You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1165 lines
42 KiB
1165 lines
42 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
static void |
|
get_stabilize_roll(int32_t target_angle) |
|
{ |
|
// angle error |
|
target_angle = wrap_180(target_angle - ahrs.roll_sensor); |
|
|
|
// limit the error we're feeding to the PID |
|
target_angle = constrain(target_angle, -4500, 4500); |
|
|
|
// convert to desired Rate: |
|
int32_t target_rate = g.pi_stabilize_roll.get_p(target_angle); |
|
|
|
int16_t i_stab; |
|
if(labs(ahrs.roll_sensor) < 500) { |
|
target_angle = constrain(target_angle, -500, 500); |
|
i_stab = g.pi_stabilize_roll.get_i(target_angle, G_Dt); |
|
}else{ |
|
i_stab = g.pi_stabilize_roll.get_integrator(); |
|
} |
|
|
|
// set targets for rate controller |
|
set_roll_rate_target(target_rate+i_stab, EARTH_FRAME); |
|
} |
|
|
|
static void |
|
get_stabilize_pitch(int32_t target_angle) |
|
{ |
|
// angle error |
|
target_angle = wrap_180(target_angle - ahrs.pitch_sensor); |
|
|
|
// limit the error we're feeding to the PID |
|
target_angle = constrain(target_angle, -4500, 4500); |
|
|
|
// convert to desired Rate: |
|
int32_t target_rate = g.pi_stabilize_pitch.get_p(target_angle); |
|
|
|
int16_t i_stab; |
|
if(labs(ahrs.pitch_sensor) < 500) { |
|
target_angle = constrain(target_angle, -500, 500); |
|
i_stab = g.pi_stabilize_pitch.get_i(target_angle, G_Dt); |
|
}else{ |
|
i_stab = g.pi_stabilize_pitch.get_integrator(); |
|
} |
|
|
|
// set targets for rate controller |
|
set_pitch_rate_target(target_rate + i_stab, EARTH_FRAME); |
|
} |
|
|
|
static void |
|
get_stabilize_yaw(int32_t target_angle) |
|
{ |
|
int32_t target_rate,i_term; |
|
int32_t angle_error; |
|
int32_t output = 0; |
|
|
|
// angle error |
|
angle_error = wrap_180(target_angle - ahrs.yaw_sensor); |
|
|
|
// limit the error we're feeding to the PID |
|
|
|
angle_error = constrain(angle_error, -4500, 4500); |
|
|
|
// convert angle error to desired Rate: |
|
target_rate = g.pi_stabilize_yaw.get_p(angle_error); |
|
i_term = g.pi_stabilize_yaw.get_i(angle_error, G_Dt); |
|
|
|
// do not use rate controllers for helicotpers with external gyros |
|
#if FRAME_CONFIG == HELI_FRAME |
|
if(motors.ext_gyro_enabled) { |
|
g.rc_4.servo_out = constrain((target_rate + i_term), -4500, 4500); |
|
} |
|
#endif |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash |
|
// log output if PID logging is on and we are tuning the yaw |
|
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_YAW_KP || g.radio_tuning == CH6_YAW_RATE_KP) ) { |
|
log_counter++; |
|
if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 |
|
log_counter = 0; |
|
Log_Write_PID(CH6_YAW_KP, angle_error, target_rate, i_term, 0, output, tuning_value); |
|
} |
|
} |
|
#endif |
|
|
|
// set targets for rate controller |
|
set_yaw_rate_target(target_rate+i_term, EARTH_FRAME); |
|
} |
|
|
|
static void |
|
get_acro_roll(int32_t target_rate) |
|
{ |
|
target_rate = target_rate * g.acro_p; |
|
|
|
// set targets for rate controller |
|
set_roll_rate_target(target_rate, BODY_FRAME); |
|
} |
|
|
|
static void |
|
get_acro_pitch(int32_t target_rate) |
|
{ |
|
target_rate = target_rate * g.acro_p; |
|
|
|
// set targets for rate controller |
|
set_pitch_rate_target(target_rate, BODY_FRAME); |
|
} |
|
|
|
static void |
|
get_acro_yaw(int32_t target_rate) |
|
{ |
|
target_rate = target_rate * g.acro_p; |
|
|
|
// set targets for rate controller |
|
set_yaw_rate_target(target_rate, BODY_FRAME); |
|
} |
|
|
|
// Roll with rate input and stabilized in the earth frame |
|
static void |
|
get_roll_rate_stabilized_ef(int32_t stick_angle) |
|
{ |
|
int32_t angle_error = 0; |
|
|
|
// convert the input to the desired roll rate |
|
int32_t target_rate = stick_angle * g.acro_p - (roll_axis * g.acro_balance_roll)/100; |
|
|
|
// convert the input to the desired roll rate |
|
roll_axis += target_rate * G_Dt; |
|
roll_axis = wrap_180(roll_axis); |
|
|
|
// ensure that we don't reach gimbal lock |
|
if (labs(roll_axis > 4500) && g.acro_trainer_enabled) { |
|
roll_axis = constrain(roll_axis, -4500, 4500); |
|
angle_error = wrap_180(roll_axis - ahrs.roll_sensor); |
|
} else { |
|
// angle error with maximum of +- max_angle_overshoot |
|
angle_error = wrap_180(roll_axis - ahrs.roll_sensor); |
|
angle_error = constrain(angle_error, -MAX_ROLL_OVERSHOOT, MAX_ROLL_OVERSHOOT); |
|
} |
|
|
|
if (motors.armed() == false || ((g.rc_3.control_in == 0) && !ap.failsafe)) { |
|
angle_error = 0; |
|
} |
|
|
|
// update roll_axis to be within max_angle_overshoot of our current heading |
|
roll_axis = wrap_180(angle_error + ahrs.roll_sensor); |
|
|
|
// set earth frame targets for rate controller |
|
|
|
// set earth frame targets for rate controller |
|
set_roll_rate_target(g.pi_stabilize_roll.get_p(angle_error) + target_rate, EARTH_FRAME); |
|
} |
|
|
|
// Pitch with rate input and stabilized in the earth frame |
|
static void |
|
get_pitch_rate_stabilized_ef(int32_t stick_angle) |
|
{ |
|
int32_t angle_error = 0; |
|
|
|
// convert the input to the desired pitch rate |
|
int32_t target_rate = stick_angle * g.acro_p - (pitch_axis * g.acro_balance_pitch)/100; |
|
|
|
// convert the input to the desired pitch rate |
|
pitch_axis += target_rate * G_Dt; |
|
pitch_axis = wrap_180(pitch_axis); |
|
|
|
// ensure that we don't reach gimbal lock |
|
if (labs(pitch_axis) > 4500) { |
|
pitch_axis = constrain(pitch_axis, -4500, 4500); |
|
angle_error = wrap_180(pitch_axis - ahrs.pitch_sensor); |
|
} else { |
|
// angle error with maximum of +- max_angle_overshoot |
|
angle_error = wrap_180(pitch_axis - ahrs.pitch_sensor); |
|
angle_error = constrain(angle_error, -MAX_PITCH_OVERSHOOT, MAX_PITCH_OVERSHOOT); |
|
} |
|
|
|
if (motors.armed() == false || ((g.rc_3.control_in == 0) && !ap.failsafe)) { |
|
angle_error = 0; |
|
} |
|
|
|
// update pitch_axis to be within max_angle_overshoot of our current heading |
|
pitch_axis = wrap_180(angle_error + ahrs.pitch_sensor); |
|
|
|
// set earth frame targets for rate controller |
|
set_pitch_rate_target(g.pi_stabilize_pitch.get_p(angle_error) + target_rate, EARTH_FRAME); |
|
} |
|
|
|
// Yaw with rate input and stabilized in the earth frame |
|
static void |
|
get_yaw_rate_stabilized_ef(int32_t stick_angle) |
|
{ |
|
|
|
int32_t angle_error = 0; |
|
|
|
// convert the input to the desired yaw rate |
|
int32_t target_rate = stick_angle * g.acro_p; |
|
|
|
// convert the input to the desired yaw rate |
|
nav_yaw += target_rate * G_Dt; |
|
nav_yaw = wrap_360(nav_yaw); |
|
|
|
// calculate difference between desired heading and current heading |
|
angle_error = wrap_180(nav_yaw - ahrs.yaw_sensor); |
|
|
|
// limit the maximum overshoot |
|
angle_error = constrain(angle_error, -MAX_YAW_OVERSHOOT, MAX_YAW_OVERSHOOT); |
|
|
|
if (motors.armed() == false || ((g.rc_3.control_in == 0) && !ap.failsafe)) { |
|
angle_error = 0; |
|
} |
|
|
|
// update nav_yaw to be within max_angle_overshoot of our current heading |
|
nav_yaw = wrap_360(angle_error + ahrs.yaw_sensor); |
|
|
|
// set earth frame targets for rate controller |
|
set_yaw_rate_target(g.pi_stabilize_yaw.get_p(angle_error)+target_rate, EARTH_FRAME); |
|
} |
|
|
|
// set_roll_rate_target - to be called by upper controllers to set roll rate targets in the earth frame |
|
void set_roll_rate_target( int32_t desired_rate, uint8_t earth_or_body_frame ) { |
|
rate_targets_frame = earth_or_body_frame; |
|
if( earth_or_body_frame == BODY_FRAME ) { |
|
roll_rate_target_bf = desired_rate; |
|
}else{ |
|
roll_rate_target_ef = desired_rate; |
|
} |
|
} |
|
|
|
// set_pitch_rate_target - to be called by upper controllers to set pitch rate targets in the earth frame |
|
void set_pitch_rate_target( int32_t desired_rate, uint8_t earth_or_body_frame ) { |
|
rate_targets_frame = earth_or_body_frame; |
|
if( earth_or_body_frame == BODY_FRAME ) { |
|
pitch_rate_target_bf = desired_rate; |
|
}else{ |
|
pitch_rate_target_ef = desired_rate; |
|
} |
|
} |
|
|
|
// set_yaw_rate_target - to be called by upper controllers to set yaw rate targets in the earth frame |
|
void set_yaw_rate_target( int32_t desired_rate, uint8_t earth_or_body_frame ) { |
|
rate_targets_frame = earth_or_body_frame; |
|
if( earth_or_body_frame == BODY_FRAME ) { |
|
yaw_rate_target_bf = desired_rate; |
|
}else{ |
|
yaw_rate_target_ef = desired_rate; |
|
} |
|
} |
|
|
|
// update_rate_contoller_targets - converts earth frame rates to body frame rates for rate controllers |
|
void |
|
update_rate_contoller_targets() |
|
{ |
|
if( rate_targets_frame == EARTH_FRAME ) { |
|
// convert earth frame rates to body frame rates |
|
roll_rate_target_bf = roll_rate_target_ef - sin_pitch * yaw_rate_target_ef; |
|
pitch_rate_target_bf = cos_roll_x * pitch_rate_target_ef + sin_roll * cos_pitch_x * yaw_rate_target_ef; |
|
yaw_rate_target_bf = cos_pitch_x * cos_roll_x * yaw_rate_target_ef - sin_roll * pitch_rate_target_ef; |
|
} |
|
} |
|
|
|
// run roll, pitch and yaw rate controllers and send output to motors |
|
// targets for these controllers comes from stabilize controllers |
|
void |
|
run_rate_controllers() |
|
{ |
|
#if FRAME_CONFIG == HELI_FRAME // helicopters only use rate controllers for yaw and only when not using an external gyro |
|
if(!motors.ext_gyro_enabled) { |
|
g.rc_1.servo_out = get_heli_rate_roll(roll_rate_target_bf); |
|
g.rc_2.servo_out = get_heli_rate_pitch(pitch_rate_target_bf); |
|
g.rc_4.servo_out = get_heli_rate_yaw(yaw_rate_target_bf); |
|
} |
|
#else |
|
// call rate controllers |
|
g.rc_1.servo_out = get_rate_roll(roll_rate_target_bf); |
|
g.rc_2.servo_out = get_rate_pitch(pitch_rate_target_bf); |
|
g.rc_4.servo_out = get_rate_yaw(yaw_rate_target_bf); |
|
#endif |
|
|
|
// run throttle controller if accel based throttle controller is enabled and active (active means it has been given a target) |
|
if( g.throttle_accel_enabled && throttle_accel_controller_active ) { |
|
set_throttle_out(get_throttle_accel(throttle_accel_target_ef), true); |
|
} |
|
} |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
// init_rate_controllers - set-up filters for rate controller inputs |
|
void init_rate_controllers() |
|
{ |
|
// initalise low pass filters on rate controller inputs |
|
// 1st parameter is time_step, 2nd parameter is time_constant |
|
rate_roll_filter.set_cutoff_frequency(0.01, 2.0); |
|
rate_pitch_filter.set_cutoff_frequency(0.01, 2.0); |
|
// rate_yaw_filter.set_cutoff_frequency(0.01, 2.0); |
|
// other option for initialisation is rate_roll_filter.set_cutoff_frequency(<time_step>,<cutoff_freq>); |
|
} |
|
|
|
static int16_t |
|
get_heli_rate_roll(int32_t target_rate) |
|
{ |
|
int32_t p,i,d,ff; // used to capture pid values for logging |
|
int32_t current_rate; // this iteration's rate |
|
int32_t rate_error; // simply target_rate - current_rate |
|
int32_t output; // output from pid controller |
|
|
|
// get current rate |
|
current_rate = (omega.x * DEGX100); |
|
|
|
// filter input |
|
current_rate = rate_roll_filter.apply(current_rate); |
|
|
|
// call pid controller |
|
rate_error = target_rate - current_rate; |
|
p = g.pid_rate_roll.get_p(rate_error); |
|
|
|
if (motors.flybar_mode == 1) { // Mechanical Flybars get regular integral for rate auto trim |
|
if (target_rate > -50 && target_rate < 50){ // Frozen at high rates |
|
i = g.pid_rate_roll.get_i(rate_error, G_Dt); |
|
} else { |
|
i = g.pid_rate_roll.get_integrator(); |
|
} |
|
} else { |
|
i = g.pid_rate_roll.get_leaky_i(rate_error, G_Dt, RATE_INTEGRATOR_LEAK_RATE); // Flybarless Helis get huge I-terms. I-term controls much of the rate |
|
} |
|
|
|
d = g.pid_rate_roll.get_d(rate_error, G_Dt); |
|
|
|
ff = g.heli_roll_ff * target_rate; |
|
|
|
output = p + i + d + ff; |
|
|
|
// constrain output |
|
output = constrain(output, -4500, 4500); |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash |
|
|
|
// log output if PID logging is on and we are tuning the rate P, I or D gains |
|
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_RATE_KP || g.radio_tuning == CH6_RATE_KI || g.radio_tuning == CH6_RATE_KD) ) { |
|
log_counter++; |
|
if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 |
|
log_counter = 0; |
|
Log_Write_PID(CH6_RATE_KP, rate_error, p, i, d, output, tuning_value); |
|
} |
|
} |
|
#endif |
|
|
|
// output control |
|
return output; |
|
} |
|
|
|
static int16_t |
|
get_heli_rate_pitch(int32_t target_rate) |
|
{ |
|
int32_t p,i,d,ff; // used to capture pid values for logging |
|
int32_t current_rate; // this iteration's rate |
|
int32_t rate_error; // simply target_rate - current_rate |
|
int32_t output; // output from pid controller |
|
|
|
// get current rate |
|
current_rate = (omega.y * DEGX100); |
|
|
|
// filter input |
|
current_rate = rate_pitch_filter.apply(current_rate); |
|
|
|
// call pid controller |
|
rate_error = target_rate - current_rate; |
|
p = g.pid_rate_pitch.get_p(rate_error); // Helicopters get huge feed-forward |
|
|
|
if (motors.flybar_mode == 1) { // Mechanical Flybars get regular integral for rate auto trim |
|
if (target_rate > -50 && target_rate < 50){ // Frozen at high rates |
|
i = g.pid_rate_pitch.get_i(rate_error, G_Dt); |
|
} else { |
|
i = g.pid_rate_pitch.get_integrator(); |
|
} |
|
} else { |
|
i = g.pid_rate_pitch.get_leaky_i(rate_error, G_Dt, RATE_INTEGRATOR_LEAK_RATE); // Flybarless Helis get huge I-terms. I-term controls much of the rate |
|
} |
|
|
|
d = g.pid_rate_pitch.get_d(rate_error, G_Dt); |
|
|
|
ff = g.heli_pitch_ff*target_rate; |
|
|
|
output = p + i + d + ff; |
|
|
|
// constrain output |
|
output = constrain(output, -4500, 4500); |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash |
|
// log output if PID logging is on and we are tuning the rate P, I or D gains |
|
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_RATE_KP || g.radio_tuning == CH6_RATE_KI || g.radio_tuning == CH6_RATE_KD) ) { |
|
log_counter++; |
|
if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 |
|
log_counter = 0; |
|
Log_Write_PID(CH6_RATE_KP+100, rate_error, p, i, 0, output, tuning_value); |
|
} |
|
} |
|
#endif |
|
|
|
// output control |
|
return output; |
|
} |
|
|
|
static int16_t |
|
get_heli_rate_yaw(int32_t target_rate) |
|
{ |
|
int32_t p,i,d,ff; // used to capture pid values for logging |
|
int32_t current_rate; // this iteration's rate |
|
int32_t rate_error; |
|
int32_t output; |
|
|
|
// get current rate |
|
current_rate = (omega.z * DEGX100); |
|
|
|
// filter input |
|
// current_rate = rate_yaw_filter.apply(current_rate); |
|
|
|
// rate control |
|
rate_error = target_rate - current_rate; |
|
|
|
// separately calculate p, i, d values for logging |
|
p = g.pid_rate_yaw.get_p(rate_error); |
|
|
|
i = g.pid_rate_yaw.get_i(rate_error, G_Dt); |
|
|
|
d = g.pid_rate_yaw.get_d(rate_error, G_Dt); |
|
|
|
ff = g.heli_yaw_ff*target_rate; |
|
|
|
output = p + i + d + ff; |
|
output = constrain(output, -4500, 4500); |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash |
|
// log output if PID loggins is on and we are tuning the yaw |
|
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_YAW_KP || g.radio_tuning == CH6_YAW_RATE_KP) ) { |
|
log_counter++; |
|
if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 |
|
log_counter = 0; |
|
Log_Write_PID(CH6_YAW_RATE_KP, rate_error, p, i, d, output, tuning_value); |
|
} |
|
} |
|
|
|
#endif |
|
|
|
// output control |
|
return output; |
|
} |
|
#endif // HELI_FRAME |
|
|
|
#if FRAME_CONFIG != HELI_FRAME |
|
static int16_t |
|
get_rate_roll(int32_t target_rate) |
|
{ |
|
int32_t p,i,d; // used to capture pid values for logging |
|
int32_t current_rate; // this iteration's rate |
|
int32_t rate_error; // simply target_rate - current_rate |
|
int32_t output; // output from pid controller |
|
|
|
// get current rate |
|
current_rate = (omega.x * DEGX100); |
|
|
|
// call pid controller |
|
rate_error = target_rate - current_rate; |
|
p = g.pid_rate_roll.get_p(rate_error); |
|
|
|
// freeze I term if we've breached roll-pitch limits |
|
if( motors.reached_limit(AP_MOTOR_ROLLPITCH_LIMIT) ) { |
|
i = g.pid_rate_roll.get_integrator(); |
|
}else{ |
|
i = g.pid_rate_roll.get_i(rate_error, G_Dt); |
|
} |
|
|
|
d = g.pid_rate_roll.get_d(rate_error, G_Dt); |
|
output = p + i + d; |
|
|
|
// constrain output |
|
output = constrain(output, -5000, 5000); |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash |
|
|
|
// log output if PID logging is on and we are tuning the rate P, I or D gains |
|
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_RATE_KP || g.radio_tuning == CH6_RATE_KI || g.radio_tuning == CH6_RATE_KD) ) { |
|
log_counter++; |
|
if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 |
|
log_counter = 0; |
|
Log_Write_PID(CH6_RATE_KP, rate_error, p, i, d /*-rate_d_dampener*/, output, tuning_value); |
|
} |
|
} |
|
#endif |
|
|
|
// output control |
|
return output; |
|
} |
|
|
|
static int16_t |
|
get_rate_pitch(int32_t target_rate) |
|
{ |
|
int32_t p,i,d; // used to capture pid values for logging |
|
int32_t current_rate; // this iteration's rate |
|
int32_t rate_error; // simply target_rate - current_rate |
|
int32_t output; // output from pid controller |
|
|
|
// get current rate |
|
current_rate = (omega.y * DEGX100); |
|
|
|
// call pid controller |
|
rate_error = target_rate - current_rate; |
|
p = g.pid_rate_pitch.get_p(rate_error); |
|
// freeze I term if we've breached roll-pitch limits |
|
if( motors.reached_limit(AP_MOTOR_ROLLPITCH_LIMIT) ) { |
|
i = g.pid_rate_pitch.get_integrator(); |
|
}else{ |
|
i = g.pid_rate_pitch.get_i(rate_error, G_Dt); |
|
} |
|
d = g.pid_rate_pitch.get_d(rate_error, G_Dt); |
|
output = p + i + d; |
|
|
|
// constrain output |
|
output = constrain(output, -5000, 5000); |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash |
|
// log output if PID logging is on and we are tuning the rate P, I or D gains |
|
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_RATE_KP || g.radio_tuning == CH6_RATE_KI || g.radio_tuning == CH6_RATE_KD) ) { |
|
log_counter++; |
|
if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 |
|
log_counter = 0; |
|
Log_Write_PID(CH6_RATE_KP+100, rate_error, p, i, d/*-rate_d_dampener*/, output, tuning_value); |
|
} |
|
} |
|
#endif |
|
|
|
// output control |
|
return output; |
|
} |
|
|
|
static int16_t |
|
get_rate_yaw(int32_t target_rate) |
|
{ |
|
int32_t p,i,d; // used to capture pid values for logging |
|
int32_t rate_error; |
|
int32_t output; |
|
|
|
// rate control |
|
rate_error = target_rate - (omega.z * DEGX100); |
|
|
|
// separately calculate p, i, d values for logging |
|
p = g.pid_rate_yaw.get_p(rate_error); |
|
// freeze I term if we've breached yaw limits |
|
if( motors.reached_limit(AP_MOTOR_YAW_LIMIT) ) { |
|
i = g.pid_rate_yaw.get_integrator(); |
|
}else{ |
|
i = g.pid_rate_yaw.get_i(rate_error, G_Dt); |
|
} |
|
d = g.pid_rate_yaw.get_d(rate_error, G_Dt); |
|
|
|
output = p+i+d; |
|
output = constrain(output, -4500, 4500); |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash |
|
// log output if PID loggins is on and we are tuning the yaw |
|
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_YAW_KP || g.radio_tuning == CH6_YAW_RATE_KP) ) { |
|
log_counter++; |
|
if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 |
|
log_counter = 0; |
|
Log_Write_PID(CH6_YAW_RATE_KP, rate_error, p, i, d, output, tuning_value); |
|
} |
|
} |
|
#endif |
|
|
|
#if FRAME_CONFIG == TRI_FRAME |
|
// constrain output |
|
return output; |
|
#else // !TRI_FRAME |
|
// output control: |
|
int16_t yaw_limit = 2200 + abs(g.rc_4.control_in); |
|
|
|
// smoother Yaw control: |
|
return constrain(output, -yaw_limit, yaw_limit); |
|
#endif // TRI_FRAME |
|
} |
|
#endif // !HELI_FRAME |
|
|
|
// calculate modified roll/pitch depending upon optical flow calculated position |
|
static int32_t |
|
get_of_roll(int32_t input_roll) |
|
{ |
|
#if OPTFLOW == ENABLED |
|
static float tot_x_cm = 0; // total distance from target |
|
static uint32_t last_of_roll_update = 0; |
|
int32_t new_roll = 0; |
|
int32_t p,i,d; |
|
|
|
// check if new optflow data available |
|
if( optflow.last_update != last_of_roll_update) { |
|
last_of_roll_update = optflow.last_update; |
|
|
|
// add new distance moved |
|
tot_x_cm += optflow.x_cm; |
|
|
|
// only stop roll if caller isn't modifying roll |
|
if( input_roll == 0 && current_loc.alt < 1500) { |
|
p = g.pid_optflow_roll.get_p(-tot_x_cm); |
|
i = g.pid_optflow_roll.get_i(-tot_x_cm,1.0); // we could use the last update time to calculate the time change |
|
d = g.pid_optflow_roll.get_d(-tot_x_cm,1.0); |
|
new_roll = p+i+d; |
|
}else{ |
|
g.pid_optflow_roll.reset_I(); |
|
tot_x_cm = 0; |
|
p = 0; // for logging |
|
i = 0; |
|
d = 0; |
|
} |
|
// limit amount of change and maximum angle |
|
of_roll = constrain(new_roll, (of_roll-20), (of_roll+20)); |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash |
|
// log output if PID logging is on and we are tuning the rate P, I or D gains |
|
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_OPTFLOW_KP || g.radio_tuning == CH6_OPTFLOW_KI || g.radio_tuning == CH6_OPTFLOW_KD) ) { |
|
log_counter++; |
|
if( log_counter >= 5 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 |
|
log_counter = 0; |
|
Log_Write_PID(CH6_OPTFLOW_KP, tot_x_cm, p, i, d, of_roll, tuning_value); |
|
} |
|
} |
|
#endif // LOGGING_ENABLED == ENABLED |
|
} |
|
|
|
// limit max angle |
|
of_roll = constrain(of_roll, -1000, 1000); |
|
|
|
return input_roll+of_roll; |
|
#else |
|
return input_roll; |
|
#endif |
|
} |
|
|
|
static int32_t |
|
get_of_pitch(int32_t input_pitch) |
|
{ |
|
#if OPTFLOW == ENABLED |
|
static float tot_y_cm = 0; // total distance from target |
|
static uint32_t last_of_pitch_update = 0; |
|
int32_t new_pitch = 0; |
|
int32_t p,i,d; |
|
|
|
// check if new optflow data available |
|
if( optflow.last_update != last_of_pitch_update ) { |
|
last_of_pitch_update = optflow.last_update; |
|
|
|
// add new distance moved |
|
tot_y_cm += optflow.y_cm; |
|
|
|
// only stop roll if caller isn't modifying pitch |
|
if( input_pitch == 0 && current_loc.alt < 1500 ) { |
|
p = g.pid_optflow_pitch.get_p(tot_y_cm); |
|
i = g.pid_optflow_pitch.get_i(tot_y_cm, 1.0); // we could use the last update time to calculate the time change |
|
d = g.pid_optflow_pitch.get_d(tot_y_cm, 1.0); |
|
new_pitch = p + i + d; |
|
}else{ |
|
tot_y_cm = 0; |
|
g.pid_optflow_pitch.reset_I(); |
|
p = 0; // for logging |
|
i = 0; |
|
d = 0; |
|
} |
|
|
|
// limit amount of change |
|
of_pitch = constrain(new_pitch, (of_pitch-20), (of_pitch+20)); |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash |
|
// log output if PID logging is on and we are tuning the rate P, I or D gains |
|
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_OPTFLOW_KP || g.radio_tuning == CH6_OPTFLOW_KI || g.radio_tuning == CH6_OPTFLOW_KD) ) { |
|
log_counter++; |
|
if( log_counter >= 5 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 |
|
log_counter = 0; |
|
Log_Write_PID(CH6_OPTFLOW_KP+100, tot_y_cm, p, i, d, of_pitch, tuning_value); |
|
} |
|
} |
|
#endif // LOGGING_ENABLED == ENABLED |
|
} |
|
|
|
// limit max angle |
|
of_pitch = constrain(of_pitch, -1000, 1000); |
|
|
|
return input_pitch+of_pitch; |
|
#else |
|
return input_pitch; |
|
#endif |
|
} |
|
|
|
/************************************************************* |
|
* yaw controllers |
|
*************************************************************/ |
|
|
|
static void get_look_ahead_yaw(int16_t pilot_yaw) |
|
{ |
|
// Commanded Yaw to automatically look ahead. |
|
if (g_gps->fix && g_gps->ground_course > YAW_LOOK_AHEAD_MIN_SPEED) { |
|
nav_yaw = get_yaw_slew(nav_yaw, g_gps->ground_course, AUTO_YAW_SLEW_RATE); |
|
get_stabilize_yaw(wrap_360(nav_yaw + pilot_yaw)); // Allow pilot to "skid" around corners up to 45 degrees |
|
}else{ |
|
nav_yaw += pilot_yaw * g.acro_p * G_Dt; |
|
nav_yaw = wrap_360(nav_yaw); |
|
get_stabilize_yaw(nav_yaw); |
|
} |
|
} |
|
|
|
/************************************************************* |
|
* throttle control |
|
****************************************************************/ |
|
|
|
// update_throttle_cruise - update throttle cruise if necessary |
|
static void update_throttle_cruise(int16_t throttle) |
|
{ |
|
// ensure throttle_avg has been initialised |
|
if( throttle_avg == 0 ) { |
|
throttle_avg = g.throttle_cruise; |
|
} |
|
// calc average throttle if we are in a level hover |
|
if (throttle > g.throttle_min && abs(climb_rate) < 60 && labs(ahrs.roll_sensor) < 500 && labs(ahrs.pitch_sensor) < 500) { |
|
throttle_avg = throttle_avg * .99 + (float)throttle * .01; |
|
g.throttle_cruise = throttle_avg; |
|
} |
|
} |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
// get_angle_boost - returns a throttle including compensation for roll/pitch angle |
|
// throttle value should be 0 ~ 1000 |
|
// for traditional helicopters |
|
static int16_t get_angle_boost(int16_t throttle) |
|
{ |
|
float angle_boost_factor = cos_pitch_x * cos_roll_x; |
|
angle_boost_factor = 1.0 - constrain(angle_boost_factor, .5, 1.0); |
|
int16_t throttle_above_mid = max(throttle - motors.throttle_mid,0); |
|
|
|
// to allow logging of angle boost |
|
angle_boost = throttle_above_mid*angle_boost_factor; |
|
|
|
return throttle + angle_boost; |
|
} |
|
#else // all multicopters |
|
// get_angle_boost - returns a throttle including compensation for roll/pitch angle |
|
// throttle value should be 0 ~ 1000 |
|
static int16_t get_angle_boost(int16_t throttle) |
|
{ |
|
float temp = cos_pitch_x * cos_roll_x; |
|
int16_t throttle_out; |
|
|
|
temp = constrain(temp, .5, 1.0); |
|
temp = constrain(9000-max(labs(roll_axis),labs(pitch_axis)), 0, 3000) / (3000 * temp); |
|
throttle_out = constrain((float)(throttle-g.throttle_min) * temp + g.throttle_min, g.throttle_min, 1000); |
|
//Serial.printf("Thin:%4.2f sincos:%4.2f temp:%4.2f roll_axis:%4.2f Out:%4.2f \n", 1.0*throttle, 1.0*cos_pitch_x * cos_roll_x, 1.0*temp, 1.0*roll_axis, 1.0*constrain((float)value * temp, 0, 1000)); |
|
|
|
// to allow logging of angle boost |
|
angle_boost = throttle_out - throttle; |
|
|
|
return throttle_out; |
|
} |
|
#endif // FRAME_CONFIG == HELI_FRAME |
|
|
|
// set_throttle_out - to be called by upper throttle controllers when they wish to provide throttle output directly to motors |
|
// provide 0 to cut motors |
|
void set_throttle_out( int16_t throttle_out, bool apply_angle_boost ) |
|
{ |
|
if( apply_angle_boost ) { |
|
g.rc_3.servo_out = get_angle_boost(throttle_out); |
|
}else{ |
|
g.rc_3.servo_out = throttle_out; |
|
// clear angle_boost for logging purposes |
|
angle_boost = 0; |
|
} |
|
} |
|
|
|
// set_throttle_accel_target - to be called by upper throttle controllers to set desired vertical acceleration in earth frame |
|
void set_throttle_accel_target( int16_t desired_acceleration ) |
|
{ |
|
if( g.throttle_accel_enabled ) { |
|
throttle_accel_target_ef = desired_acceleration; |
|
throttle_accel_controller_active = true; |
|
}else{ |
|
// To-Do log dataflash or tlog error |
|
cliSerial->print_P(PSTR("Err: target sent to inactive acc thr controller!\n")); |
|
} |
|
} |
|
|
|
// disable_throttle_accel - disables the accel based throttle controller |
|
// it will be re-enasbled on the next set_throttle_accel_target |
|
// required when we wish to set motors to zero when pilot inputs zero throttle |
|
void throttle_accel_deactivate() |
|
{ |
|
throttle_accel_controller_active = false; |
|
} |
|
|
|
// get_throttle_accel - accelerometer based throttle controller |
|
// returns an actual throttle output (0 ~ 1000) to be sent to the motors |
|
static int16_t |
|
get_throttle_accel(int16_t z_target_accel) |
|
{ |
|
static float z_accel_error = 0; // The acceleration error in cm. |
|
int32_t p,i,d; // used to capture pid values for logging |
|
int16_t output; |
|
float z_accel_meas; |
|
|
|
// Calculate Earth Frame Z acceleration |
|
z_accel_meas = -(ahrs.get_accel_ef().z + GRAVITY_MSS) * 100; |
|
|
|
// calculate accel error and Filter with fc = 2 Hz |
|
z_accel_error = z_accel_error + 0.11164 * (constrain(z_target_accel - z_accel_meas, -32000, 32000) - z_accel_error); |
|
|
|
// separately calculate p, i, d values for logging |
|
p = g.pid_throttle_accel.get_p(z_accel_error); |
|
// freeze I term if we've breached throttle limits |
|
if( motors.reached_limit(AP_MOTOR_THROTTLE_LIMIT) ) { |
|
i = g.pid_throttle_accel.get_integrator(); |
|
}else{ |
|
i = g.pid_throttle_accel.get_i(z_accel_error, .01); |
|
} |
|
d = g.pid_throttle_accel.get_d(z_accel_error, .01); |
|
|
|
// |
|
// limit the rate |
|
output = constrain(p+i+d+g.throttle_cruise, g.throttle_min, g.throttle_max); |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash |
|
// log output if PID loggins is on and we are tuning the yaw |
|
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_THR_ACCEL_KD || g.radio_tuning == CH6_THROTTLE_KP) ) { |
|
log_counter++; |
|
if( log_counter >= 10 ) { // (update rate / desired output rate) = (50hz / 10hz) = 5hz |
|
log_counter = 0; |
|
Log_Write_PID(CH6_THR_ACCEL_KD, z_accel_error, p, i, d, output, tuning_value); |
|
} |
|
} |
|
#endif |
|
|
|
return output; |
|
} |
|
|
|
// get_pilot_desired_climb_rate - transform pilot's throttle input to |
|
// climb rate in cm/s. we use radio_in instead of control_in to get the full range |
|
// without any deadzone at the bottom |
|
#define THROTTLE_IN_MIDDLE 500 // the throttle mid point |
|
#define THROTTLE_IN_DEADBAND 100 // the throttle input channel's deadband in PWM |
|
#define THROTTLE_IN_DEADBAND_TOP (THROTTLE_IN_MIDDLE+THROTTLE_IN_DEADBAND) // top of the deadband |
|
#define THROTTLE_IN_DEADBAND_BOTTOM (THROTTLE_IN_MIDDLE-THROTTLE_IN_DEADBAND) // bottom of the deadband |
|
static int16_t get_pilot_desired_climb_rate(int16_t throttle_control) |
|
{ |
|
int16_t desired_rate = 0; |
|
|
|
// throttle failsafe check |
|
if( ap.failsafe ) { |
|
return 0; |
|
} |
|
|
|
// ensure a reasonable throttle value |
|
throttle_control = constrain(throttle_control,0,1000); |
|
|
|
// check throttle is above, below or in the deadband |
|
if (throttle_control < THROTTLE_IN_DEADBAND_BOTTOM) { |
|
// below the deadband |
|
desired_rate = (int32_t)g.pilot_velocity_z_max * (throttle_control-THROTTLE_IN_DEADBAND_BOTTOM) / (THROTTLE_IN_MIDDLE - THROTTLE_IN_DEADBAND); |
|
}else if (throttle_control > THROTTLE_IN_DEADBAND_TOP) { |
|
// above the deadband |
|
desired_rate = (int32_t)g.pilot_velocity_z_max * (throttle_control-THROTTLE_IN_DEADBAND_TOP) / (THROTTLE_IN_MIDDLE - THROTTLE_IN_DEADBAND); |
|
}else{ |
|
// must be in the deadband |
|
desired_rate = 0; |
|
} |
|
|
|
// desired climb rate for logging |
|
desired_climb_rate = desired_rate; |
|
|
|
return desired_rate; |
|
} |
|
|
|
// get_pilot_desired_acceleration - transform pilot's throttle input to a desired acceleration |
|
// default upper and lower bounds are 500 cm/s/s (roughly 1/2 a G) |
|
// returns acceleration in cm/s/s |
|
static int16_t get_pilot_desired_acceleration(int16_t throttle_control) |
|
{ |
|
int32_t desired_accel = 0; |
|
|
|
// throttle failsafe check |
|
if( ap.failsafe ) { |
|
return 0; |
|
} |
|
|
|
// ensure a reasonable throttle value |
|
throttle_control = constrain(throttle_control,0,1000); |
|
|
|
// check throttle is above, below or in the deadband |
|
if (throttle_control < THROTTLE_IN_DEADBAND_BOTTOM) { |
|
// below the deadband |
|
desired_accel = (int32_t)ACCELERATION_MAX_Z * (throttle_control-THROTTLE_IN_DEADBAND_BOTTOM) / (THROTTLE_IN_MIDDLE - THROTTLE_IN_DEADBAND); |
|
}else if(throttle_control > THROTTLE_IN_DEADBAND_TOP) { |
|
// above the deadband |
|
desired_accel = (int32_t)ACCELERATION_MAX_Z * (throttle_control-THROTTLE_IN_DEADBAND_TOP) / (THROTTLE_IN_MIDDLE - THROTTLE_IN_DEADBAND); |
|
}else{ |
|
// must be in the deadband |
|
desired_accel = 0; |
|
} |
|
|
|
return desired_accel; |
|
} |
|
|
|
// get_pilot_desired_direct_alt - transform pilot's throttle input to a desired altitude |
|
// return altitude in cm between 0 to 10m |
|
static int32_t get_pilot_desired_direct_alt(int16_t throttle_control) |
|
{ |
|
int32_t desired_alt = 0; |
|
|
|
// throttle failsafe check |
|
if( ap.failsafe ) { |
|
return 0; |
|
} |
|
|
|
// ensure a reasonable throttle value |
|
throttle_control = constrain(throttle_control,0,1000); |
|
|
|
desired_alt = throttle_control; |
|
|
|
return desired_alt; |
|
} |
|
|
|
// get_throttle_rate - calculates desired accel required to achieve desired z_target_speed |
|
// sets accel based throttle controller target |
|
static void |
|
get_throttle_rate(int16_t z_target_speed) |
|
{ |
|
static float z_rate_error = 0; // The velocity error in cm. |
|
int32_t p,i,d; // used to capture pid values for logging |
|
int16_t output; // the target acceleration if the accel based throttle is enabled, otherwise the output to be sent to the motors |
|
|
|
// calculate rate error and filter with cut off frequency of 2 Hz |
|
z_rate_error = z_rate_error + 0.20085 * ((z_target_speed - climb_rate) - z_rate_error); |
|
|
|
// separately calculate p, i, d values for logging |
|
p = g.pid_throttle.get_p(z_rate_error); |
|
|
|
// freeze I term if we've breached throttle limits |
|
if(motors.reached_limit(AP_MOTOR_THROTTLE_LIMIT)) { |
|
i = g.pid_throttle.get_integrator(); |
|
}else{ |
|
i = g.pid_throttle.get_i(z_rate_error, .02); |
|
} |
|
d = g.pid_throttle.get_d(z_rate_error, .02); |
|
|
|
// consolidate target acceleration |
|
output = p+i+d; |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
static uint8_t log_counter = 0; // used to slow down logging of PID values to dataflash |
|
// log output if PID loggins is on and we are tuning the yaw |
|
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_THROTTLE_KP || g.radio_tuning == CH6_THROTTLE_KI || g.radio_tuning == CH6_THROTTLE_KD) ) { |
|
log_counter++; |
|
if( log_counter >= 10 ) { // (update rate / desired output rate) = (50hz / 10hz) = 5hz |
|
log_counter = 0; |
|
Log_Write_PID(CH6_THROTTLE_KP, z_rate_error, p, i, d, output, tuning_value); |
|
} |
|
} |
|
#endif |
|
|
|
// send output to accelerometer based throttle controller if enabled otherwise send directly to motors |
|
if( g.throttle_accel_enabled ) { |
|
// set target for accel based throttle controller |
|
set_throttle_accel_target(output); |
|
}else{ |
|
set_throttle_out(g.throttle_cruise+output, true); |
|
} |
|
|
|
// update throttle cruise |
|
// TO-DO: this may not be correct because g.rc_3.servo_out has not been updated for this iteration |
|
if( z_target_speed == 0 ) { |
|
update_throttle_cruise(g.rc_3.servo_out); |
|
} |
|
} |
|
|
|
// get_throttle_althold - hold at the desired altitude in cm |
|
// updates accel based throttle controller targets |
|
// Note: max_climb_rate is an optional parameter to allow reuse of this function by landing controller |
|
static void |
|
get_throttle_althold(int32_t target_alt, int16_t min_climb_rate, int16_t max_climb_rate) |
|
{ |
|
int16_t desired_rate; |
|
int32_t linear_distance; // the distace we swap between linear and sqrt. |
|
|
|
// calculate altitude error |
|
altitude_error = target_alt - current_loc.alt; |
|
|
|
// check kP to avoid division by zero |
|
if( g.pi_alt_hold.kP() != 0 ) { |
|
linear_distance = 250/(2*g.pi_alt_hold.kP()*g.pi_alt_hold.kP()); |
|
if( altitude_error > 2*linear_distance ) { |
|
desired_rate = sqrt(2*250*(altitude_error-linear_distance)); |
|
}else if( altitude_error < -2*linear_distance ) { |
|
desired_rate = -sqrt(2*250*(-altitude_error-linear_distance)); |
|
}else{ |
|
desired_rate = g.pi_alt_hold.get_p(altitude_error); |
|
} |
|
}else{ |
|
desired_rate = 0; |
|
} |
|
|
|
desired_rate = constrain(desired_rate, min_climb_rate, max_climb_rate); |
|
|
|
// call rate based throttle controller which will update accel based throttle controller targets |
|
get_throttle_rate(desired_rate); |
|
|
|
// TO-DO: enabled PID logging for this controller |
|
} |
|
|
|
// get_throttle_rate_stabilized - rate controller with additional 'stabilizer' |
|
// 'stabilizer' ensure desired rate is being met |
|
// calls normal throttle rate controller which updates accel based throttle controller targets |
|
static void |
|
get_throttle_rate_stabilized(int16_t target_rate) |
|
{ |
|
static float target_alt = 0; // The desired altitude in cm. |
|
static uint32_t last_call_ms = 0; |
|
|
|
uint32_t now = millis(); |
|
|
|
// reset target altitude if this controller has just been engaged |
|
if( now - last_call_ms > 1000 ) { |
|
target_alt = current_loc.alt; |
|
} |
|
last_call_ms = millis(); |
|
|
|
target_alt += target_rate * 0.02; |
|
|
|
// do not let target altitude get too far from current altitude |
|
target_alt = constrain(target_alt,current_loc.alt-750,current_loc.alt+750); |
|
|
|
set_new_altitude(target_alt); |
|
|
|
get_throttle_althold(target_alt, -g.pilot_velocity_z_max-250, g.pilot_velocity_z_max+250); // 250 is added to give head room to alt hold controller |
|
} |
|
|
|
// get_throttle_land - high level landing logic |
|
// sends the desired acceleration in the accel based throttle controller |
|
// called at 50hz |
|
#define LAND_START_ALT 1000 // altitude in cm where land controller switches to slow rate of descent |
|
#define LAND_DETECTOR_TRIGGER 50 // number of 50hz iterations with near zero climb rate and low throttle that triggers landing complete. |
|
static void |
|
get_throttle_land() |
|
{ |
|
// if we are above 10m and the sonar does not sense anything perform regular alt hold descent |
|
if (current_loc.alt >= LAND_START_ALT && !(g.sonar_enabled && sonar_alt_ok)) { |
|
get_throttle_althold(LAND_START_ALT, g.auto_velocity_z_min, -abs(g.land_speed)); |
|
}else{ |
|
get_throttle_rate_stabilized(-abs(g.land_speed)); |
|
|
|
// detect whether we have landed by watching for minimum throttle and now movement |
|
if (abs(climb_rate) < 20 && (g.rc_3.servo_out <= get_angle_boost(g.throttle_min) || g.pid_throttle_accel.get_integrator() <= -150)) { |
|
if( land_detector < LAND_DETECTOR_TRIGGER ) { |
|
land_detector++; |
|
}else{ |
|
set_land_complete(true); |
|
if( g.rc_3.control_in == 0 || ap.failsafe ) { |
|
init_disarm_motors(); |
|
reset_throttle_I(); |
|
} |
|
} |
|
}else{ |
|
// we've sensed movement up or down so decrease land_detector |
|
if (land_detector > 0 ) { |
|
land_detector--; |
|
} |
|
} |
|
} |
|
} |
|
|
|
// get_throttle_surface_tracking - hold copter at the desired distance above the ground |
|
// updates accel based throttle controller targets |
|
static void |
|
get_throttle_surface_tracking(int16_t target_rate) |
|
{ |
|
static float target_sonar_alt = 0; // The desired altitude in cm above the ground |
|
static uint32_t last_call_ms = 0; |
|
|
|
uint32_t now = millis(); |
|
|
|
// reset target altitude if this controller has just been engaged |
|
if( now - last_call_ms > 1000 ) { |
|
target_sonar_alt = sonar_alt + next_WP.alt - current_loc.alt; |
|
} |
|
last_call_ms = millis(); |
|
|
|
target_sonar_alt += target_rate * 0.02; |
|
|
|
// do not let target altitude get too far from current altitude above ground |
|
// Note: the 750cm limit is perhaps too wide but is consistent with the regular althold limits and helps ensure a smooth transition |
|
target_sonar_alt = constrain(target_sonar_alt,sonar_alt-750,sonar_alt+750); |
|
set_new_altitude(current_loc.alt+(target_sonar_alt-sonar_alt)); |
|
|
|
get_throttle_althold(next_WP.alt, -g.pilot_velocity_z_max-250, g.pilot_velocity_z_max+250); // 250 is added to give head room to alt hold controller |
|
} |
|
|
|
/* |
|
* reset all I integrators |
|
*/ |
|
static void reset_I_all(void) |
|
{ |
|
reset_rate_I(); |
|
reset_stability_I(); |
|
reset_wind_I(); |
|
reset_throttle_I(); |
|
reset_optflow_I(); |
|
|
|
// This is the only place we reset Yaw |
|
g.pi_stabilize_yaw.reset_I(); |
|
} |
|
|
|
static void reset_rate_I() |
|
{ |
|
g.pid_rate_roll.reset_I(); |
|
g.pid_rate_pitch.reset_I(); |
|
g.pid_rate_yaw.reset_I(); |
|
} |
|
|
|
static void reset_optflow_I(void) |
|
{ |
|
g.pid_optflow_roll.reset_I(); |
|
g.pid_optflow_pitch.reset_I(); |
|
of_roll = 0; |
|
of_pitch = 0; |
|
} |
|
|
|
static void reset_wind_I(void) |
|
{ |
|
// Wind Compensation |
|
// this i is not currently being used, but we reset it anyway |
|
// because someone may modify it and not realize it, causing a bug |
|
g.pi_loiter_lat.reset_I(); |
|
g.pi_loiter_lon.reset_I(); |
|
|
|
g.pid_loiter_rate_lat.reset_I(); |
|
g.pid_loiter_rate_lon.reset_I(); |
|
|
|
g.pid_nav_lat.reset_I(); |
|
g.pid_nav_lon.reset_I(); |
|
} |
|
|
|
static void reset_throttle_I(void) |
|
{ |
|
// For Altitude Hold |
|
g.pi_alt_hold.reset_I(); |
|
g.pid_throttle.reset_I(); |
|
g.pid_throttle_accel.reset_I(); |
|
} |
|
|
|
static void reset_stability_I(void) |
|
{ |
|
// Used to balance a quad |
|
// This only needs to be reset during Auto-leveling in flight |
|
g.pi_stabilize_roll.reset_I(); |
|
g.pi_stabilize_pitch.reset_I(); |
|
}
|
|
|