You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
526 lines
16 KiB
526 lines
16 KiB
/* |
|
APM_AHRS_DCM.cpp |
|
|
|
AHRS system using DCM matrices |
|
|
|
Based on DCM code by Doug Weibel, Jordi Muñoz and Jose Julio. DIYDrones.com |
|
|
|
Adapted for the general ArduPilot AHRS interface by Andrew Tridgell |
|
|
|
This library is free software; you can redistribute it and/or |
|
modify it under the terms of the GNU Lesser General Public License |
|
as published by the Free Software Foundation; either version 2.1 |
|
of the License, or (at your option) any later version. |
|
*/ |
|
#include <FastSerial.h> |
|
#include <AP_AHRS.h> |
|
|
|
// this is the speed in cm/s above which we first get a yaw lock with |
|
// the GPS |
|
#define GPS_SPEED_MIN 300 |
|
|
|
// this is the speed in cm/s at which we stop using drift correction |
|
// from the GPS and wait for the ground speed to get above GPS_SPEED_MIN |
|
#define GPS_SPEED_RESET 100 |
|
|
|
// table of user settable parameters |
|
const AP_Param::GroupInfo AP_AHRS::var_info[] PROGMEM = { |
|
AP_GROUPINFO("YAW_P", 0, AP_AHRS_DCM, _kp_yaw), |
|
AP_GROUPEND |
|
}; |
|
|
|
// run a full DCM update round |
|
void |
|
AP_AHRS_DCM::update(void) |
|
{ |
|
float delta_t; |
|
|
|
// tell the IMU to grab some data |
|
_imu->update(); |
|
|
|
// ask the IMU how much time this sensor reading represents |
|
delta_t = _imu->get_delta_time(); |
|
|
|
// Get current values for gyros |
|
_gyro_vector = _imu->get_gyro(); |
|
_accel_vector = _imu->get_accel(); |
|
|
|
// Integrate the DCM matrix using gyro inputs |
|
matrix_update(delta_t); |
|
|
|
// Normalize the DCM matrix |
|
normalize(); |
|
|
|
// Perform drift correction |
|
drift_correction(delta_t); |
|
|
|
// paranoid check for bad values in the DCM matrix |
|
check_matrix(); |
|
|
|
// Calculate pitch, roll, yaw for stabilization and navigation |
|
euler_angles(); |
|
} |
|
|
|
// update the DCM matrix using only the gyros |
|
void |
|
AP_AHRS_DCM::matrix_update(float _G_Dt) |
|
{ |
|
// _omega_integ_corr is used for _centripetal correction |
|
// (theoretically better than _omega) |
|
_omega_integ_corr = _gyro_vector + _omega_I; |
|
|
|
// Equation 16, adding proportional and integral correction terms |
|
_omega = _omega_integ_corr + _omega_P + _omega_yaw_P; |
|
|
|
// this is a replacement of the DCM matrix multiply (equation |
|
// 17), with known zero elements removed and the matrix |
|
// operations inlined. This runs much faster than the original |
|
// version of this code, as the compiler was doing a terrible |
|
// job of realising that so many of the factors were in common |
|
// or zero. It also uses much less stack, as we no longer need |
|
// two additional local matrices |
|
|
|
Vector3f r = _omega * _G_Dt; |
|
_dcm_matrix.rotate(r); |
|
} |
|
|
|
|
|
// adjust an accelerometer vector for known acceleration forces |
|
void |
|
AP_AHRS_DCM::accel_adjust(Vector3f &accel) |
|
{ |
|
float veloc; |
|
// compensate for linear acceleration. This makes a |
|
// surprisingly large difference in the pitch estimate when |
|
// turning, plus on takeoff and landing |
|
float acceleration = _gps->acceleration(); |
|
accel.x -= acceleration; |
|
|
|
// compensate for centripetal acceleration |
|
veloc = _gps->ground_speed * 0.01; |
|
|
|
// We are working with a modified version of equation 26 as |
|
// our IMU object reports acceleration in the positive axis |
|
// direction as positive |
|
|
|
// Equation 26 broken up into separate pieces |
|
accel.y -= _omega_integ_corr.z * veloc; |
|
accel.z += _omega_integ_corr.y * veloc; |
|
} |
|
|
|
/* |
|
reset the DCM matrix and omega. Used on ground start, and on |
|
extreme errors in the matrix |
|
*/ |
|
void |
|
AP_AHRS_DCM::reset(bool recover_eulers) |
|
{ |
|
if (_compass != NULL) { |
|
_compass->null_offsets_disable(); |
|
} |
|
|
|
// reset the integration terms |
|
_omega_I.zero(); |
|
_omega_P.zero(); |
|
_omega_yaw_P.zero(); |
|
_omega_integ_corr.zero(); |
|
_omega.zero(); |
|
|
|
// if the caller wants us to try to recover to the current |
|
// attitude then calculate the dcm matrix from the current |
|
// roll/pitch/yaw values |
|
if (recover_eulers && !isnan(roll) && !isnan(pitch) && !isnan(yaw)) { |
|
_dcm_matrix.from_euler(roll, pitch, yaw); |
|
} else { |
|
// otherwise make it flat |
|
_dcm_matrix.from_euler(0, 0, 0); |
|
} |
|
|
|
if (_compass != NULL) { |
|
_compass->null_offsets_enable(); // This call is needed to restart the nulling |
|
// Otherwise the reset in the DCM matrix can mess up |
|
// the nulling |
|
} |
|
} |
|
|
|
/* |
|
check the DCM matrix for pathological values |
|
*/ |
|
void |
|
AP_AHRS_DCM::check_matrix(void) |
|
{ |
|
if (_dcm_matrix.is_nan()) { |
|
//Serial.printf("ERROR: DCM matrix NAN\n"); |
|
SITL_debug("ERROR: DCM matrix NAN\n"); |
|
renorm_blowup_count++; |
|
reset(true); |
|
return; |
|
} |
|
// some DCM matrix values can lead to an out of range error in |
|
// the pitch calculation via asin(). These NaN values can |
|
// feed back into the rest of the DCM matrix via the |
|
// error_course value. |
|
if (!(_dcm_matrix.c.x < 1.0 && |
|
_dcm_matrix.c.x > -1.0)) { |
|
// We have an invalid matrix. Force a normalisation. |
|
renorm_range_count++; |
|
normalize(); |
|
|
|
if (_dcm_matrix.is_nan() || |
|
fabs(_dcm_matrix.c.x) > 10) { |
|
// normalisation didn't fix the problem! We're |
|
// in real trouble. All we can do is reset |
|
//Serial.printf("ERROR: DCM matrix error. _dcm_matrix.c.x=%f\n", |
|
// _dcm_matrix.c.x); |
|
SITL_debug("ERROR: DCM matrix error. _dcm_matrix.c.x=%f\n", |
|
_dcm_matrix.c.x); |
|
renorm_blowup_count++; |
|
reset(true); |
|
} |
|
} |
|
} |
|
|
|
// renormalise one vector component of the DCM matrix |
|
// this will return false if renormalization fails |
|
bool |
|
AP_AHRS_DCM::renorm(Vector3f const &a, Vector3f &result) |
|
{ |
|
float renorm_val; |
|
|
|
// numerical errors will slowly build up over time in DCM, |
|
// causing inaccuracies. We can keep ahead of those errors |
|
// using the renormalization technique from the DCM IMU paper |
|
// (see equations 18 to 21). |
|
|
|
// For APM we don't bother with the taylor expansion |
|
// optimisation from the paper as on our 2560 CPU the cost of |
|
// the sqrt() is 44 microseconds, and the small time saving of |
|
// the taylor expansion is not worth the potential of |
|
// additional error buildup. |
|
|
|
// Note that we can get significant renormalisation values |
|
// when we have a larger delta_t due to a glitch eleswhere in |
|
// APM, such as a I2c timeout or a set of EEPROM writes. While |
|
// we would like to avoid these if possible, if it does happen |
|
// we don't want to compound the error by making DCM less |
|
// accurate. |
|
|
|
renorm_val = 1.0 / a.length(); |
|
|
|
// keep the average for reporting |
|
_renorm_val_sum += renorm_val; |
|
_renorm_val_count++; |
|
|
|
if (!(renorm_val < 2.0 && renorm_val > 0.5)) { |
|
// this is larger than it should get - log it as a warning |
|
renorm_range_count++; |
|
if (!(renorm_val < 1.0e6 && renorm_val > 1.0e-6)) { |
|
// we are getting values which are way out of |
|
// range, we will reset the matrix and hope we |
|
// can recover our attitude using drift |
|
// correction before we hit the ground! |
|
//Serial.printf("ERROR: DCM renormalisation error. renorm_val=%f\n", |
|
// renorm_val); |
|
SITL_debug("ERROR: DCM renormalisation error. renorm_val=%f\n", |
|
renorm_val); |
|
renorm_blowup_count++; |
|
return false; |
|
} |
|
} |
|
|
|
result = a * renorm_val; |
|
return true; |
|
} |
|
|
|
/************************************************* |
|
Direction Cosine Matrix IMU: Theory |
|
William Premerlani and Paul Bizard |
|
|
|
Numerical errors will gradually reduce the orthogonality conditions expressed by equation 5 |
|
to approximations rather than identities. In effect, the axes in the two frames of reference no |
|
longer describe a rigid body. Fortunately, numerical error accumulates very slowly, so it is a |
|
simple matter to stay ahead of it. |
|
We call the process of enforcing the orthogonality conditions ÒrenormalizationÓ. |
|
*/ |
|
void |
|
AP_AHRS_DCM::normalize(void) |
|
{ |
|
float error; |
|
Vector3f t0, t1, t2; |
|
|
|
error = _dcm_matrix.a * _dcm_matrix.b; // eq.18 |
|
|
|
t0 = _dcm_matrix.a - (_dcm_matrix.b * (0.5f * error)); // eq.19 |
|
t1 = _dcm_matrix.b - (_dcm_matrix.a * (0.5f * error)); // eq.19 |
|
t2 = t0 % t1; // c= a x b // eq.20 |
|
|
|
if (!renorm(t0, _dcm_matrix.a) || |
|
!renorm(t1, _dcm_matrix.b) || |
|
!renorm(t2, _dcm_matrix.c)) { |
|
// Our solution is blowing up and we will force back |
|
// to last euler angles |
|
reset(true); |
|
} |
|
} |
|
|
|
|
|
// perform drift correction. This function aims to update _omega_P and |
|
// _omega_I with our best estimate of the short term and long term |
|
// gyro error. The _omega_P value is what pulls our attitude solution |
|
// back towards the reference vector quickly. The _omega_I term is an |
|
// attempt to learn the long term drift rate of the gyros. |
|
// |
|
// This function also updates _omega_yaw_P with a yaw correction term |
|
// from our yaw reference vector |
|
void |
|
AP_AHRS_DCM::drift_correction(float deltat) |
|
{ |
|
float error_course = 0; |
|
Vector3f accel; |
|
Vector3f error; |
|
float error_norm = 0; |
|
float yaw_deltat = 0; |
|
|
|
accel = _accel_vector; |
|
|
|
// if enabled, use the GPS to correct our accelerometer vector |
|
// for centripetal forces |
|
if(_centripetal && |
|
_gps != NULL && |
|
_gps->status() == GPS::GPS_OK) { |
|
accel_adjust(accel); |
|
} |
|
|
|
|
|
//*****Roll and Pitch*************** |
|
|
|
// normalise the accelerometer vector to a standard length |
|
// this is important to reduce the impact of noise on the |
|
// drift correction, as very noisy vectors tend to have |
|
// abnormally high lengths. By normalising the length we |
|
// reduce their impact. |
|
float accel_length = accel.length(); |
|
accel *= (_gravity / accel_length); |
|
if (accel.is_inf()) { |
|
// we can't do anything useful with this sample |
|
_omega_P.zero(); |
|
return; |
|
} |
|
|
|
// calculate the error, in m/2^2, between the attitude |
|
// implied by the accelerometers and the attitude |
|
// in the current DCM matrix |
|
error = _dcm_matrix.c % accel; |
|
|
|
// Limit max error to limit the effect of noisy values |
|
// on the algorithm. This limits the error to about 11 |
|
// degrees |
|
error_norm = error.length(); |
|
if (error_norm > 2) { |
|
error *= (2 / error_norm); |
|
} |
|
|
|
// we now want to calculate _omega_P and _omega_I. The |
|
// _omega_P value is what drags us quickly to the |
|
// accelerometer reading. |
|
_omega_P = error * _kp_roll_pitch; |
|
|
|
// the _omega_I is the long term accumulated gyro |
|
// error. This determines how much gyro drift we can |
|
// handle. |
|
_omega_I_sum += error * (_ki_roll_pitch * deltat); |
|
_omega_I_sum_time += deltat; |
|
|
|
// these sums support the reporting of the DCM state via MAVLink |
|
_error_rp_sum += error_norm; |
|
_error_rp_count++; |
|
|
|
// yaw drift correction |
|
|
|
// we only do yaw drift correction when we get a new yaw |
|
// reference vector. In between times we rely on the gyros for |
|
// yaw. Avoiding this calculation on every call to |
|
// update_DCM() saves a lot of time |
|
if (_compass && _compass->use_for_yaw()) { |
|
if (_compass->last_update != _compass_last_update) { |
|
yaw_deltat = 1.0e-6*(_compass->last_update - _compass_last_update); |
|
if (_have_initial_yaw && yaw_deltat < 2.0) { |
|
// Equation 23, Calculating YAW error |
|
// We make the gyro YAW drift correction based |
|
// on compass magnetic heading |
|
error_course = (_dcm_matrix.a.x * _compass->heading_y) - (_dcm_matrix.b.x * _compass->heading_x); |
|
_compass_last_update = _compass->last_update; |
|
} else { |
|
// this is our first estimate of the yaw, |
|
// or the compass has come back online after |
|
// no readings for 2 seconds. |
|
// |
|
// construct a DCM matrix based on the current |
|
// roll/pitch and the compass heading. |
|
// First ensure the compass heading has been |
|
// calculated |
|
_compass->calculate(_dcm_matrix); |
|
|
|
// now construct a new DCM matrix |
|
_compass->null_offsets_disable(); |
|
_dcm_matrix.from_euler(roll, pitch, _compass->heading); |
|
_compass->null_offsets_enable(); |
|
_have_initial_yaw = true; |
|
_compass_last_update = _compass->last_update; |
|
error_course = 0; |
|
} |
|
} |
|
} else if (_gps && _gps->status() == GPS::GPS_OK) { |
|
if (_gps->last_fix_time != _gps_last_update) { |
|
// Use GPS Ground course to correct yaw gyro drift |
|
if (_gps->ground_speed >= GPS_SPEED_MIN) { |
|
yaw_deltat = 1.0e-3*(_gps->last_fix_time - _gps_last_update); |
|
if (_have_initial_yaw && yaw_deltat < 2.0) { |
|
float course_over_ground_x = cos(ToRad(_gps->ground_course/100.0)); |
|
float course_over_ground_y = sin(ToRad(_gps->ground_course/100.0)); |
|
// Equation 23, Calculating YAW error |
|
error_course = (_dcm_matrix.a.x * course_over_ground_y) - (_dcm_matrix.b.x * course_over_ground_x); |
|
_gps_last_update = _gps->last_fix_time; |
|
} else { |
|
// when we first start moving, set the |
|
// DCM matrix to the current |
|
// roll/pitch values, but with yaw |
|
// from the GPS |
|
if (_compass) { |
|
_compass->null_offsets_disable(); |
|
} |
|
_dcm_matrix.from_euler(roll, pitch, ToRad(_gps->ground_course)); |
|
if (_compass) { |
|
_compass->null_offsets_enable(); |
|
} |
|
_have_initial_yaw = true; |
|
error_course = 0; |
|
_gps_last_update = _gps->last_fix_time; |
|
} |
|
} else if (_gps->ground_speed >= GPS_SPEED_RESET) { |
|
// we are not going fast enough to use GPS for |
|
// course correction, but we won't reset |
|
// _have_initial_yaw yet, instead we just let |
|
// the gyro handle yaw |
|
error_course = 0; |
|
} else { |
|
// we are moving very slowly. Reset |
|
// _have_initial_yaw and adjust our heading |
|
// rapidly next time we get a good GPS ground |
|
// speed |
|
error_course = 0; |
|
_have_initial_yaw = false; |
|
} |
|
} |
|
} |
|
|
|
// see if there is any error in our heading relative to the |
|
// yaw reference. This will be zero most of the time, as we |
|
// only calculate it when we get new data from the yaw |
|
// reference source |
|
if (yaw_deltat == 0 || error_course == 0) { |
|
// we don't have a new reference heading. Slowly |
|
// decay the _omega_yaw_P to ensure that if we have |
|
// lost the yaw reference sensor completely we don't |
|
// keep using a stale offset |
|
_omega_yaw_P *= 0.97; |
|
return; |
|
} |
|
|
|
// ensure the course error is scaled from -PI to PI |
|
if (error_course > PI) { |
|
error_course -= 2*PI; |
|
} else if (error_course < -PI) { |
|
error_course += 2*PI; |
|
} |
|
|
|
// Equation 24, Applys the yaw correction to the XYZ rotation of the aircraft |
|
// this gives us an error in radians |
|
error = _dcm_matrix.c * error_course; |
|
|
|
// Adding yaw correction to proportional correction vector. We |
|
// allow the yaw reference source to affect all 3 components |
|
// of _omega_yaw_P as we need to be able to correctly hold a |
|
// heading when roll and pitch are non-zero |
|
_omega_yaw_P = error * _kp_yaw.get(); |
|
|
|
// add yaw correction to integrator correction vector, but |
|
// only for the z gyro. We rely on the accelerometers for x |
|
// and y gyro drift correction. Using the compass or GPS for |
|
// x/y drift correction is too inaccurate, and can lead to |
|
// incorrect builups in the x/y drift. We rely on the |
|
// accelerometers to get the x/y components right |
|
_omega_I_sum.z += error.z * (_ki_yaw * yaw_deltat); |
|
|
|
// we keep the sum of yaw error for reporting via MAVLink. |
|
_error_yaw_sum += error_course; |
|
_error_yaw_count++; |
|
|
|
if (_omega_I_sum_time > 10) { |
|
// every 10 seconds we apply the accumulated |
|
// _omega_I_sum changes to _omega_I. We do this to |
|
// prevent short term feedback between the P and I |
|
// terms of the controller. The _omega_I vector is |
|
// supposed to refect long term gyro drift, but with |
|
// high noise it can start to build up due to short |
|
// term interactions. By summing it over 10 seconds we |
|
// prevent the short term interactions and can apply |
|
// the slope limit more accurately |
|
float drift_limit = _gyro_drift_limit * _omega_I_sum_time; |
|
_omega_I_sum.x = constrain(_omega_I_sum.x, -drift_limit, drift_limit); |
|
_omega_I_sum.y = constrain(_omega_I_sum.y, -drift_limit, drift_limit); |
|
_omega_I_sum.z = constrain(_omega_I_sum.z, -drift_limit, drift_limit); |
|
|
|
_omega_I += _omega_I_sum; |
|
|
|
// zero the sum |
|
_omega_I_sum.zero(); |
|
_omega_I_sum_time = 0; |
|
} |
|
} |
|
|
|
|
|
// calculate the euler angles which will be used for high level |
|
// navigation control |
|
void |
|
AP_AHRS_DCM::euler_angles(void) |
|
{ |
|
_dcm_matrix.to_euler(&roll, &pitch, &yaw); |
|
|
|
roll_sensor = degrees(roll) * 100; |
|
pitch_sensor = degrees(pitch) * 100; |
|
yaw_sensor = degrees(yaw) * 100; |
|
|
|
if (yaw_sensor < 0) |
|
yaw_sensor += 36000; |
|
} |
|
|
|
/* reporting of DCM state for MAVLink */ |
|
|
|
// average error_roll_pitch since last call |
|
float AP_AHRS_DCM::get_error_rp(void) |
|
{ |
|
if (_error_rp_count == 0) { |
|
// this happens when telemetry is setup on two |
|
// serial ports |
|
return _error_rp_last; |
|
} |
|
_error_rp_last = _error_rp_sum / _error_rp_count; |
|
_error_rp_sum = 0; |
|
_error_rp_count = 0; |
|
return _error_rp_last; |
|
} |
|
|
|
// average error_yaw since last call |
|
float AP_AHRS_DCM::get_error_yaw(void) |
|
{ |
|
if (_error_yaw_count == 0) { |
|
// this happens when telemetry is setup on two |
|
// serial ports |
|
return _error_yaw_last; |
|
} |
|
_error_yaw_last = _error_yaw_sum / _error_yaw_count; |
|
_error_yaw_sum = 0; |
|
_error_yaw_count = 0; |
|
return _error_yaw_last; |
|
}
|
|
|