You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
239 lines
6.4 KiB
239 lines
6.4 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
#if FRAME_CONFIG == HEXA_FRAME |
|
|
|
static void init_motors_out() |
|
{ |
|
#if INSTANT_PWM == 0 |
|
APM_RC.SetFastOutputChannels( _BV(MOT_1) | _BV(MOT_2) | _BV(MOT_3) | _BV(MOT_4) |
|
| _BV(MOT_5) | _BV(MOT_6) ); |
|
#endif |
|
} |
|
|
|
static void output_motors_armed() |
|
{ |
|
int roll_out, pitch_out; |
|
int out_min = g.rc_3.radio_min; |
|
int out_max = g.rc_3.radio_max; |
|
|
|
// Throttle is 0 to 1000 only |
|
g.rc_3.servo_out = constrain(g.rc_3.servo_out, 0, MAXIMUM_THROTTLE); |
|
|
|
if(g.rc_3.servo_out > 0) |
|
out_min = g.rc_3.radio_min + MINIMUM_THROTTLE; |
|
|
|
g.rc_1.calc_pwm(); |
|
g.rc_2.calc_pwm(); |
|
g.rc_3.calc_pwm(); |
|
g.rc_4.calc_pwm(); |
|
|
|
if(g.frame_orientation == X_FRAME){ |
|
roll_out = g.rc_1.pwm_out / 2; |
|
pitch_out = (float)g.rc_2.pwm_out * .866; |
|
|
|
//left side |
|
motor_out[MOT_2] = g.rc_3.radio_out + g.rc_1.pwm_out; // CCW Middle |
|
motor_out[MOT_3] = g.rc_3.radio_out + roll_out + pitch_out; // CW Front |
|
motor_out[MOT_6] = g.rc_3.radio_out + roll_out - pitch_out; // CW Back |
|
|
|
//right side |
|
motor_out[MOT_1] = g.rc_3.radio_out - g.rc_1.pwm_out; // CW Middle |
|
motor_out[MOT_5] = g.rc_3.radio_out - roll_out + pitch_out; // CCW Front |
|
motor_out[MOT_4] = g.rc_3.radio_out - roll_out - pitch_out; // CCW Back |
|
|
|
}else{ |
|
roll_out = (float)g.rc_1.pwm_out * .866; |
|
pitch_out = g.rc_2.pwm_out / 2; |
|
|
|
//Front side |
|
motor_out[MOT_1] = g.rc_3.radio_out + g.rc_2.pwm_out; // CW FRONT |
|
motor_out[MOT_5] = g.rc_3.radio_out + roll_out + pitch_out; // CCW FRONT LEFT |
|
motor_out[MOT_4] = g.rc_3.radio_out - roll_out + pitch_out; // CCW FRONT RIGHT |
|
|
|
//Back side |
|
motor_out[MOT_2] = g.rc_3.radio_out - g.rc_2.pwm_out; // CCW BACK |
|
motor_out[MOT_3] = g.rc_3.radio_out + roll_out - pitch_out; // CW, BACK LEFT |
|
motor_out[MOT_6] = g.rc_3.radio_out - roll_out - pitch_out; // CW BACK RIGHT |
|
} |
|
|
|
// Yaw |
|
motor_out[MOT_2] += g.rc_4.pwm_out; // CCW |
|
motor_out[MOT_5] += g.rc_4.pwm_out; // CCW |
|
motor_out[MOT_4] += g.rc_4.pwm_out; // CCW |
|
|
|
motor_out[MOT_3] -= g.rc_4.pwm_out; // CW |
|
motor_out[MOT_1] -= g.rc_4.pwm_out; // CW |
|
motor_out[MOT_6] -= g.rc_4.pwm_out; // CW |
|
|
|
|
|
// Tridge's stability patch |
|
for (int m = 0; m <= 6; m++) { |
|
int c = ch_of_mot(m); |
|
int c_opp = ch_of_mot(m^1); // m^1 is the opposite motor. c_opp is channel of opposite motor. |
|
if (motor_out[c] > out_max) { |
|
motor_out[c_opp] -= motor_out[c] - out_max; |
|
motor_out[c] = out_max; |
|
} |
|
} |
|
|
|
// limit output so motors don't stop |
|
motor_out[MOT_1] = max(motor_out[MOT_1], out_min); |
|
motor_out[MOT_2] = max(motor_out[MOT_2], out_min); |
|
motor_out[MOT_3] = max(motor_out[MOT_3], out_min); |
|
motor_out[MOT_4] = max(motor_out[MOT_4], out_min); |
|
motor_out[MOT_5] = max(motor_out[MOT_5], out_min); |
|
motor_out[MOT_6] = max(motor_out[MOT_6], out_min); |
|
|
|
#if CUT_MOTORS == ENABLED |
|
// if we are not sending a throttle output, we cut the motors |
|
if(g.rc_3.servo_out == 0){ |
|
motor_out[MOT_1] = g.rc_3.radio_min; |
|
motor_out[MOT_2] = g.rc_3.radio_min; |
|
motor_out[MOT_3] = g.rc_3.radio_min; |
|
motor_out[MOT_4] = g.rc_3.radio_min; |
|
motor_out[MOT_5] = g.rc_3.radio_min; |
|
motor_out[MOT_6] = g.rc_3.radio_min; |
|
} |
|
#endif |
|
|
|
// this filter slows the acceleration of motors vs the deceleration |
|
// Idea by Denny Rowland to help with his Yaw issue |
|
for(int8_t m = 0; m <= 6; m++ ) { |
|
int c = ch_of_mot(m); |
|
if(motor_filtered[c] < motor_out[c]){ |
|
motor_filtered[c] = (motor_out[c] + motor_filtered[c]) / 2; |
|
}else{ |
|
// don't filter |
|
motor_filtered[c] = motor_out[c]; |
|
} |
|
} |
|
|
|
APM_RC.OutputCh(MOT_1, motor_filtered[MOT_1]); |
|
APM_RC.OutputCh(MOT_2, motor_filtered[MOT_2]); |
|
APM_RC.OutputCh(MOT_3, motor_filtered[MOT_3]); |
|
APM_RC.OutputCh(MOT_4, motor_filtered[MOT_4]); |
|
APM_RC.OutputCh(MOT_5, motor_filtered[MOT_5]); |
|
APM_RC.OutputCh(MOT_6, motor_filtered[MOT_6]); |
|
|
|
#if INSTANT_PWM == 1 |
|
// InstantPWM |
|
APM_RC.Force_Out0_Out1(); |
|
APM_RC.Force_Out2_Out3(); |
|
APM_RC.Force_Out6_Out7(); |
|
#endif |
|
|
|
} |
|
|
|
static void output_motors_disarmed() |
|
{ |
|
if(g.rc_3.control_in > 0){ |
|
// we have pushed up the throttle |
|
// remove safety |
|
motor_auto_armed = true; |
|
} |
|
|
|
// fill the motor_out[] array for HIL use |
|
for (unsigned char i = 0; i < 8; i++) { |
|
motor_out[i] = g.rc_3.radio_min; |
|
} |
|
|
|
// Send commands to motors |
|
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min); |
|
APM_RC.OutputCh(MOT_2, g.rc_3.radio_min); |
|
APM_RC.OutputCh(MOT_3, g.rc_3.radio_min); |
|
APM_RC.OutputCh(MOT_4, g.rc_3.radio_min); |
|
APM_RC.OutputCh(MOT_5, g.rc_3.radio_min); |
|
APM_RC.OutputCh(MOT_6, g.rc_3.radio_min); |
|
} |
|
|
|
static void output_motor_test() |
|
{ |
|
motor_out[MOT_1] = g.rc_3.radio_min; |
|
motor_out[MOT_2] = g.rc_3.radio_min; |
|
motor_out[MOT_3] = g.rc_3.radio_min; |
|
motor_out[MOT_4] = g.rc_3.radio_min; |
|
motor_out[MOT_5] = g.rc_3.radio_min; |
|
motor_out[MOT_6] = g.rc_3.radio_min; |
|
|
|
|
|
if(g.frame_orientation == X_FRAME){ |
|
// 31 |
|
// 24 |
|
if(g.rc_1.control_in > 3000){ // right |
|
motor_out[MOT_1] += 100; |
|
} |
|
|
|
if(g.rc_1.control_in < -3000){ // left |
|
motor_out[MOT_2] += 100; |
|
} |
|
|
|
if(g.rc_2.control_in > 3000){ // back |
|
motor_out[MOT_6] += 100; |
|
motor_out[MOT_4] += 100; |
|
} |
|
|
|
if(g.rc_2.control_in < -3000){ // front |
|
motor_out[MOT_5] += 100; |
|
motor_out[MOT_3] += 100; |
|
} |
|
|
|
}else{ |
|
// 3 |
|
// 2 1 |
|
// 4 |
|
if(g.rc_1.control_in > 3000){ // right |
|
motor_out[MOT_4] += 100; |
|
motor_out[MOT_6] += 100; |
|
} |
|
|
|
if(g.rc_1.control_in < -3000){ // left |
|
motor_out[MOT_5] += 100; |
|
motor_out[MOT_3] += 100; |
|
} |
|
|
|
if(g.rc_2.control_in > 3000){ // back |
|
motor_out[MOT_2] += 100; |
|
} |
|
|
|
if(g.rc_2.control_in < -3000){ // front |
|
motor_out[MOT_1] += 100; |
|
} |
|
|
|
} |
|
|
|
APM_RC.OutputCh(MOT_1, motor_out[MOT_1]); |
|
APM_RC.OutputCh(MOT_2, motor_out[MOT_2]); |
|
APM_RC.OutputCh(MOT_3, motor_out[MOT_3]); |
|
APM_RC.OutputCh(MOT_4, motor_out[MOT_4]); |
|
APM_RC.OutputCh(MOT_5, motor_out[MOT_5]); |
|
APM_RC.OutputCh(MOT_6, motor_out[MOT_6]); |
|
} |
|
|
|
/* |
|
APM_RC.OutputCh(MOT_2, g.rc_3.radio_min); |
|
APM_RC.OutputCh(MOT_3, g.rc_3.radio_min + 100); |
|
delay(1000); |
|
|
|
APM_RC.OutputCh(MOT_3, g.rc_3.radio_min); |
|
APM_RC.OutputCh(MOT_5, g.rc_3.radio_min + 100); |
|
delay(1000); |
|
|
|
APM_RC.OutputCh(MOT_5, g.rc_3.radio_min); |
|
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min + 100); |
|
delay(1000); |
|
|
|
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min); |
|
APM_RC.OutputCh(MOT_4, g.rc_3.radio_min + 100); |
|
delay(1000); |
|
|
|
APM_RC.OutputCh(MOT_4, g.rc_3.radio_min); |
|
APM_RC.OutputCh(MOT_6, g.rc_3.radio_min + 100); |
|
delay(1000); |
|
|
|
APM_RC.OutputCh(MOT_6, g.rc_3.radio_min); |
|
APM_RC.OutputCh(MOT_2, g.rc_3.radio_min + 100); |
|
delay(1000); |
|
} |
|
*/ |
|
|
|
#endif
|
|
|