You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
935 lines
35 KiB
935 lines
35 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
#include <AP_HAL.h> |
|
#include <AC_PosControl.h> |
|
#include <AP_Math.h> |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
const AP_Param::GroupInfo AC_PosControl::var_info[] PROGMEM = { |
|
// 0 was used for HOVER |
|
|
|
// @Param: _ACC_XY_FILT |
|
// @DisplayName: XY Acceleration filter cutoff frequency |
|
// @Description: Lower values will slow the response of the navigation controller and reduce twitchiness |
|
// @Units: Hz |
|
// @Range: 0.5 5 |
|
// @Increment: 0.1 |
|
// @User: Advanced |
|
AP_GROUPINFO("_ACC_XY_FILT", 1, AC_PosControl, _accel_xy_filt_hz, POSCONTROL_ACCEL_FILTER_HZ), |
|
|
|
AP_GROUPEND |
|
}; |
|
|
|
// Default constructor. |
|
// Note that the Vector/Matrix constructors already implicitly zero |
|
// their values. |
|
// |
|
AC_PosControl::AC_PosControl(const AP_AHRS& ahrs, const AP_InertialNav& inav, |
|
const AP_Motors& motors, AC_AttitudeControl& attitude_control, |
|
AC_P& p_pos_z, AC_P& p_vel_z, AC_PID& pid_accel_z, |
|
AC_P& p_pos_xy, AC_PI_2D& pi_vel_xy) : |
|
_ahrs(ahrs), |
|
_inav(inav), |
|
_motors(motors), |
|
_attitude_control(attitude_control), |
|
_p_pos_z(p_pos_z), |
|
_p_vel_z(p_vel_z), |
|
_pid_accel_z(pid_accel_z), |
|
_p_pos_xy(p_pos_xy), |
|
_pi_vel_xy(pi_vel_xy), |
|
_dt(POSCONTROL_DT_10HZ), |
|
_dt_xy(POSCONTROL_DT_50HZ), |
|
_last_update_xy_ms(0), |
|
_last_update_z_ms(0), |
|
_throttle_hover(POSCONTROL_THROTTLE_HOVER), |
|
_speed_down_cms(POSCONTROL_SPEED_DOWN), |
|
_speed_up_cms(POSCONTROL_SPEED_UP), |
|
_speed_cms(POSCONTROL_SPEED), |
|
_accel_z_cms(POSCONTROL_ACCEL_Z), |
|
_accel_last_z_cms(0.0f), |
|
_accel_cms(POSCONTROL_ACCEL_XY), |
|
_leash(POSCONTROL_LEASH_LENGTH_MIN), |
|
_leash_down_z(POSCONTROL_LEASH_LENGTH_MIN), |
|
_leash_up_z(POSCONTROL_LEASH_LENGTH_MIN), |
|
_roll_target(0.0f), |
|
_pitch_target(0.0f), |
|
_alt_max(0.0f), |
|
_distance_to_target(0.0f), |
|
_accel_target_jerk_limited(0.0f,0.0f), |
|
_accel_target_filter(POSCONTROL_ACCEL_FILTER_HZ) |
|
{ |
|
AP_Param::setup_object_defaults(this, var_info); |
|
|
|
// initialise flags |
|
_flags.recalc_leash_z = true; |
|
_flags.recalc_leash_xy = true; |
|
_flags.reset_desired_vel_to_pos = true; |
|
_flags.reset_rate_to_accel_xy = true; |
|
_flags.reset_accel_to_lean_xy = true; |
|
_flags.reset_rate_to_accel_z = true; |
|
_flags.reset_accel_to_throttle = true; |
|
_flags.freeze_ff_xy = true; |
|
_flags.freeze_ff_z = true; |
|
_limit.pos_up = true; |
|
_limit.pos_down = true; |
|
_limit.vel_up = true; |
|
_limit.vel_down = true; |
|
_limit.accel_xy = true; |
|
} |
|
|
|
/// |
|
/// z-axis position controller |
|
/// |
|
|
|
|
|
/// set_dt - sets time delta in seconds for all controllers (i.e. 100hz = 0.01, 400hz = 0.0025) |
|
void AC_PosControl::set_dt(float delta_sec) |
|
{ |
|
_dt = delta_sec; |
|
|
|
// update rate controller's dt |
|
_pid_accel_z.set_dt(_dt); |
|
|
|
// update rate z-axis velocity error and accel error filters |
|
_vel_error_filter.set_cutoff_frequency(POSCONTROL_VEL_ERROR_CUTOFF_FREQ); |
|
} |
|
|
|
/// set_dt_xy - sets time delta in seconds for horizontal controller (i.e. 50hz = 0.02) |
|
void AC_PosControl::set_dt_xy(float dt_xy) |
|
{ |
|
_dt_xy = dt_xy; |
|
_pi_vel_xy.set_dt(dt_xy); |
|
} |
|
|
|
/// set_speed_z - sets maximum climb and descent rates |
|
/// To-Do: call this in the main code as part of flight mode initialisation |
|
/// calc_leash_length_z should be called afterwards |
|
/// speed_down should be a negative number |
|
void AC_PosControl::set_speed_z(float speed_down, float speed_up) |
|
{ |
|
// ensure speed_down is always negative |
|
speed_down = -fabsf(speed_down); |
|
|
|
if ((fabsf(_speed_down_cms-speed_down) > 1.0f) || (fabsf(_speed_up_cms-speed_up) > 1.0f)) { |
|
_speed_down_cms = speed_down; |
|
_speed_up_cms = speed_up; |
|
_flags.recalc_leash_z = true; |
|
calc_leash_length_z(); |
|
} |
|
} |
|
|
|
/// set_accel_z - set vertical acceleration in cm/s/s |
|
void AC_PosControl::set_accel_z(float accel_cmss) |
|
{ |
|
if (fabsf(_accel_z_cms-accel_cmss) > 1.0f) { |
|
_accel_z_cms = accel_cmss; |
|
_flags.recalc_leash_z = true; |
|
calc_leash_length_z(); |
|
} |
|
} |
|
|
|
/// set_alt_target_with_slew - adjusts target towards a final altitude target |
|
/// should be called continuously (with dt set to be the expected time between calls) |
|
/// actual position target will be moved no faster than the speed_down and speed_up |
|
/// target will also be stopped if the motors hit their limits or leash length is exceeded |
|
void AC_PosControl::set_alt_target_with_slew(float alt_cm, float dt) |
|
{ |
|
float alt_change = alt_cm-_pos_target.z; |
|
|
|
_vel_desired.z = 0.0f; |
|
|
|
// adjust desired alt if motors have not hit their limits |
|
if ((alt_change<0 && !_motors.limit.throttle_lower) || (alt_change>0 && !_motors.limit.throttle_upper)) { |
|
_pos_target.z += constrain_float(alt_change, _speed_down_cms*dt, _speed_up_cms*dt); |
|
} |
|
|
|
// do not let target get too far from current altitude |
|
float curr_alt = _inav.get_altitude(); |
|
_pos_target.z = constrain_float(_pos_target.z,curr_alt-_leash_down_z,curr_alt+_leash_up_z); |
|
} |
|
|
|
/// set_alt_target_from_climb_rate - adjusts target up or down using a climb rate in cm/s |
|
/// should be called continuously (with dt set to be the expected time between calls) |
|
/// actual position target will be moved no faster than the speed_down and speed_up |
|
/// target will also be stopped if the motors hit their limits or leash length is exceeded |
|
void AC_PosControl::set_alt_target_from_climb_rate(float climb_rate_cms, float dt, bool force_descend) |
|
{ |
|
// jerk_z is calculated to reach full acceleration in 1000ms. |
|
float jerk_z = _accel_z_cms * POSCONTROL_JERK_RATIO; |
|
|
|
float accel_z_max = min(_accel_z_cms, safe_sqrt(2.0f*fabsf(_vel_desired.z - climb_rate_cms)*jerk_z)); |
|
|
|
_accel_last_z_cms += jerk_z * dt; |
|
_accel_last_z_cms = min(accel_z_max, _accel_last_z_cms); |
|
|
|
float vel_change_limit = _accel_last_z_cms * dt; |
|
_vel_desired.z = constrain_float(climb_rate_cms, _vel_desired.z-vel_change_limit, _vel_desired.z+vel_change_limit); |
|
|
|
// adjust desired alt if motors have not hit their limits |
|
// To-Do: add check of _limit.pos_down? |
|
if ((_vel_desired.z<0 && (!_motors.limit.throttle_lower || force_descend)) || (_vel_desired.z>0 && !_motors.limit.throttle_upper && !_limit.pos_up)) { |
|
_pos_target.z += _vel_desired.z * dt; |
|
} |
|
|
|
// do not let target alt get above limit |
|
if (_alt_max > 0 && _pos_target.z > _alt_max) { |
|
_pos_target.z = _alt_max; |
|
_limit.pos_up = true; |
|
// decelerate feed forward to zero |
|
_vel_desired.z = constrain_float(0.0f, _vel_desired.z-vel_change_limit, _vel_desired.z+vel_change_limit); |
|
} |
|
} |
|
|
|
/// add_takeoff_climb_rate - adjusts alt target up or down using a climb rate in cm/s |
|
/// should be called continuously (with dt set to be the expected time between calls) |
|
/// almost no checks are performed on the input |
|
void AC_PosControl::add_takeoff_climb_rate(float climb_rate_cms, float dt) |
|
{ |
|
_pos_target.z += climb_rate_cms * dt; |
|
} |
|
|
|
/// relax_alt_hold_controllers - set all desired and targets to measured |
|
void AC_PosControl::relax_alt_hold_controllers(float throttle_setting) |
|
{ |
|
_pos_target.z = _inav.get_altitude(); |
|
_vel_desired.z = 0.0f; |
|
_vel_target.z= _inav.get_velocity_z(); |
|
_vel_last.z = _inav.get_velocity_z(); |
|
_accel_feedforward.z = 0.0f; |
|
_accel_last_z_cms = 0.0f; |
|
_accel_target.z = -(_ahrs.get_accel_ef_blended().z + GRAVITY_MSS) * 100.0f; |
|
_flags.reset_accel_to_throttle = true; |
|
_pid_accel_z.set_integrator(throttle_setting); |
|
} |
|
|
|
// get_alt_error - returns altitude error in cm |
|
float AC_PosControl::get_alt_error() const |
|
{ |
|
return (_pos_target.z - _inav.get_altitude()); |
|
} |
|
|
|
/// set_target_to_stopping_point_z - returns reasonable stopping altitude in cm above home |
|
void AC_PosControl::set_target_to_stopping_point_z() |
|
{ |
|
// check if z leash needs to be recalculated |
|
calc_leash_length_z(); |
|
|
|
get_stopping_point_z(_pos_target); |
|
} |
|
|
|
/// get_stopping_point_z - calculates stopping point based on current position, velocity, vehicle acceleration |
|
void AC_PosControl::get_stopping_point_z(Vector3f& stopping_point) const |
|
{ |
|
const float curr_pos_z = _inav.get_altitude(); |
|
float curr_vel_z = _inav.get_velocity_z(); |
|
|
|
float linear_distance; // half the distance we swap between linear and sqrt and the distance we offset sqrt |
|
float linear_velocity; // the velocity we swap between linear and sqrt |
|
|
|
// if position controller is active add current velocity error to avoid sudden jump in acceleration |
|
if (is_active_z()) { |
|
curr_vel_z += _vel_error.z; |
|
curr_vel_z -= _vel_desired.z; |
|
} |
|
|
|
// calculate the velocity at which we switch from calculating the stopping point using a linear function to a sqrt function |
|
linear_velocity = _accel_z_cms/_p_pos_z.kP(); |
|
|
|
if (fabsf(curr_vel_z) < linear_velocity) { |
|
// if our current velocity is below the cross-over point we use a linear function |
|
stopping_point.z = curr_pos_z + curr_vel_z/_p_pos_z.kP(); |
|
} else { |
|
linear_distance = _accel_z_cms/(2.0f*_p_pos_z.kP()*_p_pos_z.kP()); |
|
if (curr_vel_z > 0){ |
|
stopping_point.z = curr_pos_z + (linear_distance + curr_vel_z*curr_vel_z/(2.0f*_accel_z_cms)); |
|
} else { |
|
stopping_point.z = curr_pos_z - (linear_distance + curr_vel_z*curr_vel_z/(2.0f*_accel_z_cms)); |
|
} |
|
} |
|
stopping_point.z = constrain_float(stopping_point.z, curr_pos_z - POSCONTROL_STOPPING_DIST_Z_MAX, curr_pos_z + POSCONTROL_STOPPING_DIST_Z_MAX); |
|
} |
|
|
|
/// init_takeoff - initialises target altitude if we are taking off |
|
void AC_PosControl::init_takeoff() |
|
{ |
|
const Vector3f& curr_pos = _inav.get_position(); |
|
|
|
_pos_target.z = curr_pos.z + POSCONTROL_TAKEOFF_JUMP_CM; |
|
|
|
// freeze feedforward to avoid jump |
|
freeze_ff_z(); |
|
|
|
// shift difference between last motor out and hover throttle into accelerometer I |
|
_pid_accel_z.set_integrator(_motors.get_throttle()-_throttle_hover); |
|
} |
|
|
|
// is_active_z - returns true if the z-axis position controller has been run very recently |
|
bool AC_PosControl::is_active_z() const |
|
{ |
|
return ((hal.scheduler->millis() - _last_update_z_ms) <= POSCONTROL_ACTIVE_TIMEOUT_MS); |
|
} |
|
|
|
/// update_z_controller - fly to altitude in cm above home |
|
void AC_PosControl::update_z_controller() |
|
{ |
|
// check time since last cast |
|
uint32_t now = hal.scheduler->millis(); |
|
if (now - _last_update_z_ms > POSCONTROL_ACTIVE_TIMEOUT_MS) { |
|
_flags.reset_rate_to_accel_z = true; |
|
_flags.reset_accel_to_throttle = true; |
|
} |
|
_last_update_z_ms = now; |
|
|
|
// check if leash lengths need to be recalculated |
|
calc_leash_length_z(); |
|
|
|
// call position controller |
|
pos_to_rate_z(); |
|
} |
|
|
|
/// calc_leash_length - calculates the vertical leash lengths from maximum speed, acceleration |
|
/// called by pos_to_rate_z if z-axis speed or accelerations are changed |
|
void AC_PosControl::calc_leash_length_z() |
|
{ |
|
if (_flags.recalc_leash_z) { |
|
_leash_up_z = calc_leash_length(_speed_up_cms, _accel_z_cms, _p_pos_z.kP()); |
|
_leash_down_z = calc_leash_length(-_speed_down_cms, _accel_z_cms, _p_pos_z.kP()); |
|
_flags.recalc_leash_z = false; |
|
} |
|
} |
|
|
|
// pos_to_rate_z - position to rate controller for Z axis |
|
// calculates desired rate in earth-frame z axis and passes to rate controller |
|
// vel_up_max, vel_down_max should have already been set before calling this method |
|
void AC_PosControl::pos_to_rate_z() |
|
{ |
|
float curr_alt = _inav.get_altitude(); |
|
|
|
// clear position limit flags |
|
_limit.pos_up = false; |
|
_limit.pos_down = false; |
|
|
|
// calculate altitude error |
|
_pos_error.z = _pos_target.z - curr_alt; |
|
|
|
// do not let target altitude get too far from current altitude |
|
if (_pos_error.z > _leash_up_z) { |
|
_pos_target.z = curr_alt + _leash_up_z; |
|
_pos_error.z = _leash_up_z; |
|
_limit.pos_up = true; |
|
} |
|
if (_pos_error.z < -_leash_down_z) { |
|
_pos_target.z = curr_alt - _leash_down_z; |
|
_pos_error.z = -_leash_down_z; |
|
_limit.pos_down = true; |
|
} |
|
|
|
// calculate _vel_target.z using from _pos_error.z using sqrt controller |
|
_vel_target.z = AC_AttitudeControl::sqrt_controller(_pos_error.z, _p_pos_z.kP(), _accel_z_cms); |
|
|
|
// add feed forward component |
|
_vel_target.z += _vel_desired.z; |
|
|
|
// call rate based throttle controller which will update accel based throttle controller targets |
|
rate_to_accel_z(); |
|
} |
|
|
|
// rate_to_accel_z - calculates desired accel required to achieve the velocity target |
|
// calculates desired acceleration and calls accel throttle controller |
|
void AC_PosControl::rate_to_accel_z() |
|
{ |
|
const Vector3f& curr_vel = _inav.get_velocity(); |
|
float p; // used to capture pid values for logging |
|
|
|
// check speed limits |
|
// To-Do: check these speed limits here or in the pos->rate controller |
|
_limit.vel_up = false; |
|
_limit.vel_down = false; |
|
if (_vel_target.z < _speed_down_cms) { |
|
_vel_target.z = _speed_down_cms; |
|
_limit.vel_down = true; |
|
} |
|
if (_vel_target.z > _speed_up_cms) { |
|
_vel_target.z = _speed_up_cms; |
|
_limit.vel_up = true; |
|
} |
|
|
|
// reset last velocity target to current target |
|
if (_flags.reset_rate_to_accel_z) { |
|
_vel_last.z = _vel_target.z; |
|
} |
|
|
|
// feed forward desired acceleration calculation |
|
if (_dt > 0.0f) { |
|
if (!_flags.freeze_ff_z) { |
|
_accel_feedforward.z = (_vel_target.z - _vel_last.z)/_dt; |
|
} else { |
|
// stop the feed forward being calculated during a known discontinuity |
|
_flags.freeze_ff_z = false; |
|
} |
|
} else { |
|
_accel_feedforward.z = 0.0f; |
|
} |
|
|
|
// store this iteration's velocities for the next iteration |
|
_vel_last.z = _vel_target.z; |
|
|
|
// reset velocity error and filter if this controller has just been engaged |
|
if (_flags.reset_rate_to_accel_z) { |
|
// Reset Filter |
|
_vel_error.z = 0; |
|
_vel_error_filter.reset(0); |
|
_flags.reset_rate_to_accel_z = false; |
|
} else { |
|
// calculate rate error and filter with cut off frequency of 2 Hz |
|
_vel_error.z = _vel_error_filter.apply(_vel_target.z - curr_vel.z, _dt); |
|
} |
|
|
|
// calculate p |
|
p = _p_vel_z.kP() * _vel_error.z; |
|
|
|
// consolidate and constrain target acceleration |
|
_accel_target.z = _accel_feedforward.z + p; |
|
|
|
// set target for accel based throttle controller |
|
accel_to_throttle(_accel_target.z); |
|
} |
|
|
|
// accel_to_throttle - alt hold's acceleration controller |
|
// calculates a desired throttle which is sent directly to the motors |
|
void AC_PosControl::accel_to_throttle(float accel_target_z) |
|
{ |
|
float z_accel_meas; // actual acceleration |
|
float p,i,d; // used to capture pid values for logging |
|
|
|
// Calculate Earth Frame Z acceleration |
|
z_accel_meas = -(_ahrs.get_accel_ef_blended().z + GRAVITY_MSS) * 100.0f; |
|
|
|
// reset target altitude if this controller has just been engaged |
|
if (_flags.reset_accel_to_throttle) { |
|
// Reset Filter |
|
_accel_error.z = 0; |
|
_flags.reset_accel_to_throttle = false; |
|
} else { |
|
// calculate accel error |
|
_accel_error.z = accel_target_z - z_accel_meas; |
|
} |
|
|
|
// set input to PID |
|
_pid_accel_z.set_input_filter_d(_accel_error.z); |
|
_pid_accel_z.set_desired_rate(accel_target_z); |
|
|
|
// separately calculate p, i, d values for logging |
|
p = _pid_accel_z.get_p(); |
|
|
|
// get i term |
|
i = _pid_accel_z.get_integrator(); |
|
|
|
// update i term as long as we haven't breached the limits or the I term will certainly reduce |
|
// To-Do: should this be replaced with limits check from attitude_controller? |
|
if ((!_motors.limit.throttle_lower && !_motors.limit.throttle_upper) || (i>0&&_accel_error.z<0) || (i<0&&_accel_error.z>0)) { |
|
i = _pid_accel_z.get_i(); |
|
} |
|
|
|
// get d term |
|
d = _pid_accel_z.get_d(); |
|
|
|
float thr_out = p+i+d+_throttle_hover; |
|
|
|
// send throttle to attitude controller with angle boost |
|
_attitude_control.set_throttle_out(thr_out, true, POSCONTROL_THROTTLE_CUTOFF_FREQ); |
|
} |
|
|
|
/// |
|
/// position controller |
|
/// |
|
|
|
/// set_accel_xy - set horizontal acceleration in cm/s/s |
|
/// calc_leash_length_xy should be called afterwards |
|
void AC_PosControl::set_accel_xy(float accel_cmss) |
|
{ |
|
if (fabsf(_accel_cms-accel_cmss) > 1.0f) { |
|
_accel_cms = accel_cmss; |
|
_flags.recalc_leash_xy = true; |
|
calc_leash_length_xy(); |
|
} |
|
} |
|
|
|
/// set_speed_xy - set horizontal speed maximum in cm/s |
|
/// calc_leash_length_xy should be called afterwards |
|
void AC_PosControl::set_speed_xy(float speed_cms) |
|
{ |
|
if (fabsf(_speed_cms-speed_cms) > 1.0f) { |
|
_speed_cms = speed_cms; |
|
_flags.recalc_leash_xy = true; |
|
calc_leash_length_xy(); |
|
} |
|
} |
|
|
|
/// set_pos_target in cm from home |
|
void AC_PosControl::set_pos_target(const Vector3f& position) |
|
{ |
|
_pos_target = position; |
|
|
|
_vel_desired.z = 0.0f; |
|
// initialise roll and pitch to current roll and pitch. This avoids a twitch between when the target is set and the pos controller is first run |
|
// To-Do: this initialisation of roll and pitch targets needs to go somewhere between when pos-control is initialised and when it completes it's first cycle |
|
//_roll_target = constrain_int32(_ahrs.roll_sensor,-_attitude_control.lean_angle_max(),_attitude_control.lean_angle_max()); |
|
//_pitch_target = constrain_int32(_ahrs.pitch_sensor,-_attitude_control.lean_angle_max(),_attitude_control.lean_angle_max()); |
|
} |
|
|
|
/// set_xy_target in cm from home |
|
void AC_PosControl::set_xy_target(float x, float y) |
|
{ |
|
_pos_target.x = x; |
|
_pos_target.y = y; |
|
} |
|
|
|
/// set_target_to_stopping_point_xy - sets horizontal target to reasonable stopping position in cm from home |
|
void AC_PosControl::set_target_to_stopping_point_xy() |
|
{ |
|
// check if xy leash needs to be recalculated |
|
calc_leash_length_xy(); |
|
|
|
get_stopping_point_xy(_pos_target); |
|
} |
|
|
|
/// get_stopping_point_xy - calculates stopping point based on current position, velocity, vehicle acceleration |
|
/// distance_max allows limiting distance to stopping point |
|
/// results placed in stopping_position vector |
|
/// set_accel_xy() should be called before this method to set vehicle acceleration |
|
/// set_leash_length() should have been called before this method |
|
void AC_PosControl::get_stopping_point_xy(Vector3f &stopping_point) const |
|
{ |
|
const Vector3f curr_pos = _inav.get_position(); |
|
Vector3f curr_vel = _inav.get_velocity(); |
|
float linear_distance; // the distance at which we swap from a linear to sqrt response |
|
float linear_velocity; // the velocity above which we swap from a linear to sqrt response |
|
float stopping_dist; // the distance within the vehicle can stop |
|
float kP = _p_pos_xy.kP(); |
|
|
|
// add velocity error to current velocity |
|
if (is_active_xy()) { |
|
curr_vel.x += _vel_error.x; |
|
curr_vel.y += _vel_error.y; |
|
} |
|
|
|
// calculate current velocity |
|
float vel_total = pythagorous2(curr_vel.x, curr_vel.y); |
|
|
|
// avoid divide by zero by using current position if the velocity is below 10cm/s, kP is very low or acceleration is zero |
|
if (kP <= 0.0f || _accel_cms <= 0.0f || is_zero(vel_total)) { |
|
stopping_point.x = curr_pos.x; |
|
stopping_point.y = curr_pos.y; |
|
return; |
|
} |
|
|
|
// calculate point at which velocity switches from linear to sqrt |
|
linear_velocity = _accel_cms/kP; |
|
|
|
// calculate distance within which we can stop |
|
if (vel_total < linear_velocity) { |
|
stopping_dist = vel_total/kP; |
|
} else { |
|
linear_distance = _accel_cms/(2.0f*kP*kP); |
|
stopping_dist = linear_distance + (vel_total*vel_total)/(2.0f*_accel_cms); |
|
} |
|
|
|
// constrain stopping distance |
|
stopping_dist = constrain_float(stopping_dist, 0, _leash); |
|
|
|
// convert the stopping distance into a stopping point using velocity vector |
|
stopping_point.x = curr_pos.x + (stopping_dist * curr_vel.x / vel_total); |
|
stopping_point.y = curr_pos.y + (stopping_dist * curr_vel.y / vel_total); |
|
} |
|
|
|
/// get_distance_to_target - get horizontal distance to loiter target in cm |
|
float AC_PosControl::get_distance_to_target() const |
|
{ |
|
return _distance_to_target; |
|
} |
|
|
|
// is_active_xy - returns true if the xy position controller has been run very recently |
|
bool AC_PosControl::is_active_xy() const |
|
{ |
|
return ((hal.scheduler->millis() - _last_update_xy_ms) <= POSCONTROL_ACTIVE_TIMEOUT_MS); |
|
} |
|
|
|
/// init_xy_controller - initialise the xy controller |
|
/// sets target roll angle, pitch angle and I terms based on vehicle current lean angles |
|
/// should be called once whenever significant changes to the position target are made |
|
/// this does not update the xy target |
|
void AC_PosControl::init_xy_controller(bool reset_I) |
|
{ |
|
// set roll, pitch lean angle targets to current attitude |
|
_roll_target = _ahrs.roll_sensor; |
|
_pitch_target = _ahrs.pitch_sensor; |
|
|
|
// initialise I terms from lean angles |
|
if (reset_I) { |
|
// reset last velocity if this controller has just been engaged or dt is zero |
|
lean_angles_to_accel(_accel_target.x, _accel_target.y); |
|
_pi_vel_xy.set_integrator(_accel_target); |
|
} |
|
|
|
// flag reset required in rate to accel step |
|
_flags.reset_desired_vel_to_pos = true; |
|
_flags.reset_rate_to_accel_xy = true; |
|
_flags.reset_accel_to_lean_xy = true; |
|
} |
|
|
|
/// update_xy_controller - run the horizontal position controller - should be called at 100hz or higher |
|
void AC_PosControl::update_xy_controller(xy_mode mode, float ekfNavVelGainScaler) |
|
{ |
|
// compute dt |
|
uint32_t now = hal.scheduler->millis(); |
|
float dt = (now - _last_update_xy_ms) / 1000.0f; |
|
_last_update_xy_ms = now; |
|
|
|
// sanity check dt - expect to be called faster than ~5hz |
|
if (dt > POSCONTROL_ACTIVE_TIMEOUT_MS*1.0e-3f) { |
|
dt = 0.0f; |
|
} |
|
|
|
// check if xy leash needs to be recalculated |
|
calc_leash_length_xy(); |
|
|
|
// translate any adjustments from pilot to loiter target |
|
desired_vel_to_pos(dt); |
|
|
|
// run position controller's position error to desired velocity step |
|
pos_to_rate_xy(mode, dt, ekfNavVelGainScaler); |
|
|
|
// run position controller's velocity to acceleration step |
|
rate_to_accel_xy(dt, ekfNavVelGainScaler); |
|
|
|
// run position controller's acceleration to lean angle step |
|
accel_to_lean_angles(dt, ekfNavVelGainScaler); |
|
} |
|
|
|
float AC_PosControl::time_since_last_xy_update() const |
|
{ |
|
uint32_t now = hal.scheduler->millis(); |
|
return (now - _last_update_xy_ms)*0.001f; |
|
} |
|
|
|
/// init_vel_controller_xyz - initialise the velocity controller - should be called once before the caller attempts to use the controller |
|
void AC_PosControl::init_vel_controller_xyz() |
|
{ |
|
// set roll, pitch lean angle targets to current attitude |
|
_roll_target = _ahrs.roll_sensor; |
|
_pitch_target = _ahrs.pitch_sensor; |
|
|
|
// reset last velocity if this controller has just been engaged or dt is zero |
|
lean_angles_to_accel(_accel_target.x, _accel_target.y); |
|
_pi_vel_xy.set_integrator(_accel_target); |
|
|
|
// flag reset required in rate to accel step |
|
_flags.reset_desired_vel_to_pos = true; |
|
_flags.reset_rate_to_accel_xy = true; |
|
_flags.reset_accel_to_lean_xy = true; |
|
|
|
// set target position in xy axis |
|
const Vector3f& curr_pos = _inav.get_position(); |
|
set_xy_target(curr_pos.x, curr_pos.y); |
|
|
|
// move current vehicle velocity into feed forward velocity |
|
const Vector3f& curr_vel = _inav.get_velocity(); |
|
set_desired_velocity_xy(curr_vel.x, curr_vel.y); |
|
} |
|
|
|
/// update_velocity_controller_xyz - run the velocity controller - should be called at 100hz or higher |
|
/// velocity targets should we set using set_desired_velocity_xyz() method |
|
/// callers should use get_roll() and get_pitch() methods and sent to the attitude controller |
|
/// throttle targets will be sent directly to the motors |
|
void AC_PosControl::update_vel_controller_xyz(float ekfNavVelGainScaler) |
|
{ |
|
// capture time since last iteration |
|
uint32_t now = hal.scheduler->millis(); |
|
float dt = (now - _last_update_xy_ms) / 1000.0f; |
|
|
|
// sanity check dt - expect to be called faster than ~5hz |
|
if (dt >= POSCONTROL_ACTIVE_TIMEOUT_MS*1.0e-3f) { |
|
dt = 0.0f; |
|
} |
|
|
|
// check if xy leash needs to be recalculated |
|
calc_leash_length_xy(); |
|
|
|
// apply desired velocity request to position target |
|
desired_vel_to_pos(dt); |
|
|
|
// run position controller's position error to desired velocity step |
|
pos_to_rate_xy(XY_MODE_POS_LIMITED_AND_VEL_FF, dt, ekfNavVelGainScaler); |
|
|
|
// run velocity to acceleration step |
|
rate_to_accel_xy(dt, ekfNavVelGainScaler); |
|
|
|
// run acceleration to lean angle step |
|
accel_to_lean_angles(dt, ekfNavVelGainScaler); |
|
|
|
// update altitude target |
|
set_alt_target_from_climb_rate(_vel_desired.z, dt, false); |
|
|
|
// run z-axis position controller |
|
update_z_controller(); |
|
|
|
// record update time |
|
_last_update_xy_ms = now; |
|
} |
|
|
|
/// |
|
/// private methods |
|
/// |
|
|
|
/// calc_leash_length - calculates the horizontal leash length given a maximum speed, acceleration |
|
/// should be called whenever the speed, acceleration or position kP is modified |
|
void AC_PosControl::calc_leash_length_xy() |
|
{ |
|
if (_flags.recalc_leash_xy) { |
|
_leash = calc_leash_length(_speed_cms, _accel_cms, _p_pos_xy.kP()); |
|
_flags.recalc_leash_xy = false; |
|
} |
|
} |
|
|
|
/// desired_vel_to_pos - move position target using desired velocities |
|
void AC_PosControl::desired_vel_to_pos(float nav_dt) |
|
{ |
|
// range check nav_dt |
|
if( nav_dt < 0 ) { |
|
return; |
|
} |
|
|
|
// update target position |
|
if (_flags.reset_desired_vel_to_pos) { |
|
_flags.reset_desired_vel_to_pos = false; |
|
} else { |
|
_pos_target.x += _vel_desired.x * nav_dt; |
|
_pos_target.y += _vel_desired.y * nav_dt; |
|
} |
|
} |
|
|
|
/// pos_to_rate_xy - horizontal position error to velocity controller |
|
/// converts position (_pos_target) to target velocity (_vel_target) |
|
/// when use_desired_rate is set to true: |
|
/// desired velocity (_vel_desired) is combined into final target velocity and |
|
/// velocity due to position error is reduce to a maximum of 1m/s |
|
void AC_PosControl::pos_to_rate_xy(xy_mode mode, float dt, float ekfNavVelGainScaler) |
|
{ |
|
Vector3f curr_pos = _inav.get_position(); |
|
float linear_distance; // the distance we swap between linear and sqrt velocity response |
|
float kP = ekfNavVelGainScaler * _p_pos_xy.kP(); // scale gains to compensate for noisy optical flow measurement in the EKF |
|
|
|
// avoid divide by zero |
|
if (kP <= 0.0f) { |
|
_vel_target.x = 0.0f; |
|
_vel_target.y = 0.0f; |
|
}else{ |
|
// calculate distance error |
|
_pos_error.x = _pos_target.x - curr_pos.x; |
|
_pos_error.y = _pos_target.y - curr_pos.y; |
|
|
|
// constrain target position to within reasonable distance of current location |
|
_distance_to_target = pythagorous2(_pos_error.x, _pos_error.y); |
|
if (_distance_to_target > _leash && _distance_to_target > 0.0f) { |
|
_pos_target.x = curr_pos.x + _leash * _pos_error.x/_distance_to_target; |
|
_pos_target.y = curr_pos.y + _leash * _pos_error.y/_distance_to_target; |
|
// re-calculate distance error |
|
_pos_error.x = _pos_target.x - curr_pos.x; |
|
_pos_error.y = _pos_target.y - curr_pos.y; |
|
_distance_to_target = _leash; |
|
} |
|
|
|
// calculate the distance at which we swap between linear and sqrt velocity response |
|
linear_distance = _accel_cms/(2.0f*kP*kP); |
|
|
|
if (_distance_to_target > 2.0f*linear_distance) { |
|
// velocity response grows with the square root of the distance |
|
float vel_sqrt = safe_sqrt(2.0f*_accel_cms*(_distance_to_target-linear_distance)); |
|
_vel_target.x = vel_sqrt * _pos_error.x/_distance_to_target; |
|
_vel_target.y = vel_sqrt * _pos_error.y/_distance_to_target; |
|
}else{ |
|
// velocity response grows linearly with the distance |
|
_vel_target.x = _p_pos_xy.kP() * _pos_error.x; |
|
_vel_target.y = _p_pos_xy.kP() * _pos_error.y; |
|
} |
|
|
|
if (mode == XY_MODE_POS_LIMITED_AND_VEL_FF) { |
|
// this mode is for loiter - rate-limiting the position correction |
|
// allows the pilot to always override the position correction in |
|
// the event of a disturbance |
|
|
|
// scale velocity within limit |
|
float vel_total = pythagorous2(_vel_target.x, _vel_target.y); |
|
if (vel_total > POSCONTROL_VEL_XY_MAX_FROM_POS_ERR) { |
|
_vel_target.x = POSCONTROL_VEL_XY_MAX_FROM_POS_ERR * _vel_target.x/vel_total; |
|
_vel_target.y = POSCONTROL_VEL_XY_MAX_FROM_POS_ERR * _vel_target.y/vel_total; |
|
} |
|
|
|
// add velocity feed-forward |
|
_vel_target.x += _vel_desired.x; |
|
_vel_target.y += _vel_desired.y; |
|
} else { |
|
if (mode == XY_MODE_POS_AND_VEL_FF) { |
|
// add velocity feed-forward |
|
_vel_target.x += _vel_desired.x; |
|
_vel_target.y += _vel_desired.y; |
|
} |
|
|
|
// scale velocity within speed limit |
|
float vel_total = pythagorous2(_vel_target.x, _vel_target.y); |
|
if (vel_total > _speed_cms) { |
|
_vel_target.x = _speed_cms * _vel_target.x/vel_total; |
|
_vel_target.y = _speed_cms * _vel_target.y/vel_total; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/// rate_to_accel_xy - horizontal desired rate to desired acceleration |
|
/// converts desired velocities in lat/lon directions to accelerations in lat/lon frame |
|
void AC_PosControl::rate_to_accel_xy(float dt, float ekfNavVelGainScaler) |
|
{ |
|
const Vector3f &vel_curr = _inav.get_velocity(); // current velocity in cm/s |
|
float accel_total; // total acceleration in cm/s/s |
|
Vector2f vel_xy_p, vel_xy_i; |
|
|
|
// reset last velocity target to current target |
|
if (_flags.reset_rate_to_accel_xy) { |
|
_vel_last.x = _vel_target.x; |
|
_vel_last.y = _vel_target.y; |
|
_flags.reset_rate_to_accel_xy = false; |
|
} |
|
|
|
// feed forward desired acceleration calculation |
|
if (dt > 0.0f) { |
|
if (!_flags.freeze_ff_xy) { |
|
_accel_feedforward.x = (_vel_target.x - _vel_last.x)/dt; |
|
_accel_feedforward.y = (_vel_target.y - _vel_last.y)/dt; |
|
} else { |
|
// stop the feed forward being calculated during a known discontinuity |
|
_flags.freeze_ff_xy = false; |
|
} |
|
} else { |
|
_accel_feedforward.x = 0.0f; |
|
_accel_feedforward.y = 0.0f; |
|
} |
|
|
|
// store this iteration's velocities for the next iteration |
|
_vel_last.x = _vel_target.x; |
|
_vel_last.y = _vel_target.y; |
|
|
|
// calculate velocity error |
|
_vel_error.x = _vel_target.x - vel_curr.x; |
|
_vel_error.y = _vel_target.y - vel_curr.y; |
|
|
|
// call pi controller |
|
_pi_vel_xy.set_input(_vel_error); |
|
|
|
// get p |
|
vel_xy_p = _pi_vel_xy.get_p(); |
|
|
|
// update i term if we have not hit the accel or throttle limits OR the i term will reduce |
|
if ((!_limit.accel_xy && !_motors.limit.throttle_upper)) { |
|
vel_xy_i = _pi_vel_xy.get_i(); |
|
} else { |
|
vel_xy_i = _pi_vel_xy.get_i_shrink(); |
|
} |
|
|
|
// combine feed forward accel with PID output from velocity error and scale PID output to compensate for optical flow measurement induced EKF noise |
|
_accel_target.x = _accel_feedforward.x + (vel_xy_p.x + vel_xy_i.x) * ekfNavVelGainScaler; |
|
_accel_target.y = _accel_feedforward.y + (vel_xy_p.y + vel_xy_i.y) * ekfNavVelGainScaler; |
|
|
|
// scale desired acceleration if it's beyond acceptable limit |
|
// To-Do: move this check down to the accel_to_lean_angle method? |
|
accel_total = pythagorous2(_accel_target.x, _accel_target.y); |
|
if (accel_total > POSCONTROL_ACCEL_XY_MAX && accel_total > 0.0f) { |
|
_accel_target.x = POSCONTROL_ACCEL_XY_MAX * _accel_target.x/accel_total; |
|
_accel_target.y = POSCONTROL_ACCEL_XY_MAX * _accel_target.y/accel_total; |
|
_limit.accel_xy = true; // unused |
|
} else { |
|
// reset accel limit flag |
|
_limit.accel_xy = false; |
|
} |
|
} |
|
|
|
/// accel_to_lean_angles - horizontal desired acceleration to lean angles |
|
/// converts desired accelerations provided in lat/lon frame to roll/pitch angles |
|
void AC_PosControl::accel_to_lean_angles(float dt, float ekfNavVelGainScaler) |
|
{ |
|
float accel_right, accel_forward; |
|
float lean_angle_max = _attitude_control.lean_angle_max(); |
|
|
|
// reset accel to current desired acceleration |
|
if (_flags.reset_accel_to_lean_xy) { |
|
_accel_target_jerk_limited.x = _accel_target.x; |
|
_accel_target_jerk_limited.y = _accel_target.y; |
|
_accel_target_filter.reset(Vector2f(_accel_target.x, _accel_target.y)); |
|
_flags.reset_accel_to_lean_xy = false; |
|
} |
|
|
|
// apply jerk limit of 17 m/s^3 - equates to a worst case of about 100 deg/sec/sec |
|
float max_delta_accel = dt * POSCONTROL_JERK_LIMIT_CMSSS; |
|
|
|
Vector2f accel_in(_accel_target.x, _accel_target.y); |
|
Vector2f accel_change = accel_in-_accel_target_jerk_limited; |
|
float accel_change_length = accel_change.length(); |
|
|
|
if(accel_change_length > max_delta_accel) { |
|
accel_change *= max_delta_accel/accel_change_length; |
|
} |
|
_accel_target_jerk_limited += accel_change; |
|
|
|
// lowpass filter on NE accel |
|
_accel_target_filter.set_cutoff_frequency(min(_accel_xy_filt_hz, 5.0f*ekfNavVelGainScaler)); |
|
Vector2f accel_target_filtered = _accel_target_filter.apply(_accel_target_jerk_limited, dt); |
|
|
|
// rotate accelerations into body forward-right frame |
|
accel_forward = accel_target_filtered.x*_ahrs.cos_yaw() + accel_target_filtered.y*_ahrs.sin_yaw(); |
|
accel_right = -accel_target_filtered.x*_ahrs.sin_yaw() + accel_target_filtered.y*_ahrs.cos_yaw(); |
|
|
|
// update angle targets that will be passed to stabilize controller |
|
_pitch_target = constrain_float(atanf(-accel_forward/(GRAVITY_MSS * 100))*(18000/M_PI_F),-lean_angle_max, lean_angle_max); |
|
float cos_pitch_target = cosf(_pitch_target*M_PI_F/18000); |
|
_roll_target = constrain_float(atanf(accel_right*cos_pitch_target/(GRAVITY_MSS * 100))*(18000/M_PI_F), -lean_angle_max, lean_angle_max); |
|
} |
|
|
|
// get_lean_angles_to_accel - convert roll, pitch lean angles to lat/lon frame accelerations in cm/s/s |
|
void AC_PosControl::lean_angles_to_accel(float& accel_x_cmss, float& accel_y_cmss) const |
|
{ |
|
// rotate our roll, pitch angles into lat/lon frame |
|
accel_x_cmss = (GRAVITY_MSS * 100) * (-(_ahrs.cos_yaw() * _ahrs.sin_pitch() / max(_ahrs.cos_pitch(),0.5f)) - _ahrs.sin_yaw() * _ahrs.sin_roll() / max(_ahrs.cos_roll(),0.5f)); |
|
accel_y_cmss = (GRAVITY_MSS * 100) * (-(_ahrs.sin_yaw() * _ahrs.sin_pitch() / max(_ahrs.cos_pitch(),0.5f)) + _ahrs.cos_yaw() * _ahrs.sin_roll() / max(_ahrs.cos_roll(),0.5f)); |
|
} |
|
|
|
/// calc_leash_length - calculates the horizontal leash length given a maximum speed, acceleration and position kP gain |
|
float AC_PosControl::calc_leash_length(float speed_cms, float accel_cms, float kP) const |
|
{ |
|
float leash_length; |
|
|
|
// sanity check acceleration and avoid divide by zero |
|
if (accel_cms <= 0.0f) { |
|
accel_cms = POSCONTROL_ACCELERATION_MIN; |
|
} |
|
|
|
// avoid divide by zero |
|
if (kP <= 0.0f) { |
|
return POSCONTROL_LEASH_LENGTH_MIN; |
|
} |
|
|
|
// calculate leash length |
|
if(speed_cms <= accel_cms / kP) { |
|
// linear leash length based on speed close in |
|
leash_length = speed_cms / kP; |
|
}else{ |
|
// leash length grows at sqrt of speed further out |
|
leash_length = (accel_cms / (2.0f*kP*kP)) + (speed_cms*speed_cms / (2.0f*accel_cms)); |
|
} |
|
|
|
// ensure leash is at least 1m long |
|
if( leash_length < POSCONTROL_LEASH_LENGTH_MIN ) { |
|
leash_length = POSCONTROL_LEASH_LENGTH_MIN; |
|
} |
|
|
|
return leash_length; |
|
}
|
|
|