You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1018 lines
37 KiB
1018 lines
37 KiB
#include <assert.h> |
|
#include <utility> |
|
#include <stdio.h> |
|
|
|
#include <AP_HAL/AP_HAL.h> |
|
|
|
#include "AP_InertialSensor_MPU6000.h" |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX |
|
#include <AP_HAL_Linux/GPIO.h> |
|
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLEBOARD || CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXF |
|
#define MPU6000_DRDY_PIN BBB_P8_14 |
|
#elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_RASPILOT |
|
#define MPU6000_DRDY_PIN RPI_GPIO_24 |
|
#elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_MINLURE |
|
#define MPU6000_DRDY_PIN MINNOW_GPIO_I2S_CLK |
|
#elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_DISCO || CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BEBOP |
|
#define MPU6000_EXT_SYNC_ENABLE 1 |
|
#endif |
|
#endif |
|
|
|
#define debug(fmt, args ...) do {printf("MPU6000: " fmt "\n", ## args); } while(0) |
|
|
|
/* |
|
EXT_SYNC allows for frame synchronisation with an external device |
|
such as a camera. When enabled the LSB of AccelZ holds the FSYNC bit |
|
*/ |
|
#ifndef MPU6000_EXT_SYNC_ENABLE |
|
#define MPU6000_EXT_SYNC_ENABLE 0 |
|
#endif |
|
|
|
// MPU 6000 registers |
|
#define MPUREG_XG_OFFS_TC 0x00 |
|
#define MPUREG_YG_OFFS_TC 0x01 |
|
#define MPUREG_ZG_OFFS_TC 0x02 |
|
#define MPUREG_X_FINE_GAIN 0x03 |
|
#define MPUREG_Y_FINE_GAIN 0x04 |
|
#define MPUREG_Z_FINE_GAIN 0x05 |
|
#define MPUREG_XA_OFFS_H 0x06 // X axis accelerometer offset (high byte) |
|
#define MPUREG_XA_OFFS_L 0x07 // X axis accelerometer offset (low byte) |
|
#define MPUREG_YA_OFFS_H 0x08 // Y axis accelerometer offset (high byte) |
|
#define MPUREG_YA_OFFS_L 0x09 // Y axis accelerometer offset (low byte) |
|
#define MPUREG_ZA_OFFS_H 0x0A // Z axis accelerometer offset (high byte) |
|
#define MPUREG_ZA_OFFS_L 0x0B // Z axis accelerometer offset (low byte) |
|
#define MPUREG_PRODUCT_ID 0x0C // Product ID Register |
|
#define MPUREG_XG_OFFS_USRH 0x13 // X axis gyro offset (high byte) |
|
#define MPUREG_XG_OFFS_USRL 0x14 // X axis gyro offset (low byte) |
|
#define MPUREG_YG_OFFS_USRH 0x15 // Y axis gyro offset (high byte) |
|
#define MPUREG_YG_OFFS_USRL 0x16 // Y axis gyro offset (low byte) |
|
#define MPUREG_ZG_OFFS_USRH 0x17 // Z axis gyro offset (high byte) |
|
#define MPUREG_ZG_OFFS_USRL 0x18 // Z axis gyro offset (low byte) |
|
#define MPUREG_SMPLRT_DIV 0x19 // sample rate. Fsample= 1Khz/(<this value>+1) = 200Hz |
|
# define MPUREG_SMPLRT_1000HZ 0x00 |
|
# define MPUREG_SMPLRT_500HZ 0x01 |
|
# define MPUREG_SMPLRT_250HZ 0x03 |
|
# define MPUREG_SMPLRT_200HZ 0x04 |
|
# define MPUREG_SMPLRT_100HZ 0x09 |
|
# define MPUREG_SMPLRT_50HZ 0x13 |
|
#define MPUREG_CONFIG 0x1A |
|
# define MPUREG_CONFIG_EXT_SYNC_SHIFT 3 |
|
# define MPUREG_CONFIG_EXT_SYNC_GX 0x02 |
|
# define MPUREG_CONFIG_EXT_SYNC_GY 0x03 |
|
# define MPUREG_CONFIG_EXT_SYNC_GZ 0x04 |
|
# define MPUREG_CONFIG_EXT_SYNC_AX 0x05 |
|
# define MPUREG_CONFIG_EXT_SYNC_AY 0x06 |
|
# define MPUREG_CONFIG_EXT_SYNC_AZ 0x07 |
|
# define MPUREG_CONFIG_FIFO_MODE_STOP 0x40 |
|
#define MPUREG_GYRO_CONFIG 0x1B |
|
// bit definitions for MPUREG_GYRO_CONFIG |
|
# define BITS_GYRO_FS_250DPS 0x00 |
|
# define BITS_GYRO_FS_500DPS 0x08 |
|
# define BITS_GYRO_FS_1000DPS 0x10 |
|
# define BITS_GYRO_FS_2000DPS 0x18 |
|
# define BITS_GYRO_FS_MASK 0x18 // only bits 3 and 4 are used for gyro full scale so use this to mask off other bits |
|
# define BITS_GYRO_ZGYRO_SELFTEST 0x20 |
|
# define BITS_GYRO_YGYRO_SELFTEST 0x40 |
|
# define BITS_GYRO_XGYRO_SELFTEST 0x80 |
|
#define MPUREG_ACCEL_CONFIG 0x1C |
|
#define MPUREG_MOT_THR 0x1F // detection threshold for Motion interrupt generation. Motion is detected when the absolute value of any of the accelerometer measurements exceeds this |
|
#define MPUREG_MOT_DUR 0x20 // duration counter threshold for Motion interrupt generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit of 1 LSB = 1 ms |
|
#define MPUREG_ZRMOT_THR 0x21 // detection threshold for Zero Motion interrupt generation. |
|
#define MPUREG_ZRMOT_DUR 0x22 // duration counter threshold for Zero Motion interrupt generation. The duration counter ticks at 16 Hz, therefore ZRMOT_DUR has a unit of 1 LSB = 64 ms. |
|
#define MPUREG_FIFO_EN 0x23 |
|
# define BIT_TEMP_FIFO_EN 0x80 |
|
# define BIT_XG_FIFO_EN 0x40 |
|
# define BIT_YG_FIFO_EN 0x20 |
|
# define BIT_ZG_FIFO_EN 0x10 |
|
# define BIT_ACCEL_FIFO_EN 0x08 |
|
# define BIT_SLV2_FIFO_EN 0x04 |
|
# define BIT_SLV1_FIFO_EN 0x02 |
|
# define BIT_SLV0_FIFI_EN0 0x01 |
|
#define MPUREG_I2C_MST_CTRL 0x24 |
|
# define BIT_I2C_MST_P_NSR 0x10 |
|
# define BIT_I2C_MST_CLK_400KHZ 0x0D |
|
#define MPUREG_I2C_SLV0_ADDR 0x25 |
|
#define MPUREG_I2C_SLV1_ADDR 0x28 |
|
#define MPUREG_I2C_SLV2_ADDR 0x2B |
|
#define MPUREG_I2C_SLV3_ADDR 0x2E |
|
#define MPUREG_INT_PIN_CFG 0x37 |
|
# define BIT_INT_RD_CLEAR 0x10 // clear the interrupt when any read occurs |
|
# define BIT_LATCH_INT_EN 0x20 // latch data ready pin |
|
#define MPUREG_I2C_SLV4_CTRL 0x34 |
|
#define MPUREG_INT_ENABLE 0x38 |
|
// bit definitions for MPUREG_INT_ENABLE |
|
# define BIT_RAW_RDY_EN 0x01 |
|
# define BIT_DMP_INT_EN 0x02 // enabling this bit (DMP_INT_EN) also enables RAW_RDY_EN it seems |
|
# define BIT_UNKNOWN_INT_EN 0x04 |
|
# define BIT_I2C_MST_INT_EN 0x08 |
|
# define BIT_FIFO_OFLOW_EN 0x10 |
|
# define BIT_ZMOT_EN 0x20 |
|
# define BIT_MOT_EN 0x40 |
|
# define BIT_FF_EN 0x80 |
|
#define MPUREG_INT_STATUS 0x3A |
|
// bit definitions for MPUREG_INT_STATUS (same bit pattern as above because this register shows what interrupt actually fired) |
|
# define BIT_RAW_RDY_INT 0x01 |
|
# define BIT_DMP_INT 0x02 |
|
# define BIT_UNKNOWN_INT 0x04 |
|
# define BIT_I2C_MST_INT 0x08 |
|
# define BIT_FIFO_OFLOW_INT 0x10 |
|
# define BIT_ZMOT_INT 0x20 |
|
# define BIT_MOT_INT 0x40 |
|
# define BIT_FF_INT 0x80 |
|
#define MPUREG_ACCEL_XOUT_H 0x3B |
|
#define MPUREG_ACCEL_XOUT_L 0x3C |
|
#define MPUREG_ACCEL_YOUT_H 0x3D |
|
#define MPUREG_ACCEL_YOUT_L 0x3E |
|
#define MPUREG_ACCEL_ZOUT_H 0x3F |
|
#define MPUREG_ACCEL_ZOUT_L 0x40 |
|
#define MPUREG_TEMP_OUT_H 0x41 |
|
#define MPUREG_TEMP_OUT_L 0x42 |
|
#define MPUREG_GYRO_XOUT_H 0x43 |
|
#define MPUREG_GYRO_XOUT_L 0x44 |
|
#define MPUREG_GYRO_YOUT_H 0x45 |
|
#define MPUREG_GYRO_YOUT_L 0x46 |
|
#define MPUREG_GYRO_ZOUT_H 0x47 |
|
#define MPUREG_GYRO_ZOUT_L 0x48 |
|
#define MPUREG_EXT_SENS_DATA_00 0x49 |
|
#define MPUREG_I2C_SLV0_DO 0x63 |
|
#define MPUREG_I2C_MST_DELAY_CTRL 0x67 |
|
# define BIT_I2C_SLV0_DLY_EN 0x01 |
|
# define BIT_I2C_SLV1_DLY_EN 0x02 |
|
# define BIT_I2C_SLV2_DLY_EN 0x04 |
|
# define BIT_I2C_SLV3_DLY_EN 0x08 |
|
#define MPUREG_USER_CTRL 0x6A |
|
// bit definitions for MPUREG_USER_CTRL |
|
# define BIT_USER_CTRL_SIG_COND_RESET 0x01 // resets signal paths and results registers for all sensors (gyros, accel, temp) |
|
# define BIT_USER_CTRL_I2C_MST_RESET 0x02 // reset I2C Master (only applicable if I2C_MST_EN bit is set) |
|
# define BIT_USER_CTRL_FIFO_RESET 0x04 // Reset (i.e. clear) FIFO buffer |
|
# define BIT_USER_CTRL_DMP_RESET 0x08 // Reset DMP |
|
# define BIT_USER_CTRL_I2C_IF_DIS 0x10 // Disable primary I2C interface and enable hal.spi->interface |
|
# define BIT_USER_CTRL_I2C_MST_EN 0x20 // Enable MPU to act as the I2C Master to external slave sensors |
|
# define BIT_USER_CTRL_FIFO_EN 0x40 // Enable FIFO operations |
|
# define BIT_USER_CTRL_DMP_EN 0x80 // Enable DMP operations |
|
#define MPUREG_PWR_MGMT_1 0x6B |
|
# define BIT_PWR_MGMT_1_CLK_INTERNAL 0x00 // clock set to internal 8Mhz oscillator |
|
# define BIT_PWR_MGMT_1_CLK_XGYRO 0x01 // PLL with X axis gyroscope reference |
|
# define BIT_PWR_MGMT_1_CLK_YGYRO 0x02 // PLL with Y axis gyroscope reference |
|
# define BIT_PWR_MGMT_1_CLK_ZGYRO 0x03 // PLL with Z axis gyroscope reference |
|
# define BIT_PWR_MGMT_1_CLK_EXT32KHZ 0x04 // PLL with external 32.768kHz reference |
|
# define BIT_PWR_MGMT_1_CLK_EXT19MHZ 0x05 // PLL with external 19.2MHz reference |
|
# define BIT_PWR_MGMT_1_CLK_STOP 0x07 // Stops the clock and keeps the timing generator in reset |
|
# define BIT_PWR_MGMT_1_TEMP_DIS 0x08 // disable temperature sensor |
|
# define BIT_PWR_MGMT_1_CYCLE 0x20 // put sensor into cycle mode. cycles between sleep mode and waking up to take a single sample of data from active sensors at a rate determined by LP_WAKE_CTRL |
|
# define BIT_PWR_MGMT_1_SLEEP 0x40 // put sensor into low power sleep mode |
|
# define BIT_PWR_MGMT_1_DEVICE_RESET 0x80 // reset entire device |
|
#define MPUREG_PWR_MGMT_2 0x6C // allows the user to configure the frequency of wake-ups in Accelerometer Only Low Power Mode |
|
#define MPUREG_BANK_SEL 0x6D // DMP bank selection register (used to indirectly access DMP registers) |
|
#define MPUREG_MEM_START_ADDR 0x6E // DMP memory start address (used to indirectly write to dmp memory) |
|
#define MPUREG_MEM_R_W 0x6F // DMP related register |
|
#define MPUREG_DMP_CFG_1 0x70 // DMP related register |
|
#define MPUREG_DMP_CFG_2 0x71 // DMP related register |
|
#define MPUREG_FIFO_COUNTH 0x72 |
|
#define MPUREG_FIFO_COUNTL 0x73 |
|
#define MPUREG_FIFO_R_W 0x74 |
|
#define MPUREG_WHOAMI 0x75 |
|
|
|
// ICM2608 specific registers |
|
#define ICMREG_ACCEL_CONFIG2 0x1D |
|
#define ICM_ACC_DLPF_CFG_1046HZ_NOLPF 0x00 |
|
#define ICM_ACC_DLPF_CFG_218HZ 0x01 |
|
#define ICM_ACC_DLPF_CFG_99HZ 0x02 |
|
#define ICM_ACC_DLPF_CFG_44HZ 0x03 |
|
#define ICM_ACC_DLPF_CFG_21HZ 0x04 |
|
#define ICM_ACC_DLPF_CFG_10HZ 0x05 |
|
#define ICM_ACC_DLPF_CFG_5HZ 0x06 |
|
#define ICM_ACC_DLPF_CFG_420HZ 0x07 |
|
#define ICM_ACC_FCHOICE_B 0x08 |
|
|
|
/* this is an undocumented register which |
|
if set incorrectly results in getting a 2.7m/s/s offset |
|
on the Y axis of the accelerometer |
|
*/ |
|
#define MPUREG_ICM_UNDOC1 0x11 |
|
#define MPUREG_ICM_UNDOC1_VALUE 0xc9 |
|
|
|
// WHOAMI values |
|
#define MPU_WHOAMI_6000 0x68 |
|
#define ICM_WHOAMI_20608 0xaf |
|
|
|
#define BIT_READ_FLAG 0x80 |
|
#define BIT_I2C_SLVX_EN 0x80 |
|
|
|
// Configuration bits MPU 3000 and MPU 6000 (not revised)? |
|
#define BITS_DLPF_CFG_256HZ_NOLPF2 0x00 |
|
#define BITS_DLPF_CFG_188HZ 0x01 |
|
#define BITS_DLPF_CFG_98HZ 0x02 |
|
#define BITS_DLPF_CFG_42HZ 0x03 |
|
#define BITS_DLPF_CFG_20HZ 0x04 |
|
#define BITS_DLPF_CFG_10HZ 0x05 |
|
#define BITS_DLPF_CFG_5HZ 0x06 |
|
#define BITS_DLPF_CFG_2100HZ_NOLPF 0x07 |
|
#define BITS_DLPF_CFG_MASK 0x07 |
|
|
|
// Product ID Description for MPU6000 |
|
// high 4 bits low 4 bits |
|
// Product Name Product Revision |
|
#define MPU6000ES_REV_C4 0x14 // 0001 0100 |
|
#define MPU6000ES_REV_C5 0x15 // 0001 0101 |
|
#define MPU6000ES_REV_D6 0x16 // 0001 0110 |
|
#define MPU6000ES_REV_D7 0x17 // 0001 0111 |
|
#define MPU6000ES_REV_D8 0x18 // 0001 1000 |
|
#define MPU6000_REV_C4 0x54 // 0101 0100 |
|
#define MPU6000_REV_C5 0x55 // 0101 0101 |
|
#define MPU6000_REV_D6 0x56 // 0101 0110 |
|
#define MPU6000_REV_D7 0x57 // 0101 0111 |
|
#define MPU6000_REV_D8 0x58 // 0101 1000 |
|
#define MPU6000_REV_D9 0x59 // 0101 1001 |
|
|
|
#define MPU_SAMPLE_SIZE 14 |
|
#define MPU_FIFO_DOWNSAMPLE_COUNT 8 |
|
#define MPU_FIFO_BUFFER_LEN 16 |
|
|
|
#define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx] << 8) | v[2*idx+1])) |
|
#define uint16_val(v, idx)(((uint16_t)v[2*idx] << 8) | v[2*idx+1]) |
|
|
|
/* |
|
* RM-MPU-6000A-00.pdf, page 33, section 4.25 lists LSB sensitivity of |
|
* gyro as 16.4 LSB/DPS at scale factor of +/- 2000dps (FS_SEL==3) |
|
*/ |
|
static const float GYRO_SCALE = (0.0174532f / 16.4f); |
|
|
|
/* |
|
* RM-MPU-6000A-00.pdf, page 31, section 4.23 lists LSB sensitivity of |
|
* accel as 4096 LSB/mg at scale factor of +/- 8g (AFS_SEL==2) |
|
* |
|
* See note below about accel scaling of engineering sample MPU6k |
|
* variants however |
|
*/ |
|
|
|
AP_InertialSensor_MPU6000::AP_InertialSensor_MPU6000(AP_InertialSensor &imu, |
|
AP_HAL::OwnPtr<AP_HAL::Device> dev, |
|
enum Rotation rotation) |
|
: AP_InertialSensor_Backend(imu) |
|
, _temp_filter(1000, 1) |
|
, _dev(std::move(dev)) |
|
, _rotation(rotation) |
|
{ |
|
} |
|
|
|
AP_InertialSensor_MPU6000::~AP_InertialSensor_MPU6000() |
|
{ |
|
if (_fifo_buffer != nullptr) { |
|
hal.util->dma_free(_fifo_buffer, MPU_FIFO_BUFFER_LEN * MPU_SAMPLE_SIZE); |
|
} |
|
delete _auxiliary_bus; |
|
} |
|
|
|
AP_InertialSensor_Backend *AP_InertialSensor_MPU6000::probe(AP_InertialSensor &imu, |
|
AP_HAL::OwnPtr<AP_HAL::I2CDevice> dev, |
|
enum Rotation rotation) |
|
{ |
|
if (!dev) { |
|
return nullptr; |
|
} |
|
AP_InertialSensor_MPU6000 *sensor = |
|
new AP_InertialSensor_MPU6000(imu, std::move(dev), rotation); |
|
if (!sensor || !sensor->_init()) { |
|
delete sensor; |
|
return nullptr; |
|
} |
|
sensor->_id = HAL_INS_MPU60XX_I2C; |
|
|
|
return sensor; |
|
} |
|
|
|
|
|
AP_InertialSensor_Backend *AP_InertialSensor_MPU6000::probe(AP_InertialSensor &imu, |
|
AP_HAL::OwnPtr<AP_HAL::SPIDevice> dev, |
|
enum Rotation rotation) |
|
{ |
|
if (!dev) { |
|
return nullptr; |
|
} |
|
AP_InertialSensor_MPU6000 *sensor; |
|
|
|
dev->set_read_flag(0x80); |
|
|
|
sensor = new AP_InertialSensor_MPU6000(imu, std::move(dev), rotation); |
|
if (!sensor || !sensor->_init()) { |
|
delete sensor; |
|
return nullptr; |
|
} |
|
sensor->_id = HAL_INS_MPU60XX_SPI; |
|
|
|
return sensor; |
|
} |
|
|
|
bool AP_InertialSensor_MPU6000::_init() |
|
{ |
|
#ifdef MPU6000_DRDY_PIN |
|
_drdy_pin = hal.gpio->channel(MPU6000_DRDY_PIN); |
|
_drdy_pin->mode(HAL_GPIO_INPUT); |
|
#endif |
|
|
|
bool success = _hardware_init(); |
|
|
|
return success; |
|
} |
|
|
|
void AP_InertialSensor_MPU6000::_fifo_reset() |
|
{ |
|
uint8_t user_ctrl = _last_stat_user_ctrl; |
|
user_ctrl &= ~(BIT_USER_CTRL_FIFO_RESET | BIT_USER_CTRL_FIFO_EN); |
|
_dev->set_speed(AP_HAL::Device::SPEED_LOW); |
|
_register_write(MPUREG_FIFO_EN, 0); |
|
_register_write(MPUREG_USER_CTRL, user_ctrl); |
|
_register_write(MPUREG_USER_CTRL, user_ctrl | BIT_USER_CTRL_FIFO_RESET); |
|
_register_write(MPUREG_USER_CTRL, user_ctrl | BIT_USER_CTRL_FIFO_EN); |
|
_register_write(MPUREG_FIFO_EN, BIT_XG_FIFO_EN | BIT_YG_FIFO_EN | |
|
BIT_ZG_FIFO_EN | BIT_ACCEL_FIFO_EN | BIT_TEMP_FIFO_EN, true); |
|
hal.scheduler->delay_microseconds(1); |
|
_dev->set_speed(AP_HAL::Device::SPEED_HIGH); |
|
_last_stat_user_ctrl = user_ctrl | BIT_USER_CTRL_FIFO_EN; |
|
} |
|
|
|
bool AP_InertialSensor_MPU6000::_has_auxiliary_bus() |
|
{ |
|
return _dev->bus_type() != AP_HAL::Device::BUS_TYPE_I2C; |
|
} |
|
|
|
void AP_InertialSensor_MPU6000::start() |
|
{ |
|
if (!_dev->get_semaphore()->take(0)) { |
|
return; |
|
} |
|
|
|
// initially run the bus at low speed |
|
_dev->set_speed(AP_HAL::Device::SPEED_LOW); |
|
|
|
// only used for wake-up in accelerometer only low power mode |
|
_register_write(MPUREG_PWR_MGMT_2, 0x00); |
|
hal.scheduler->delay(1); |
|
|
|
// always use FIFO |
|
_fifo_reset(); |
|
|
|
// grab the used instances |
|
_gyro_instance = _imu.register_gyro(1000, _dev->get_bus_id_devtype(DEVTYPE_GYR_MPU6000)); |
|
_accel_instance = _imu.register_accel(1000, _dev->get_bus_id_devtype(DEVTYPE_ACC_MPU6000)); |
|
|
|
// setup ODR and on-sensor filtering |
|
_set_filter_register(); |
|
|
|
// set sample rate to 1000Hz and apply a software filter |
|
// In this configuration, the gyro sample rate is 8kHz |
|
_register_write(MPUREG_SMPLRT_DIV, 0, true); |
|
hal.scheduler->delay(1); |
|
|
|
// Gyro scale 2000º/s |
|
_register_write(MPUREG_GYRO_CONFIG, BITS_GYRO_FS_2000DPS, true); |
|
hal.scheduler->delay(1); |
|
|
|
// read the product ID rev c has 1/2 the sensitivity of rev d |
|
uint8_t product_id = _register_read(MPUREG_PRODUCT_ID); |
|
//Serial.printf("Product_ID= 0x%x\n", (unsigned) _mpu6000_product_id); |
|
|
|
if (!_is_icm_device && |
|
((product_id == MPU6000ES_REV_C4) || |
|
(product_id == MPU6000ES_REV_C5) || |
|
(product_id == MPU6000_REV_C4) || |
|
(product_id == MPU6000_REV_C5))) { |
|
// Accel scale 8g (4096 LSB/g) |
|
// Rev C has different scaling than rev D |
|
_register_write(MPUREG_ACCEL_CONFIG,1<<3, true); |
|
_accel_scale = GRAVITY_MSS / 4096.f; |
|
} else { |
|
// Accel scale 16g (2048 LSB/g) |
|
_register_write(MPUREG_ACCEL_CONFIG,3<<3, true); |
|
_accel_scale = GRAVITY_MSS / 2048.f; |
|
} |
|
hal.scheduler->delay(1); |
|
|
|
if (_is_icm_device) { |
|
// this avoids a sensor bug, see description above |
|
_register_write(MPUREG_ICM_UNDOC1, MPUREG_ICM_UNDOC1_VALUE, true); |
|
} |
|
|
|
// configure interrupt to fire when new data arrives |
|
_register_write(MPUREG_INT_ENABLE, BIT_RAW_RDY_EN); |
|
hal.scheduler->delay(1); |
|
|
|
// clear interrupt on any read, and hold the data ready pin high |
|
// until we clear the interrupt |
|
_register_write(MPUREG_INT_PIN_CFG, BIT_INT_RD_CLEAR | BIT_LATCH_INT_EN); |
|
|
|
// now that we have initialised, we set the bus speed to high |
|
_dev->set_speed(AP_HAL::Device::SPEED_HIGH); |
|
|
|
_dev->get_semaphore()->give(); |
|
|
|
// setup sensor rotations from probe() |
|
set_gyro_orientation(_gyro_instance, _rotation); |
|
set_accel_orientation(_accel_instance, _rotation); |
|
|
|
// allocate fifo buffer |
|
_fifo_buffer = (uint8_t *)hal.util->dma_allocate(MPU_FIFO_BUFFER_LEN * MPU_SAMPLE_SIZE); |
|
if (_fifo_buffer == nullptr) { |
|
AP_HAL::panic("MPU6000: Unable to allocate FIFO buffer"); |
|
} |
|
|
|
// start the timer process to read samples |
|
_dev->register_periodic_callback(1000, FUNCTOR_BIND_MEMBER(&AP_InertialSensor_MPU6000::_poll_data, bool)); |
|
} |
|
|
|
|
|
/* |
|
publish any pending data |
|
*/ |
|
bool AP_InertialSensor_MPU6000::update() |
|
{ |
|
update_accel(_accel_instance); |
|
update_gyro(_gyro_instance); |
|
|
|
_publish_temperature(_accel_instance, _temp_filtered); |
|
|
|
return true; |
|
} |
|
|
|
/* |
|
accumulate new samples |
|
*/ |
|
void AP_InertialSensor_MPU6000::accumulate() |
|
{ |
|
// nothing to do |
|
} |
|
|
|
AuxiliaryBus *AP_InertialSensor_MPU6000::get_auxiliary_bus() |
|
{ |
|
if (_auxiliary_bus) { |
|
return _auxiliary_bus; |
|
} |
|
|
|
if (_has_auxiliary_bus()) { |
|
_auxiliary_bus = new AP_MPU6000_AuxiliaryBus(*this, _dev->get_bus_id()); |
|
} |
|
|
|
return _auxiliary_bus; |
|
} |
|
|
|
/* |
|
* Return true if the MPU6000 has new data available for reading. |
|
* |
|
* We use the data ready pin if it is available. Otherwise, read the |
|
* status register. |
|
*/ |
|
bool AP_InertialSensor_MPU6000::_data_ready() |
|
{ |
|
if (_drdy_pin) { |
|
return _drdy_pin->read() != 0; |
|
} |
|
uint8_t status = _register_read(MPUREG_INT_STATUS); |
|
return (status & BIT_RAW_RDY_INT) != 0; |
|
} |
|
|
|
/* |
|
* Timer process to poll for new data from the MPU6000. Called from bus thread with semaphore held |
|
*/ |
|
bool AP_InertialSensor_MPU6000::_poll_data() |
|
{ |
|
_read_fifo(); |
|
return true; |
|
} |
|
|
|
bool AP_InertialSensor_MPU6000::_accumulate(uint8_t *samples, uint8_t n_samples) |
|
{ |
|
for (uint8_t i = 0; i < n_samples; i++) { |
|
const uint8_t *data = samples + MPU_SAMPLE_SIZE * i; |
|
Vector3f accel, gyro; |
|
bool fsync_set = false; |
|
|
|
#if MPU6000_EXT_SYNC_ENABLE |
|
fsync_set = (int16_val(data, 2) & 1U) != 0; |
|
#endif |
|
|
|
accel = Vector3f(int16_val(data, 1), |
|
int16_val(data, 0), |
|
-int16_val(data, 2)); |
|
accel *= _accel_scale; |
|
|
|
int16_t t2 = int16_val(data, 3); |
|
if (!_check_raw_temp(t2)) { |
|
debug("temp reset %d %d", _raw_temp, t2); |
|
_fifo_reset(); |
|
return false; |
|
} |
|
float temp = t2/340.0 + 36.53; |
|
|
|
gyro = Vector3f(int16_val(data, 5), |
|
int16_val(data, 4), |
|
-int16_val(data, 6)); |
|
gyro *= GYRO_SCALE; |
|
|
|
_rotate_and_correct_accel(_accel_instance, accel); |
|
_rotate_and_correct_gyro(_gyro_instance, gyro); |
|
|
|
_notify_new_accel_raw_sample(_accel_instance, accel, AP_HAL::micros64(), fsync_set); |
|
_notify_new_gyro_raw_sample(_gyro_instance, gyro); |
|
|
|
_temp_filtered = _temp_filter.apply(temp); |
|
} |
|
return true; |
|
} |
|
|
|
/* |
|
when doing fast sampling the sensor gives us 8k samples/second. Every 2nd accel sample is a duplicate. |
|
|
|
To filter this we first apply a 1p low pass filter at 188Hz, then we |
|
average over 8 samples to bring the data rate down to 1kHz. This |
|
gives very good aliasing rejection at frequencies well above what |
|
can be handled with 1kHz sample rates. |
|
*/ |
|
bool AP_InertialSensor_MPU6000::_accumulate_fast_sampling(uint8_t *samples, uint8_t n_samples) |
|
{ |
|
int32_t tsum = 0; |
|
const int32_t clip_limit = AP_INERTIAL_SENSOR_ACCEL_CLIP_THRESH_MSS / _accel_scale; |
|
bool clipped = false; |
|
bool ret = true; |
|
|
|
for (uint8_t i = 0; i < n_samples; i++) { |
|
const uint8_t *data = samples + MPU_SAMPLE_SIZE * i; |
|
|
|
// use temperatue to detect FIFO corruption |
|
int16_t t2 = int16_val(data, 3); |
|
if (!_check_raw_temp(t2)) { |
|
debug("temp reset %d %d", _raw_temp, t2); |
|
_fifo_reset(); |
|
ret = false; |
|
break; |
|
} |
|
tsum += t2; |
|
|
|
if ((_accum.count & 1) == 0) { |
|
// accel data is at 4kHz |
|
Vector3f a(int16_val(data, 1), |
|
int16_val(data, 0), |
|
-int16_val(data, 2)); |
|
if (fabsf(a.x) > clip_limit || |
|
fabsf(a.y) > clip_limit || |
|
fabsf(a.z) > clip_limit) { |
|
clipped = true; |
|
} |
|
_accum.accel += _accum.accel_filter.apply(a); |
|
} |
|
|
|
Vector3f g(int16_val(data, 5), |
|
int16_val(data, 4), |
|
-int16_val(data, 6)); |
|
|
|
_accum.gyro += _accum.gyro_filter.apply(g); |
|
_accum.count++; |
|
|
|
if (_accum.count == MPU_FIFO_DOWNSAMPLE_COUNT) { |
|
float ascale = _accel_scale / (MPU_FIFO_DOWNSAMPLE_COUNT/2); |
|
_accum.accel *= ascale; |
|
|
|
float gscale = GYRO_SCALE / MPU_FIFO_DOWNSAMPLE_COUNT; |
|
_accum.gyro *= gscale; |
|
|
|
_rotate_and_correct_accel(_accel_instance, _accum.accel); |
|
_rotate_and_correct_gyro(_gyro_instance, _accum.gyro); |
|
|
|
_notify_new_accel_raw_sample(_accel_instance, _accum.accel, AP_HAL::micros64(), false); |
|
_notify_new_gyro_raw_sample(_gyro_instance, _accum.gyro); |
|
|
|
_accum.accel.zero(); |
|
_accum.gyro.zero(); |
|
_accum.count = 0; |
|
} |
|
} |
|
|
|
if (clipped) { |
|
increment_clip_count(_accel_instance); |
|
} |
|
|
|
if (ret) { |
|
float temp = (tsum/n_samples)/340.0 + 36.53; |
|
_temp_filtered = _temp_filter.apply(temp); |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
void AP_InertialSensor_MPU6000::_read_fifo() |
|
{ |
|
uint8_t n_samples; |
|
uint16_t bytes_read; |
|
uint8_t *rx = _fifo_buffer; |
|
bool need_reset = false; |
|
|
|
if (!_block_read(MPUREG_FIFO_COUNTH, rx, 2)) { |
|
goto check_registers; |
|
} |
|
|
|
bytes_read = uint16_val(rx, 0); |
|
n_samples = bytes_read / MPU_SAMPLE_SIZE; |
|
|
|
if (n_samples == 0) { |
|
/* Not enough data in FIFO */ |
|
goto check_registers; |
|
} |
|
|
|
/* |
|
testing has shown that if we have more than 32 samples in the |
|
FIFO then some of those samples will be corrupt. It always is |
|
the ones at the end of the FIFO, so clear those with a reset |
|
once we've read the first 24. Reading 24 gives us the normal |
|
number of samples for fast sampling at 400Hz |
|
*/ |
|
if (n_samples > 32) { |
|
need_reset = true; |
|
n_samples = 24; |
|
} |
|
|
|
while (n_samples > 0) { |
|
uint8_t n = MIN(n_samples, MPU_FIFO_BUFFER_LEN); |
|
if (!_dev->set_chip_select(true)) { |
|
if (!_block_read(MPUREG_FIFO_R_W, rx, n * MPU_SAMPLE_SIZE)) { |
|
goto check_registers; |
|
} |
|
} else { |
|
// this ensures we keep things nicely setup for DMA |
|
uint8_t reg = MPUREG_FIFO_R_W | 0x80; |
|
if (!_dev->transfer(®, 1, nullptr, 0)) { |
|
_dev->set_chip_select(false); |
|
goto check_registers; |
|
} |
|
memset(rx, 0, n * MPU_SAMPLE_SIZE); |
|
if (!_dev->transfer(rx, n * MPU_SAMPLE_SIZE, rx, n * MPU_SAMPLE_SIZE)) { |
|
hal.console->printf("MPU60x0: error in fifo read %u bytes\n", n * MPU_SAMPLE_SIZE); |
|
_dev->set_chip_select(false); |
|
goto check_registers; |
|
} |
|
_dev->set_chip_select(false); |
|
} |
|
|
|
if (_fast_sampling) { |
|
if (!_accumulate_fast_sampling(rx, n)) { |
|
debug("stop at %u of %u", n_samples, bytes_read/MPU_SAMPLE_SIZE); |
|
break; |
|
} |
|
} else { |
|
if (!_accumulate(rx, n)) { |
|
break; |
|
} |
|
} |
|
n_samples -= n; |
|
} |
|
|
|
if (need_reset) { |
|
//debug("fifo reset n_samples %u", bytes_read/MPU_SAMPLE_SIZE); |
|
_fifo_reset(); |
|
} |
|
|
|
check_registers: |
|
// check next register value for correctness |
|
_dev->set_speed(AP_HAL::Device::SPEED_LOW); |
|
if (!_dev->check_next_register()) { |
|
_inc_gyro_error_count(_gyro_instance); |
|
_inc_accel_error_count(_accel_instance); |
|
} |
|
_dev->set_speed(AP_HAL::Device::SPEED_HIGH); |
|
} |
|
|
|
/* |
|
fetch temperature in order to detect FIFO sync errors |
|
*/ |
|
bool AP_InertialSensor_MPU6000::_check_raw_temp(int16_t t2) |
|
{ |
|
if (abs(t2 - _raw_temp) < 400) { |
|
// cached copy OK |
|
return true; |
|
} |
|
uint8_t trx[2]; |
|
if (_block_read(MPUREG_TEMP_OUT_H, trx, 2)) { |
|
_raw_temp = int16_val(trx, 0); |
|
} |
|
return (abs(t2 - _raw_temp) < 400); |
|
} |
|
|
|
bool AP_InertialSensor_MPU6000::_block_read(uint8_t reg, uint8_t *buf, |
|
uint32_t size) |
|
{ |
|
return _dev->read_registers(reg, buf, size); |
|
} |
|
|
|
uint8_t AP_InertialSensor_MPU6000::_register_read(uint8_t reg) |
|
{ |
|
uint8_t val = 0; |
|
_dev->read_registers(reg, &val, 1); |
|
return val; |
|
} |
|
|
|
void AP_InertialSensor_MPU6000::_register_write(uint8_t reg, uint8_t val, bool checked) |
|
{ |
|
_dev->write_register(reg, val, checked); |
|
} |
|
|
|
/* |
|
set the DLPF filter frequency. Assumes caller has taken semaphore |
|
*/ |
|
void AP_InertialSensor_MPU6000::_set_filter_register(void) |
|
{ |
|
uint8_t config; |
|
|
|
#if MPU6000_EXT_SYNC_ENABLE |
|
// add in EXT_SYNC bit if enabled |
|
config = (MPUREG_CONFIG_EXT_SYNC_AZ << MPUREG_CONFIG_EXT_SYNC_SHIFT); |
|
#else |
|
config = 0; |
|
#endif |
|
|
|
|
|
if (enable_fast_sampling(_accel_instance)) { |
|
_fast_sampling = (_is_icm_device && _dev->bus_type() == AP_HAL::Device::BUS_TYPE_SPI); |
|
if (_fast_sampling) { |
|
hal.console->printf("MPU6000: enabled fast sampling\n"); |
|
} |
|
} |
|
|
|
if (_fast_sampling) { |
|
// this gives us 8kHz sampling on gyros and 4kHz on accels |
|
config |= BITS_DLPF_CFG_256HZ_NOLPF2; |
|
} else { |
|
// limit to 1kHz if not on SPI |
|
config |= BITS_DLPF_CFG_188HZ; |
|
} |
|
|
|
config |= MPUREG_CONFIG_FIFO_MODE_STOP; |
|
_register_write(MPUREG_CONFIG, config, true); |
|
|
|
if (_is_icm_device) { |
|
if (_fast_sampling) { |
|
// setup for 4kHz accels |
|
_register_write(ICMREG_ACCEL_CONFIG2, ICM_ACC_FCHOICE_B, true); |
|
} else { |
|
_register_write(ICMREG_ACCEL_CONFIG2, ICM_ACC_DLPF_CFG_218HZ, true); |
|
} |
|
} |
|
} |
|
|
|
/* |
|
check whoami for MPU6000 or ICM-20608 |
|
*/ |
|
bool AP_InertialSensor_MPU6000::_check_whoami(void) |
|
{ |
|
uint8_t whoami = _register_read(MPUREG_WHOAMI); |
|
switch (whoami) { |
|
case MPU_WHOAMI_6000: |
|
_is_icm_device = false; |
|
return true; |
|
case ICM_WHOAMI_20608: |
|
_is_icm_device = true; |
|
return true; |
|
} |
|
// not a value WHOAMI result |
|
return false; |
|
} |
|
|
|
|
|
bool AP_InertialSensor_MPU6000::_hardware_init(void) |
|
{ |
|
if (!_dev->get_semaphore()->take(0)) { |
|
return false; |
|
} |
|
|
|
// setup for register checking |
|
_dev->setup_checked_registers(7, 20); |
|
|
|
// initially run the bus at low speed |
|
_dev->set_speed(AP_HAL::Device::SPEED_LOW); |
|
|
|
if (!_check_whoami()) { |
|
_dev->get_semaphore()->give(); |
|
return false; |
|
} |
|
|
|
// Chip reset |
|
uint8_t tries; |
|
for (tries = 0; tries < 5; tries++) { |
|
_last_stat_user_ctrl = _register_read(MPUREG_USER_CTRL); |
|
|
|
/* First disable the master I2C to avoid hanging the slaves on the |
|
* aulixiliar I2C bus - it will be enabled again if the AuxiliaryBus |
|
* is used */ |
|
if (_last_stat_user_ctrl & BIT_USER_CTRL_I2C_MST_EN) { |
|
_last_stat_user_ctrl &= ~BIT_USER_CTRL_I2C_MST_EN; |
|
_register_write(MPUREG_USER_CTRL, _last_stat_user_ctrl); |
|
hal.scheduler->delay(10); |
|
} |
|
|
|
/* reset device */ |
|
_register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_DEVICE_RESET); |
|
hal.scheduler->delay(100); |
|
|
|
/* bus-dependent initialization */ |
|
if (_dev->bus_type() == AP_HAL::Device::BUS_TYPE_SPI) { |
|
/* Disable I2C bus if SPI selected (Recommended in Datasheet to be |
|
* done just after the device is reset) */ |
|
_last_stat_user_ctrl |= BIT_USER_CTRL_I2C_IF_DIS; |
|
_register_write(MPUREG_USER_CTRL, _last_stat_user_ctrl); |
|
} |
|
|
|
// Wake up device and select GyroZ clock. Note that the |
|
// MPU6000 starts up in sleep mode, and it can take some time |
|
// for it to come out of sleep |
|
_register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_CLK_ZGYRO); |
|
hal.scheduler->delay(5); |
|
|
|
// check it has woken up |
|
if (_register_read(MPUREG_PWR_MGMT_1) == BIT_PWR_MGMT_1_CLK_ZGYRO) { |
|
break; |
|
} |
|
|
|
hal.scheduler->delay(10); |
|
if (_data_ready()) { |
|
break; |
|
} |
|
} |
|
|
|
_dev->set_speed(AP_HAL::Device::SPEED_HIGH); |
|
_dev->get_semaphore()->give(); |
|
|
|
if (tries == 5) { |
|
hal.console->println("Failed to boot MPU6000 5 times"); |
|
return false; |
|
} |
|
|
|
if (_is_icm_device) { |
|
// this avoids a sensor bug, see description above |
|
_register_write(MPUREG_ICM_UNDOC1, MPUREG_ICM_UNDOC1_VALUE, true); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
AP_MPU6000_AuxiliaryBusSlave::AP_MPU6000_AuxiliaryBusSlave(AuxiliaryBus &bus, uint8_t addr, |
|
uint8_t instance) |
|
: AuxiliaryBusSlave(bus, addr, instance) |
|
, _mpu6000_addr(MPUREG_I2C_SLV0_ADDR + _instance * 3) |
|
, _mpu6000_reg(_mpu6000_addr + 1) |
|
, _mpu6000_ctrl(_mpu6000_addr + 2) |
|
, _mpu6000_do(MPUREG_I2C_SLV0_DO + _instance) |
|
{ |
|
} |
|
|
|
int AP_MPU6000_AuxiliaryBusSlave::_set_passthrough(uint8_t reg, uint8_t size, |
|
uint8_t *out) |
|
{ |
|
auto &backend = AP_InertialSensor_MPU6000::from(_bus.get_backend()); |
|
uint8_t addr; |
|
|
|
/* Ensure the slave read/write is disabled before changing the registers */ |
|
backend._register_write(_mpu6000_ctrl, 0); |
|
|
|
if (out) { |
|
backend._register_write(_mpu6000_do, *out); |
|
addr = _addr; |
|
} else { |
|
addr = _addr | BIT_READ_FLAG; |
|
} |
|
|
|
backend._register_write(_mpu6000_addr, addr); |
|
backend._register_write(_mpu6000_reg, reg); |
|
backend._register_write(_mpu6000_ctrl, BIT_I2C_SLVX_EN | size); |
|
|
|
return 0; |
|
} |
|
|
|
int AP_MPU6000_AuxiliaryBusSlave::passthrough_read(uint8_t reg, uint8_t *buf, |
|
uint8_t size) |
|
{ |
|
assert(buf); |
|
|
|
if (_registered) { |
|
hal.console->println("Error: can't passthrough when slave is already configured"); |
|
return -1; |
|
} |
|
|
|
int r = _set_passthrough(reg, size); |
|
if (r < 0) { |
|
return r; |
|
} |
|
|
|
/* wait the value to be read from the slave and read it back */ |
|
hal.scheduler->delay(10); |
|
|
|
auto &backend = AP_InertialSensor_MPU6000::from(_bus.get_backend()); |
|
if (!backend._block_read(MPUREG_EXT_SENS_DATA_00 + _ext_sens_data, buf, size)) { |
|
return -1; |
|
} |
|
|
|
/* disable new reads */ |
|
backend._register_write(_mpu6000_ctrl, 0); |
|
|
|
return size; |
|
} |
|
|
|
int AP_MPU6000_AuxiliaryBusSlave::passthrough_write(uint8_t reg, uint8_t val) |
|
{ |
|
if (_registered) { |
|
hal.console->println("Error: can't passthrough when slave is already configured"); |
|
return -1; |
|
} |
|
|
|
int r = _set_passthrough(reg, 1, &val); |
|
if (r < 0) { |
|
return r; |
|
} |
|
|
|
/* wait the value to be written to the slave */ |
|
hal.scheduler->delay(10); |
|
|
|
auto &backend = AP_InertialSensor_MPU6000::from(_bus.get_backend()); |
|
|
|
/* disable new writes */ |
|
backend._register_write(_mpu6000_ctrl, 0); |
|
|
|
return 1; |
|
} |
|
|
|
int AP_MPU6000_AuxiliaryBusSlave::read(uint8_t *buf) |
|
{ |
|
if (!_registered) { |
|
hal.console->println("Error: can't read before configuring slave"); |
|
return -1; |
|
} |
|
|
|
auto &backend = AP_InertialSensor_MPU6000::from(_bus.get_backend()); |
|
if (!backend._block_read(MPUREG_EXT_SENS_DATA_00 + _ext_sens_data, buf, _sample_size)) { |
|
return -1; |
|
} |
|
|
|
return _sample_size; |
|
} |
|
|
|
/* MPU6000 provides up to 5 slave devices, but the 5th is way too different to |
|
* configure and is seldom used */ |
|
AP_MPU6000_AuxiliaryBus::AP_MPU6000_AuxiliaryBus(AP_InertialSensor_MPU6000 &backend, uint32_t devid) |
|
: AuxiliaryBus(backend, 4, devid) |
|
{ |
|
} |
|
|
|
AP_HAL::Semaphore *AP_MPU6000_AuxiliaryBus::get_semaphore() |
|
{ |
|
return static_cast<AP_InertialSensor_MPU6000&>(_ins_backend)._dev->get_semaphore(); |
|
} |
|
|
|
AuxiliaryBusSlave *AP_MPU6000_AuxiliaryBus::_instantiate_slave(uint8_t addr, uint8_t instance) |
|
{ |
|
/* Enable slaves on MPU6000 if this is the first time */ |
|
if (_ext_sens_data == 0) { |
|
_configure_slaves(); |
|
} |
|
|
|
return new AP_MPU6000_AuxiliaryBusSlave(*this, addr, instance); |
|
} |
|
|
|
void AP_MPU6000_AuxiliaryBus::_configure_slaves() |
|
{ |
|
auto &backend = AP_InertialSensor_MPU6000::from(_ins_backend); |
|
|
|
/* Enable the I2C master to slaves on the auxiliary I2C bus*/ |
|
if (!(backend._last_stat_user_ctrl & BIT_USER_CTRL_I2C_MST_EN)) { |
|
backend._last_stat_user_ctrl |= BIT_USER_CTRL_I2C_MST_EN; |
|
backend._register_write(MPUREG_USER_CTRL, backend._last_stat_user_ctrl); |
|
} |
|
|
|
/* stop condition between reads; clock at 400kHz */ |
|
backend._register_write(MPUREG_I2C_MST_CTRL, |
|
BIT_I2C_MST_P_NSR | BIT_I2C_MST_CLK_400KHZ); |
|
|
|
/* Hard-code divider for internal sample rate, 1 kHz, resulting in a |
|
* sample rate of 100Hz */ |
|
backend._register_write(MPUREG_I2C_SLV4_CTRL, 9); |
|
|
|
/* All slaves are subject to the sample rate */ |
|
backend._register_write(MPUREG_I2C_MST_DELAY_CTRL, |
|
BIT_I2C_SLV0_DLY_EN | BIT_I2C_SLV1_DLY_EN | |
|
BIT_I2C_SLV2_DLY_EN | BIT_I2C_SLV3_DLY_EN); |
|
} |
|
|
|
int AP_MPU6000_AuxiliaryBus::_configure_periodic_read(AuxiliaryBusSlave *slave, |
|
uint8_t reg, uint8_t size) |
|
{ |
|
if (_ext_sens_data + size > MAX_EXT_SENS_DATA) { |
|
return -1; |
|
} |
|
|
|
AP_MPU6000_AuxiliaryBusSlave *mpu_slave = |
|
static_cast<AP_MPU6000_AuxiliaryBusSlave*>(slave); |
|
mpu_slave->_set_passthrough(reg, size); |
|
mpu_slave->_ext_sens_data = _ext_sens_data; |
|
_ext_sens_data += size; |
|
|
|
return 0; |
|
}
|
|
|