You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
312 lines
11 KiB
312 lines
11 KiB
#include "Copter.h" |
|
|
|
// get_smoothing_gain - returns smoothing gain to be passed into attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw |
|
// result is a number from 2 to 12 with 2 being very sluggish and 12 being very crisp |
|
float Copter::get_smoothing_gain() |
|
{ |
|
return (2.0f + (float)g.rc_feel_rp/10.0f); |
|
} |
|
|
|
// get_pilot_desired_angle - transform pilot's roll or pitch input into a desired lean angle |
|
// returns desired angle in centi-degrees |
|
void Copter::get_pilot_desired_lean_angles(float roll_in, float pitch_in, float &roll_out, float &pitch_out, float angle_max) |
|
{ |
|
// sanity check angle max parameter |
|
aparm.angle_max = constrain_int16(aparm.angle_max,1000,8000); |
|
|
|
// limit max lean angle |
|
angle_max = constrain_float(angle_max, 1000, aparm.angle_max); |
|
|
|
// scale roll_in, pitch_in to ANGLE_MAX parameter range |
|
float scaler = aparm.angle_max/(float)ROLL_PITCH_YAW_INPUT_MAX; |
|
roll_in *= scaler; |
|
pitch_in *= scaler; |
|
|
|
// do circular limit |
|
float total_in = norm(pitch_in, roll_in); |
|
if (total_in > angle_max) { |
|
float ratio = angle_max / total_in; |
|
roll_in *= ratio; |
|
pitch_in *= ratio; |
|
} |
|
|
|
// do lateral tilt to euler roll conversion |
|
roll_in = (18000/M_PI) * atanf(cosf(pitch_in*(M_PI/18000))*tanf(roll_in*(M_PI/18000))); |
|
|
|
// return |
|
roll_out = roll_in; |
|
pitch_out = pitch_in; |
|
} |
|
|
|
// get_pilot_desired_heading - transform pilot's yaw input into a |
|
// desired yaw rate |
|
// returns desired yaw rate in centi-degrees per second |
|
float Copter::get_pilot_desired_yaw_rate(int16_t stick_angle) |
|
{ |
|
float yaw_request; |
|
|
|
// calculate yaw rate request |
|
if (g2.acro_y_expo <= 0) { |
|
yaw_request = stick_angle * g.acro_yaw_p; |
|
} else { |
|
// expo variables |
|
float y_in, y_in3, y_out; |
|
|
|
// range check expo |
|
if (g2.acro_y_expo > 1.0f || g2.acro_y_expo < 0.5f) { |
|
g2.acro_y_expo = 1.0f; |
|
} |
|
|
|
// yaw expo |
|
y_in = float(stick_angle)/ROLL_PITCH_YAW_INPUT_MAX; |
|
y_in3 = y_in*y_in*y_in; |
|
y_out = (g2.acro_y_expo * y_in3) + ((1.0f - g2.acro_y_expo) * y_in); |
|
yaw_request = ROLL_PITCH_YAW_INPUT_MAX * y_out * g.acro_yaw_p; |
|
} |
|
// convert pilot input to the desired yaw rate |
|
return yaw_request; |
|
} |
|
|
|
/************************************************************* |
|
* yaw controllers |
|
*************************************************************/ |
|
|
|
// get_roi_yaw - returns heading towards location held in roi_WP |
|
// should be called at 100hz |
|
float Copter::get_roi_yaw() |
|
{ |
|
static uint8_t roi_yaw_counter = 0; // used to reduce update rate to 100hz |
|
|
|
roi_yaw_counter++; |
|
if (roi_yaw_counter >= 4) { |
|
roi_yaw_counter = 0; |
|
yaw_look_at_WP_bearing = pv_get_bearing_cd(inertial_nav.get_position(), roi_WP); |
|
} |
|
|
|
return yaw_look_at_WP_bearing; |
|
} |
|
|
|
float Copter::get_look_ahead_yaw() |
|
{ |
|
const Vector3f& vel = inertial_nav.get_velocity(); |
|
float speed = norm(vel.x,vel.y); |
|
// Commanded Yaw to automatically look ahead. |
|
if (position_ok() && (speed > YAW_LOOK_AHEAD_MIN_SPEED)) { |
|
yaw_look_ahead_bearing = degrees(atan2f(vel.y,vel.x))*100.0f; |
|
} |
|
return yaw_look_ahead_bearing; |
|
} |
|
|
|
/************************************************************* |
|
* throttle control |
|
****************************************************************/ |
|
|
|
// update estimated throttle required to hover (if necessary) |
|
// called at 100hz |
|
void Copter::update_throttle_hover() |
|
{ |
|
#if FRAME_CONFIG != HELI_FRAME |
|
// if not armed or landed exit |
|
if (!motors->armed() || ap.land_complete) { |
|
return; |
|
} |
|
|
|
// do not update in manual throttle modes or Drift |
|
if (mode_has_manual_throttle(control_mode) || (control_mode == DRIFT)) { |
|
return; |
|
} |
|
|
|
// do not update while climbing or descending |
|
if (!is_zero(pos_control->get_desired_velocity().z)) { |
|
return; |
|
} |
|
|
|
// get throttle output |
|
float throttle = motors->get_throttle(); |
|
|
|
// calc average throttle if we are in a level hover |
|
if (throttle > 0.0f && abs(climb_rate) < 60 && labs(ahrs.roll_sensor) < 500 && labs(ahrs.pitch_sensor) < 500) { |
|
// Can we set the time constant automatically |
|
motors->update_throttle_hover(0.01f); |
|
} |
|
#endif |
|
} |
|
|
|
// set_throttle_takeoff - allows parents to tell throttle controller we are taking off so I terms can be cleared |
|
void Copter::set_throttle_takeoff() |
|
{ |
|
// tell position controller to reset alt target and reset I terms |
|
pos_control->init_takeoff(); |
|
} |
|
|
|
// transform pilot's manual throttle input to make hover throttle mid stick |
|
// used only for manual throttle modes |
|
// thr_mid should be in the range 0 to 1 |
|
// returns throttle output 0 to 1 |
|
float Copter::get_pilot_desired_throttle(int16_t throttle_control, float thr_mid) |
|
{ |
|
if (thr_mid <= 0.0f) { |
|
thr_mid = motors->get_throttle_hover(); |
|
} |
|
|
|
int16_t mid_stick = channel_throttle->get_control_mid(); |
|
// protect against unlikely divide by zero |
|
if (mid_stick <= 0) { |
|
mid_stick = 500; |
|
} |
|
|
|
// ensure reasonable throttle values |
|
throttle_control = constrain_int16(throttle_control,0,1000); |
|
|
|
// calculate normalised throttle input |
|
float throttle_in; |
|
if (throttle_control < mid_stick) { |
|
// below the deadband |
|
throttle_in = ((float)throttle_control)*0.5f/(float)mid_stick; |
|
}else if(throttle_control > mid_stick) { |
|
// above the deadband |
|
throttle_in = 0.5f + ((float)(throttle_control-mid_stick)) * 0.5f / (float)(1000-mid_stick); |
|
}else{ |
|
// must be in the deadband |
|
throttle_in = 0.5f; |
|
} |
|
|
|
float expo = constrain_float(-(thr_mid-0.5)/0.375, -0.5f, 1.0f); |
|
// calculate the output throttle using the given expo function |
|
float throttle_out = throttle_in*(1.0f-expo) + expo*throttle_in*throttle_in*throttle_in; |
|
return throttle_out; |
|
} |
|
|
|
// get_pilot_desired_climb_rate - transform pilot's throttle input to climb rate in cm/s |
|
// without any deadzone at the bottom |
|
float Copter::get_pilot_desired_climb_rate(float throttle_control) |
|
{ |
|
// throttle failsafe check |
|
if( failsafe.radio ) { |
|
return 0.0f; |
|
} |
|
|
|
float desired_rate = 0.0f; |
|
float mid_stick = channel_throttle->get_control_mid(); |
|
float deadband_top = mid_stick + g.throttle_deadzone; |
|
float deadband_bottom = mid_stick - g.throttle_deadzone; |
|
|
|
// ensure a reasonable throttle value |
|
throttle_control = constrain_float(throttle_control,0.0f,1000.0f); |
|
|
|
// ensure a reasonable deadzone |
|
g.throttle_deadzone = constrain_int16(g.throttle_deadzone, 0, 400); |
|
|
|
// check throttle is above, below or in the deadband |
|
if (throttle_control < deadband_bottom) { |
|
// below the deadband |
|
desired_rate = g.pilot_velocity_z_max * (throttle_control-deadband_bottom) / deadband_bottom; |
|
}else if (throttle_control > deadband_top) { |
|
// above the deadband |
|
desired_rate = g.pilot_velocity_z_max * (throttle_control-deadband_top) / (1000.0f-deadband_top); |
|
}else{ |
|
// must be in the deadband |
|
desired_rate = 0.0f; |
|
} |
|
|
|
// desired climb rate for logging |
|
desired_climb_rate = desired_rate; |
|
|
|
return desired_rate; |
|
} |
|
|
|
// get_non_takeoff_throttle - a throttle somewhere between min and mid throttle which should not lead to a takeoff |
|
float Copter::get_non_takeoff_throttle() |
|
{ |
|
return MAX(0,motors->get_throttle_hover()/2.0f); |
|
} |
|
|
|
// get_surface_tracking_climb_rate - hold copter at the desired distance above the ground |
|
// returns climb rate (in cm/s) which should be passed to the position controller |
|
float Copter::get_surface_tracking_climb_rate(int16_t target_rate, float current_alt_target, float dt) |
|
{ |
|
#if RANGEFINDER_ENABLED == ENABLED |
|
static uint32_t last_call_ms = 0; |
|
float distance_error; |
|
float velocity_correction; |
|
float current_alt = inertial_nav.get_altitude(); |
|
|
|
uint32_t now = millis(); |
|
|
|
// reset target altitude if this controller has just been engaged |
|
if (now - last_call_ms > RANGEFINDER_TIMEOUT_MS) { |
|
target_rangefinder_alt = rangefinder_state.alt_cm + current_alt_target - current_alt; |
|
} |
|
last_call_ms = now; |
|
|
|
// adjust rangefinder target alt if motors have not hit their limits |
|
if ((target_rate<0 && !motors->limit.throttle_lower) || (target_rate>0 && !motors->limit.throttle_upper)) { |
|
target_rangefinder_alt += target_rate * dt; |
|
} |
|
|
|
/* |
|
handle rangefinder glitches. When we get a rangefinder reading |
|
more than RANGEFINDER_GLITCH_ALT_CM different from the current |
|
rangefinder reading then we consider it a glitch and reject |
|
until we get RANGEFINDER_GLITCH_NUM_SAMPLES samples in a |
|
row. When that happens we reset the target altitude to the new |
|
reading |
|
*/ |
|
int32_t glitch_cm = rangefinder_state.alt_cm - target_rangefinder_alt; |
|
if (glitch_cm >= RANGEFINDER_GLITCH_ALT_CM) { |
|
rangefinder_state.glitch_count = MAX(rangefinder_state.glitch_count+1,1); |
|
} else if (glitch_cm <= -RANGEFINDER_GLITCH_ALT_CM) { |
|
rangefinder_state.glitch_count = MIN(rangefinder_state.glitch_count-1,-1); |
|
} else { |
|
rangefinder_state.glitch_count = 0; |
|
} |
|
if (abs(rangefinder_state.glitch_count) >= RANGEFINDER_GLITCH_NUM_SAMPLES) { |
|
// shift to the new rangefinder reading |
|
target_rangefinder_alt = rangefinder_state.alt_cm; |
|
rangefinder_state.glitch_count = 0; |
|
} |
|
if (rangefinder_state.glitch_count != 0) { |
|
// we are currently glitching, just use the target rate |
|
return target_rate; |
|
} |
|
|
|
// calc desired velocity correction from target rangefinder alt vs actual rangefinder alt (remove the error already passed to Altitude controller to avoid oscillations) |
|
distance_error = (target_rangefinder_alt - rangefinder_state.alt_cm) - (current_alt_target - current_alt); |
|
velocity_correction = distance_error * g.rangefinder_gain; |
|
velocity_correction = constrain_float(velocity_correction, -THR_SURFACE_TRACKING_VELZ_MAX, THR_SURFACE_TRACKING_VELZ_MAX); |
|
|
|
// return combined pilot climb rate + rate to correct rangefinder alt error |
|
return (target_rate + velocity_correction); |
|
#else |
|
return (float)target_rate; |
|
#endif |
|
} |
|
|
|
// get target climb rate reduced to avoid obstacles and altitude fence |
|
float Copter::get_avoidance_adjusted_climbrate(float target_rate) |
|
{ |
|
#if AC_AVOID_ENABLED == ENABLED |
|
avoid.adjust_velocity_z(pos_control->get_pos_z_kP(), pos_control->get_accel_z(), target_rate); |
|
return target_rate; |
|
#else |
|
return target_rate; |
|
#endif |
|
} |
|
|
|
// set_accel_throttle_I_from_pilot_throttle - smoothes transition from pilot controlled throttle to autopilot throttle |
|
void Copter::set_accel_throttle_I_from_pilot_throttle() |
|
{ |
|
// get last throttle input sent to attitude controller |
|
float pilot_throttle = constrain_float(attitude_control->get_throttle_in(), 0.0f, 1.0f); |
|
// shift difference between pilot's throttle and hover throttle into accelerometer I |
|
g.pid_accel_z.set_integrator((pilot_throttle-motors->get_throttle_hover()) * 1000.0f); |
|
} |
|
|
|
// rotate vector from vehicle's perspective to North-East frame |
|
void Copter::rotate_body_frame_to_NE(float &x, float &y) |
|
{ |
|
float ne_x = x*ahrs.cos_yaw() - y*ahrs.sin_yaw(); |
|
float ne_y = x*ahrs.sin_yaw() + y*ahrs.cos_yaw(); |
|
x = ne_x; |
|
y = ne_y; |
|
}
|
|
|