
altitude : altitude, |
|
altitude_rel: altitude_rel, |
|
altitude_gps: altitude_gps, |
|
roll : (int16_t)ahrs.roll_sensor, |
|
pitch : (int16_t)ahrs.pitch_sensor, |
|
yaw : (uint16_t)ahrs.yaw_sensor |
|
}; |
|
WriteCriticalBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
// Write a Camera packet |
|
void AP_Logger::Write_Camera(const AP_AHRS &ahrs, const Location ¤t_loc, uint64_t timestamp_us) |
|
{ |
|
Write_CameraInfo(LOG_CAMERA_MSG, ahrs, current_loc, timestamp_us); |
|
} |
|
|
|
// Write a Trigger packet |
|
void AP_Logger::Write_Trigger(const AP_AHRS &ahrs, const Location ¤t_loc) |
|
{ |
|
Write_CameraInfo(LOG_TRIGGER_MSG, ahrs, current_loc, 0); |
|
} |
|
|
|
// Write an attitude packet |
|
void AP_Logger::Write_Attitude(AP_AHRS &ahrs, const Vector3f &targets) |
|
{ |
|
struct log_Attitude pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_ATTITUDE_MSG), |
|
time_us : AP_HAL::micros64(), |
|
control_roll : (int16_t)targets.x, |
|
roll : (int16_t)ahrs.roll_sensor, |
|
control_pitch : (int16_t)targets.y, |
|
pitch : (int16_t)ahrs.pitch_sensor, |
|
control_yaw : (uint16_t)wrap_360_cd(targets.z), |
|
yaw : (uint16_t)wrap_360_cd(ahrs.yaw_sensor), |
|
error_rp : (uint16_t)(ahrs.get_error_rp() * 100), |
|
error_yaw : (uint16_t)(ahrs.get_error_yaw() * 100) |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
// Write an attitude packet |
|
void AP_Logger::Write_AttitudeView(AP_AHRS_View &ahrs, const Vector3f &targets) |
|
{ |
|
struct log_Attitude pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_ATTITUDE_MSG), |
|
time_us : AP_HAL::micros64(), |
|
control_roll : (int16_t)targets.x, |
|
roll : (int16_t)ahrs.roll_sensor, |
|
control_pitch : (int16_t)targets.y, |
|
pitch : (int16_t)ahrs.pitch_sensor, |
|
control_yaw : (uint16_t)wrap_360_cd(targets.z), |
|
yaw : (uint16_t)wrap_360_cd(ahrs.yaw_sensor), |
|
error_rp : (uint16_t)(ahrs.get_error_rp() * 100), |
|
error_yaw : (uint16_t)(ahrs.get_error_yaw() * 100) |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
void AP_Logger::Write_Current_instance(const uint64_t time_us, |
|
const uint8_t battery_instance, |
|
const enum LogMessages type, |
|
const enum LogMessages celltype) |
|
{ |
|
AP_BattMonitor &battery = AP::battery(); |
|
float temp; |
|
bool has_temp = battery.get_temperature(temp, battery_instance); |
|
struct log_Current pkt = { |
|
LOG_PACKET_HEADER_INIT(type), |
|
time_us : time_us, |
|
voltage : battery.voltage(battery_instance), |
|
voltage_resting : battery.voltage_resting_estimate(battery_instance), |
|
current_amps : battery.current_amps(battery_instance), |
|
current_total : battery.consumed_mah(battery_instance), |
|
consumed_wh : battery.consumed_wh(battery_instance), |
|
temperature : (int16_t)(has_temp ? (temp * 100) : 0), |
|
resistance : battery.get_resistance(battery_instance) |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
|
|
// individual cell voltages |
|
if (battery.has_cell_voltages(battery_instance)) { |
|
const AP_BattMonitor::cells &cells = battery.get_cell_voltages(battery_instance); |
|
struct log_Current_Cells cell_pkt = { |
|
LOG_PACKET_HEADER_INIT(celltype), |
|
time_us : time_us, |
|
voltage : battery.voltage(battery_instance) |
|
}; |
|
for (uint8_t i = 0; i < ARRAY_SIZE(cells.cells); i++) { |
|
cell_pkt.cell_voltages[i] = cells.cells[i] + 1; |
|
} |
|
WriteBlock(&cell_pkt, sizeof(cell_pkt)); |
|
|
|
// check battery structure can hold all cells |
|
static_assert(ARRAY_SIZE(cells.cells) == (sizeof(cell_pkt.cell_voltages) / sizeof(cell_pkt.cell_voltages[0])), |
|
"Battery cell number doesn't match in library and log structure"); |
|
} |
|
} |
|
|
|
// Write an Current data packet |
|
void AP_Logger::Write_Current() |
|
{ |
|
// Big painful assert to ensure that logging won't produce suprising results when the |
|
// number of battery monitors changes, does have the built in expectation that |
|
// LOG_COMPASS_MSG follows the last LOG_CURRENT_CELLSx_MSG |
|
static_assert(((LOG_CURRENT_MSG + AP_BATT_MONITOR_MAX_INSTANCES) == LOG_CURRENT_CELLS_MSG) && |
|
((LOG_CURRENT_CELLS_MSG + AP_BATT_MONITOR_MAX_INSTANCES) == LOG_COMPASS_MSG), |
|
"The number of batt monitors has changed without updating the log " |
|
"table entries. Please add new enums for LOG_CURRENT_MSG, LOG_CURRENT_CELLS_MSG " |
|
"directly following the highest indexed fields. Don't forget to update the log " |
|
"description table as well."); |
|
|
|
const uint64_t time_us = AP_HAL::micros64(); |
|
const uint8_t num_instances = AP::battery().num_instances(); |
|
for (uint8_t i = 0; i < num_instances; i++) { |
|
Write_Current_instance(time_us, |
|
i, |
|
(LogMessages)((uint8_t)LOG_CURRENT_MSG + i), |
|
(LogMessages)((uint8_t)LOG_CURRENT_CELLS_MSG + i)); |
|
} |
|
} |
|
|
|
void AP_Logger::Write_Compass_instance(const uint64_t time_us, const uint8_t mag_instance, const enum LogMessages type) |
|
{ |
|
const Compass &compass = AP::compass(); |
|
|
|
const Vector3f &mag_field = compass.get_field(mag_instance); |
|
const Vector3f &mag_offsets = compass.get_offsets(mag_instance); |
|
const Vector3f &mag_motor_offsets = compass.get_motor_offsets(mag_instance); |
|
struct log_Compass pkt = { |
|
LOG_PACKET_HEADER_INIT(type), |
|
time_us : time_us, |
|
mag_x : (int16_t)mag_field.x, |
|
mag_y : (int16_t)mag_field.y, |
|
mag_z : (int16_t)mag_field.z, |
|
offset_x : (int16_t)mag_offsets.x, |
|
offset_y : (int16_t)mag_offsets.y, |
|
offset_z : (int16_t)mag_offsets.z, |
|
motor_offset_x : (int16_t)mag_motor_offsets.x, |
|
motor_offset_y : (int16_t)mag_motor_offsets.y, |
|
motor_offset_z : (int16_t)mag_motor_offsets.z, |
|
health : (uint8_t)compass.healthy(mag_instance), |
|
SUS : compass.last_update_usec(mag_instance) |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
// Write a Compass packet |
|
void AP_Logger::Write_Compass(uint64_t time_us) |
|
{ |
|
if (time_us == 0) { |
|
time_us = AP_HAL::micros64(); |
|
} |
|
const Compass &compass = AP::compass(); |
|
if (compass.get_count() > 0) { |
|
Write_Compass_instance(time_us, 0, LOG_COMPASS_MSG); |
|
} |
|
|
|
if (compass.get_count() > 1) { |
|
Write_Compass_instance(time_us, 1, LOG_COMPASS2_MSG); |
|
} |
|
|
|
if (compass.get_count() > 2) { |
|
Write_Compass_instance(time_us, 2, LOG_COMPASS3_MSG); |
|
} |
|
} |
|
|
|
// Write a mode packet. |
|
bool AP_Logger_Backend::Write_Mode(uint8_t mode, uint8_t reason) |
|
{ |
|
struct log_Mode pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_MODE_MSG), |
|
time_us : AP_HAL::micros64(), |
|
mode : mode, |
|
mode_num : mode, |
|
mode_reason : reason |
|
}; |
|
return WriteCriticalBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
// Write ESC status messages |
|
// id starts from 0 |
|
// rpm is eRPM (rpm * 100) |
|
// voltage is in centi-volts |
|
// current is in centi-amps |
|
// temperature is in centi-degrees Celsius |
|
// current_tot is in centi-amp hours |
|
void AP_Logger::Write_ESC(uint8_t id, uint64_t time_us, int32_t rpm, uint16_t voltage, uint16_t current, int16_t temperature, uint16_t current_tot) |
|
{ |
|
// sanity check id |
|
if (id >= 8) { |
|
return; |
|
} |
|
struct log_Esc pkt = { |
|
LOG_PACKET_HEADER_INIT(uint8_t(LOG_ESC1_MSG+id)), |
|
time_us : time_us, |
|
rpm : rpm, |
|
voltage : voltage, |
|
current : current, |
|
temperature : temperature, |
|
current_tot : current_tot |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
// Write a Yaw PID packet |
|
void AP_Logger::Write_PID(uint8_t msg_type, const PID_Info &info) |
|
{ |
|
struct log_PID pkt = { |
|
LOG_PACKET_HEADER_INIT(msg_type), |
|
time_us : AP_HAL::micros64(), |
|
desired : info.desired, |
|
actual : info.actual, |
|
P : info.P, |
|
I : info.I, |
|
D : info.D, |
|
FF : info.FF |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
void AP_Logger::Write_Origin(uint8_t origin_type, const Location &loc) |
|
{ |
|
uint64_t time_us = AP_HAL::micros64(); |
|
struct log_ORGN pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_ORGN_MSG), |
|
time_us : time_us, |
|
origin_type : origin_type, |
|
latitude : loc.lat, |
|
longitude : loc.lng, |
|
altitude : loc.alt |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
void AP_Logger::Write_RPM(const AP_RPM &rpm_sensor) |
|
{ |
|
struct log_RPM pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_RPM_MSG), |
|
time_us : AP_HAL::micros64(), |
|
rpm1 : rpm_sensor.get_rpm(0), |
|
rpm2 : rpm_sensor.get_rpm(1) |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
// Write a rate packet |
|
void AP_Logger::Write_Rate(const AP_AHRS_View *ahrs, |
|
const AP_Motors &motors, |
|
const AC_AttitudeControl &attitude_control, |
|
const AC_PosControl &pos_control) |
|
{ |
|
const Vector3f &rate_targets = attitude_control.rate_bf_targets(); |
|
const Vector3f &accel_target = pos_control.get_accel_target(); |
|
struct log_Rate pkt_rate = { |
|
LOG_PACKET_HEADER_INIT(LOG_RATE_MSG), |
|
time_us : AP_HAL::micros64(), |
|
control_roll : degrees(rate_targets.x), |
|
roll : degrees(ahrs->get_gyro().x), |
|
roll_out : motors.get_roll(), |
|
control_pitch : degrees(rate_targets.y), |
|
pitch : degrees(ahrs->get_gyro().y), |
|
pitch_out : motors.get_pitch(), |
|
control_yaw : degrees(rate_targets.z), |
|
yaw : degrees(ahrs->get_gyro().z), |
|
yaw_out : motors.get_yaw(), |
|
control_accel : (float)accel_target.z, |
|
accel : (float)(-(ahrs->get_accel_ef_blended().z + GRAVITY_MSS) * 100.0f), |
|
accel_out : motors.get_throttle() |
|
}; |
|
WriteBlock(&pkt_rate, sizeof(pkt_rate)); |
|
} |
|
|
|
// Write visual odometry sensor data |
|
void AP_Logger::Write_VisualOdom(float time_delta, const Vector3f &angle_delta, const Vector3f &position_delta, float confidence) |
|
{ |
|
struct log_VisualOdom pkt_visualodom = { |
|
LOG_PACKET_HEADER_INIT(LOG_VISUALODOM_MSG), |
|
time_us : AP_HAL::micros64(), |
|
time_delta : time_delta, |
|
angle_delta_x : angle_delta.x, |
|
angle_delta_y : angle_delta.y, |
|
angle_delta_z : angle_delta.z, |
|
position_delta_x : position_delta.x, |
|
position_delta_y : position_delta.y, |
|
position_delta_z : position_delta.z, |
|
confidence : confidence |
|
}; |
|
WriteBlock(&pkt_visualodom, sizeof(log_VisualOdom)); |
|
} |
|
|
|
// Write AOA and SSA |
|
void AP_Logger::Write_AOA_SSA(AP_AHRS &ahrs) |
|
{ |
|
struct log_AOA_SSA aoa_ssa = { |
|
LOG_PACKET_HEADER_INIT(LOG_AOA_SSA_MSG), |
|
time_us : AP_HAL::micros64(), |
|
AOA : ahrs.getAOA(), |
|
SSA : ahrs.getSSA() |
|
}; |
|
|
|
WriteBlock(&aoa_ssa, sizeof(aoa_ssa)); |
|
} |
|
|
|
// Write beacon sensor (position) data |
|
void AP_Logger::Write_Beacon(AP_Beacon &beacon) |
|
{ |
|
if (!beacon.enabled()) { |
|
return; |
|
} |
|
// position |
|
Vector3f pos; |
|
float accuracy = 0.0f; |
|
beacon.get_vehicle_position_ned(pos, accuracy); |
|
|
|
struct log_Beacon pkt_beacon = { |
|
LOG_PACKET_HEADER_INIT(LOG_BEACON_MSG), |
|
time_us : AP_HAL::micros64(), |
|
health : (uint8_t)beacon.healthy(), |
|
count : (uint8_t)beacon.count(), |
|
dist0 : beacon.beacon_distance(0), |
|
dist1 : beacon.beacon_distance(1), |
|
dist2 : beacon.beacon_distance(2), |
|
dist3 : beacon.beacon_distance(3), |
|
posx : pos.x, |
|
posy : pos.y, |
|
posz : pos.z |
|
}; |
|
WriteBlock(&pkt_beacon, sizeof(pkt_beacon)); |
|
} |
|
|
|
// Write proximity sensor distances |
|
void AP_Logger::Write_Proximity(AP_Proximity &proximity) |
|
{ |
|
// exit immediately if not enabled |
|
if (proximity.get_status() == AP_Proximity::Proximity_NotConnected) { |
|
return; |
|
} |
|
|
|
AP_Proximity::Proximity_Distance_Array dist_array {}; |
|
proximity.get_horizontal_distances(dist_array); |
|
|
|
float dist_up; |
|
if (!proximity.get_upward_distance(dist_up)) { |
|
dist_up = 0.0f; |
|
} |
|
|
|
float close_ang = 0.0f, close_dist = 0.0f; |
|
proximity.get_closest_object(close_ang, close_dist); |
|
|
|
struct log_Proximity pkt_proximity = { |
|
LOG_PACKET_HEADER_INIT(LOG_PROXIMITY_MSG), |
|
time_us : AP_HAL::micros64(), |
|
health : (uint8_t)proximity.get_status(), |
|
dist0 : dist_array.distance[0], |
|
dist45 : dist_array.distance[1], |
|
dist90 : dist_array.distance[2], |
|
dist135 : dist_array.distance[3], |
|
dist180 : dist_array.distance[4], |
|
dist225 : dist_array.distance[5], |
|
dist270 : dist_array.distance[6], |
|
dist315 : dist_array.distance[7], |
|
distup : dist_up, |
|
closest_angle : close_ang, |
|
closest_dist : close_dist |
|
}; |
|
WriteBlock(&pkt_proximity, sizeof(pkt_proximity)); |
|
} |
|
|
|
void AP_Logger::Write_SRTL(bool active, uint16_t num_points, uint16_t max_points, uint8_t action, const Vector3f& breadcrumb) |
|
{ |
|
struct log_SRTL pkt_srtl = { |
|
LOG_PACKET_HEADER_INIT(LOG_SRTL_MSG), |
|
time_us : AP_HAL::micros64(), |
|
active : active, |
|
num_points : num_points, |
|
max_points : max_points, |
|
action : action, |
|
N : breadcrumb.x, |
|
E : breadcrumb.y, |
|
D : breadcrumb.z |
|
}; |
|
WriteBlock(&pkt_srtl, sizeof(pkt_srtl)); |
|
}
|
|
|