You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
262 lines
9.7 KiB
262 lines
9.7 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
/* |
|
* AP_MotorsSingle.cpp - ArduCopter motors library |
|
* Code by RandyMackay. DIYDrones.com |
|
* |
|
*/ |
|
|
|
#include <AP_HAL.h> |
|
#include <AP_Math.h> |
|
#include "AP_MotorsCoax.h" |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
|
|
const AP_Param::GroupInfo AP_MotorsCoax::var_info[] PROGMEM = { |
|
// variables from parent vehicle |
|
AP_NESTEDGROUPINFO(AP_Motors, 0), |
|
|
|
// parameters 1 ~ 29 reserved for tradheli |
|
// parameters 30 ~ 39 reserved for tricopter |
|
// parameters 40 ~ 49 for single copter and coax copter (these have identical parameter files) |
|
|
|
// @Param: ROLL_SV_REV |
|
// @DisplayName: Reverse roll feedback |
|
// @Description: Ensure the feedback is negative |
|
// @Values: -1:Reversed,1:Normal |
|
AP_GROUPINFO("ROLL_SV_REV", 40, AP_MotorsCoax, _rev_roll, AP_MOTORS_COAX_POSITIVE), |
|
|
|
// @Param: PITCH_SV_REV |
|
// @DisplayName: Reverse roll feedback |
|
// @Description: Ensure the feedback is negative |
|
// @Values: -1:Reversed,1:Normal |
|
AP_GROUPINFO("PITCH_SV_REV", 41, AP_MotorsCoax, _rev_pitch, AP_MOTORS_COAX_POSITIVE), |
|
|
|
// @Param: YAW_SV_REV |
|
// @DisplayName: Reverse roll feedback |
|
// @Description: Ensure the feedback is negative |
|
// @Values: -1:Reversed,1:Normal |
|
AP_GROUPINFO("YAW_SV_REV", 42, AP_MotorsCoax, _rev_yaw, AP_MOTORS_COAX_POSITIVE), |
|
|
|
// @Param: SV_SPEED |
|
// @DisplayName: Servo speed |
|
// @Description: Servo update speed |
|
// @Values: -1:Opposite direction,1:Same direction |
|
AP_GROUPINFO("SV_SPEED", 43, AP_MotorsCoax, _servo_speed, AP_MOTORS_SINGLE_SPEED_DIGITAL_SERVOS), |
|
|
|
AP_GROUPEND |
|
}; |
|
// init |
|
void AP_MotorsCoax::Init() |
|
{ |
|
// call parent Init function to set-up throttle curve |
|
AP_Motors::Init(); |
|
|
|
// set update rate for the 2 motors (but not the servo on channel 1&2) |
|
set_update_rate(_speed_hz); |
|
|
|
// set the motor_enabled flag so that the ESCs can be calibrated like other frame types |
|
motor_enabled[AP_MOTORS_MOT_3] = true; |
|
motor_enabled[AP_MOTORS_MOT_4] = true; |
|
|
|
// set ranges for fin servos |
|
_servo1.set_type(RC_CHANNEL_TYPE_ANGLE); |
|
_servo2.set_type(RC_CHANNEL_TYPE_ANGLE); |
|
_servo1.set_angle(AP_MOTORS_COAX_SERVO_INPUT_RANGE); |
|
_servo2.set_angle(AP_MOTORS_COAX_SERVO_INPUT_RANGE); |
|
} |
|
|
|
// set update rate to motors - a value in hertz |
|
void AP_MotorsCoax::set_update_rate( uint16_t speed_hz ) |
|
{ |
|
// record requested speed |
|
_speed_hz = speed_hz; |
|
|
|
// set update rate for the two motors |
|
uint32_t mask2 = |
|
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]) | |
|
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]) ; |
|
hal.rcout->set_freq(mask2, _speed_hz); |
|
|
|
// set update rate for the two servos |
|
uint32_t mask = |
|
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]) | |
|
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]) ; |
|
hal.rcout->set_freq(mask, _servo_speed); |
|
} |
|
|
|
// enable - starts allowing signals to be sent to motors |
|
void AP_MotorsCoax::enable() |
|
{ |
|
// enable output channels |
|
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1])); |
|
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2])); |
|
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3])); |
|
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4])); |
|
} |
|
|
|
// output_min - sends minimum values out to the motor and trim values to the servos |
|
void AP_MotorsCoax::output_min() |
|
{ |
|
// send minimum value to each motor |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), _servo1.radio_trim); |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), _servo2.radio_trim); |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), _throttle_radio_min); |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), _throttle_radio_min); |
|
} |
|
|
|
void AP_MotorsCoax::output_armed_not_stabilizing() |
|
{ |
|
int16_t throttle_radio_output; // total throttle pwm value, summed onto throttle channel minimum, typically ~1100-1900 |
|
int16_t out_min = _throttle_radio_min + _min_throttle; |
|
int16_t motor_out; |
|
|
|
int16_t min_thr = rel_pwm_to_thr_range(_spin_when_armed_ramped); |
|
|
|
// initialize limits flags |
|
limit.roll_pitch = true; |
|
limit.yaw = true; |
|
limit.throttle_lower = false; |
|
limit.throttle_upper = false; |
|
|
|
if (_throttle_control_input <= min_thr) { |
|
_throttle_control_input = min_thr; |
|
limit.throttle_lower = true; |
|
} |
|
if (_throttle_control_input >= _max_throttle) { |
|
_throttle_control_input = _max_throttle; |
|
limit.throttle_upper = true; |
|
} |
|
|
|
throttle_radio_output = calc_throttle_radio_output(); |
|
|
|
motor_out = throttle_radio_output; |
|
|
|
_servo1.servo_out = 0; |
|
_servo1.calc_pwm(); |
|
|
|
_servo2.servo_out = 0; |
|
_servo2.calc_pwm(); |
|
|
|
if (motor_out >= out_min) { |
|
motor_out = apply_thrust_curve_and_volt_scaling(motor_out, out_min, _throttle_radio_max); |
|
} |
|
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), _servo1.radio_out); |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), _servo2.radio_out); |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), motor_out); |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), motor_out); |
|
} |
|
|
|
// sends commands to the motors |
|
// TODO pull code that is common to output_armed_not_stabilizing into helper functions |
|
void AP_MotorsCoax::output_armed_stabilizing() |
|
{ |
|
int16_t yaw_pwm; // yaw pwm value, initially calculated by calc_yaw_pwm() but may be modified after, +/- 400 |
|
int16_t throttle_radio_output; // total throttle pwm value, summed onto throttle channel minimum, typically ~1100-1900 |
|
int16_t out_min = _throttle_radio_min + _min_throttle; |
|
int16_t motor_out[4]; |
|
|
|
// initialize limits flags |
|
limit.roll_pitch = false; |
|
limit.yaw = false; |
|
limit.throttle_lower = false; |
|
limit.throttle_upper = false; |
|
|
|
if (_throttle_control_input <= _min_throttle) { |
|
_throttle_control_input = _min_throttle; |
|
limit.throttle_lower = true; |
|
} |
|
if (_throttle_control_input >= _max_throttle) { |
|
_throttle_control_input = _max_throttle; |
|
limit.throttle_upper = true; |
|
} |
|
|
|
// calculate throttle and yaw PWM |
|
throttle_radio_output = calc_throttle_radio_output(); |
|
yaw_pwm = calc_yaw_pwm(); |
|
|
|
// motors |
|
motor_out[AP_MOTORS_MOT_3] = _rev_yaw*yaw_pwm + throttle_radio_output; |
|
motor_out[AP_MOTORS_MOT_4] = -_rev_yaw*yaw_pwm + throttle_radio_output; |
|
|
|
// TODO: set limits.roll_pitch and limits.yaw |
|
|
|
// front |
|
_servo1.servo_out = _rev_roll*_roll_control_input; |
|
// right |
|
_servo2.servo_out = _rev_pitch*_pitch_control_input; |
|
|
|
_servo1.calc_pwm(); |
|
_servo2.calc_pwm(); |
|
|
|
// adjust for thrust curve and voltage scaling |
|
motor_out[AP_MOTORS_MOT_3] = apply_thrust_curve_and_volt_scaling(motor_out[AP_MOTORS_MOT_3], out_min, _throttle_radio_max); |
|
motor_out[AP_MOTORS_MOT_4] = apply_thrust_curve_and_volt_scaling(motor_out[AP_MOTORS_MOT_4], out_min, _throttle_radio_max); |
|
|
|
// ensure motors don't drop below a minimum value and stop |
|
motor_out[AP_MOTORS_MOT_3] = max(motor_out[AP_MOTORS_MOT_3], out_min); |
|
motor_out[AP_MOTORS_MOT_4] = max(motor_out[AP_MOTORS_MOT_4], out_min); |
|
|
|
// send output to each motor |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), _servo1.radio_out); |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), _servo2.radio_out); |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), motor_out[AP_MOTORS_MOT_3]); |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), motor_out[AP_MOTORS_MOT_4]); |
|
} |
|
|
|
// output_disarmed - sends commands to the motors |
|
void AP_MotorsCoax::output_disarmed() |
|
{ |
|
// Send minimum values to all motors |
|
output_min(); |
|
} |
|
|
|
// output_test - spin a motor at the pwm value specified |
|
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame |
|
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 |
|
void AP_MotorsCoax::output_test(uint8_t motor_seq, int16_t pwm) |
|
{ |
|
// exit immediately if not armed |
|
if (!armed()) { |
|
return; |
|
} |
|
|
|
// output to motors and servos |
|
switch (motor_seq) { |
|
case 1: |
|
// flap servo 1 |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), pwm); |
|
break; |
|
case 2: |
|
// flap servo 2 |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), pwm); |
|
break; |
|
case 3: |
|
// motor 1 |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), pwm); |
|
break; |
|
case 4: |
|
// motor 2 |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), pwm); |
|
break; |
|
default: |
|
// do nothing |
|
break; |
|
} |
|
}
|
|
|