You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
497 lines
18 KiB
497 lines
18 KiB
#include "AC_Avoid.h" |
|
|
|
const AP_Param::GroupInfo AC_Avoid::var_info[] = { |
|
|
|
// @Param: ENABLE |
|
// @DisplayName: Avoidance control enable/disable |
|
// @Description: Enabled/disable stopping at fence |
|
// @Values: 0:None,1:StopAtFence,2:UseProximitySensor,3:StopAtFence and UseProximitySensor,4:StopAtBeaconFence,7:All |
|
// @Bitmask: 0:StopAtFence,1:UseProximitySensor,2:StopAtBeaconFence |
|
// @User: Standard |
|
AP_GROUPINFO("ENABLE", 1, AC_Avoid, _enabled, AC_AVOID_DEFAULT), |
|
|
|
// @Param: ANGLE_MAX |
|
// @DisplayName: Avoidance max lean angle in non-GPS flight modes |
|
// @Description: Max lean angle used to avoid obstacles while in non-GPS modes |
|
// @Units: cdeg |
|
// @Range: 0 4500 |
|
// @User: Standard |
|
AP_GROUPINFO("ANGLE_MAX", 2, AC_Avoid, _angle_max, 1000), |
|
|
|
// @Param: DIST_MAX |
|
// @DisplayName: Avoidance distance maximum in non-GPS flight modes |
|
// @Description: Distance from object at which obstacle avoidance will begin in non-GPS modes |
|
// @Units: m |
|
// @Range: 3 30 |
|
// @User: Standard |
|
AP_GROUPINFO("DIST_MAX", 3, AC_Avoid, _dist_max, AC_AVOID_NONGPS_DIST_MAX_DEFAULT), |
|
|
|
// @Param: MARGIN |
|
// @DisplayName: Avoidance distance margin in GPS modes |
|
// @Description: Vehicle will attempt to stay at least this distance (in meters) from objects while in GPS modes |
|
// @Units: m |
|
// @Range: 1 10 |
|
// @User: Standard |
|
AP_GROUPINFO("MARGIN", 4, AC_Avoid, _margin, 2.0f), |
|
|
|
AP_GROUPEND |
|
}; |
|
|
|
/// Constructor |
|
AC_Avoid::AC_Avoid(const AP_AHRS& ahrs, const AP_InertialNav& inav, const AC_Fence& fence, const AP_Proximity& proximity, const AP_Beacon* beacon) |
|
: _ahrs(ahrs), |
|
_inav(inav), |
|
_fence(fence), |
|
_proximity(proximity), |
|
_beacon(beacon) |
|
{ |
|
AP_Param::setup_object_defaults(this, var_info); |
|
} |
|
|
|
void AC_Avoid::adjust_velocity(float kP, float accel_cmss, Vector2f &desired_vel) |
|
{ |
|
// exit immediately if disabled |
|
if (_enabled == AC_AVOID_DISABLED) { |
|
return; |
|
} |
|
|
|
// limit acceleration |
|
float accel_cmss_limited = MIN(accel_cmss, AC_AVOID_ACCEL_CMSS_MAX); |
|
|
|
if ((_enabled & AC_AVOID_STOP_AT_FENCE) > 0) { |
|
adjust_velocity_circle_fence(kP, accel_cmss_limited, desired_vel); |
|
adjust_velocity_polygon_fence(kP, accel_cmss_limited, desired_vel); |
|
} |
|
|
|
if ((_enabled & AC_AVOID_STOP_AT_BEACON_FENCE) > 0) { |
|
adjust_velocity_beacon_fence(kP, accel_cmss_limited, desired_vel); |
|
} |
|
|
|
if ((_enabled & AC_AVOID_USE_PROXIMITY_SENSOR) > 0 && _proximity_enabled) { |
|
adjust_velocity_proximity(kP, accel_cmss_limited, desired_vel); |
|
} |
|
} |
|
|
|
// convenience function to accept Vector3f. Only x and y are adjusted |
|
void AC_Avoid::adjust_velocity(float kP, float accel_cmss, Vector3f &desired_vel) |
|
{ |
|
Vector2f des_vel_xy(desired_vel.x, desired_vel.y); |
|
adjust_velocity(kP, accel_cmss, des_vel_xy); |
|
desired_vel.x = des_vel_xy.x; |
|
desired_vel.y = des_vel_xy.y; |
|
} |
|
|
|
// adjust vertical climb rate so vehicle does not break the vertical fence |
|
void AC_Avoid::adjust_velocity_z(float kP, float accel_cmss, float& climb_rate_cms) |
|
{ |
|
// exit immediately if disabled |
|
if (_enabled == AC_AVOID_DISABLED) { |
|
return; |
|
} |
|
|
|
// do not adjust climb_rate if level or descending |
|
if (climb_rate_cms <= 0.0f) { |
|
return; |
|
} |
|
|
|
// limit acceleration |
|
float accel_cmss_limited = MIN(accel_cmss, AC_AVOID_ACCEL_CMSS_MAX); |
|
|
|
bool limit_alt = false; |
|
float alt_diff_cm = 0.0f; // distance from altitude limit to vehicle in cm (positive means vehicle is below limit) |
|
|
|
// calculate distance below fence |
|
if ((_enabled & AC_AVOID_STOP_AT_FENCE) > 0 && (_fence.get_enabled_fences() & AC_FENCE_TYPE_ALT_MAX) > 0) { |
|
// calculate distance from vehicle to safe altitude |
|
float veh_alt = get_alt_above_home(); |
|
alt_diff_cm = _fence.get_safe_alt_max() * 100.0f - veh_alt; |
|
limit_alt = true; |
|
} |
|
|
|
// calculate distance to optical flow altitude limit |
|
float ekf_alt_limit_cm; |
|
if (_inav.get_hgt_ctrl_limit(ekf_alt_limit_cm)) { |
|
float ekf_alt_diff_cm = ekf_alt_limit_cm - _inav.get_altitude(); |
|
if (!limit_alt || ekf_alt_diff_cm < alt_diff_cm) { |
|
alt_diff_cm = ekf_alt_diff_cm; |
|
} |
|
limit_alt = true; |
|
} |
|
|
|
// get distance from proximity sensor (in meters, convert to cm) |
|
float proximity_alt_diff_m; |
|
if (_proximity.get_upward_distance(proximity_alt_diff_m)) { |
|
float proximity_alt_diff_cm = (proximity_alt_diff_m - _margin) * 100.0f; |
|
if (!limit_alt || proximity_alt_diff_cm < alt_diff_cm) { |
|
alt_diff_cm = proximity_alt_diff_cm; |
|
} |
|
limit_alt = true; |
|
} |
|
|
|
// limit climb rate |
|
if (limit_alt) { |
|
// do not allow climbing if we've breached the safe altitude |
|
if (alt_diff_cm <= 0.0f) { |
|
climb_rate_cms = MIN(climb_rate_cms, 0.0f); |
|
return; |
|
} |
|
|
|
// limit climb rate |
|
const float max_speed = get_max_speed(kP, accel_cmss_limited, alt_diff_cm); |
|
climb_rate_cms = MIN(max_speed, climb_rate_cms); |
|
} |
|
} |
|
|
|
// adjust roll-pitch to push vehicle away from objects |
|
// roll and pitch value are in centi-degrees |
|
void AC_Avoid::adjust_roll_pitch(float &roll, float &pitch, float veh_angle_max) |
|
{ |
|
// exit immediately if proximity based avoidance is disabled |
|
if ((_enabled & AC_AVOID_USE_PROXIMITY_SENSOR) == 0 || !_proximity_enabled) { |
|
return; |
|
} |
|
|
|
// exit immediately if angle max is zero |
|
if (_angle_max <= 0.0f || veh_angle_max <= 0.0f) { |
|
return; |
|
} |
|
|
|
float roll_positive = 0.0f; // maximum positive roll value |
|
float roll_negative = 0.0f; // minimum negative roll value |
|
float pitch_positive = 0.0f; // maximum position pitch value |
|
float pitch_negative = 0.0f; // minimum negative pitch value |
|
|
|
// get maximum positive and negative roll and pitch percentages from proximity sensor |
|
get_proximity_roll_pitch_pct(roll_positive, roll_negative, pitch_positive, pitch_negative); |
|
|
|
// add maximum positive and negative percentages together for roll and pitch, convert to centi-degrees |
|
Vector2f rp_out((roll_positive + roll_negative) * 4500.0f, (pitch_positive + pitch_negative) * 4500.0f); |
|
|
|
// apply avoidance angular limits |
|
// the object avoidance lean angle is never more than 75% of the total angle-limit to allow the pilot to override |
|
const float angle_limit = constrain_float(_angle_max, 0.0f, veh_angle_max * AC_AVOID_ANGLE_MAX_PERCENT); |
|
float vec_len = rp_out.length(); |
|
if (vec_len > angle_limit) { |
|
rp_out *= (angle_limit / vec_len); |
|
} |
|
|
|
// add passed in roll, pitch angles |
|
rp_out.x += roll; |
|
rp_out.y += pitch; |
|
|
|
// apply total angular limits |
|
vec_len = rp_out.length(); |
|
if (vec_len > veh_angle_max) { |
|
rp_out *= (veh_angle_max / vec_len); |
|
} |
|
|
|
// return adjusted roll, pitch |
|
roll = rp_out.x; |
|
pitch = rp_out.y; |
|
} |
|
|
|
/* |
|
* Adjusts the desired velocity for the circular fence. |
|
*/ |
|
void AC_Avoid::adjust_velocity_circle_fence(float kP, float accel_cmss, Vector2f &desired_vel) |
|
{ |
|
// exit if circular fence is not enabled |
|
if ((_fence.get_enabled_fences() & AC_FENCE_TYPE_CIRCLE) == 0) { |
|
return; |
|
} |
|
|
|
// exit if the circular fence has already been breached |
|
if ((_fence.get_breaches() & AC_FENCE_TYPE_CIRCLE) != 0) { |
|
return; |
|
} |
|
|
|
// get position as a 2D offset in cm from ahrs home |
|
const Vector2f position_xy = get_position(); |
|
|
|
float speed = desired_vel.length(); |
|
// get the fence radius in cm |
|
const float fence_radius = _fence.get_radius() * 100.0f; |
|
// get the margin to the fence in cm |
|
const float margin_cm = _fence.get_margin() * 100.0f; |
|
|
|
if (!is_zero(speed) && position_xy.length() <= fence_radius) { |
|
// Currently inside circular fence |
|
Vector2f stopping_point = position_xy + desired_vel*(get_stopping_distance(kP, accel_cmss, speed)/speed); |
|
float stopping_point_length = stopping_point.length(); |
|
if (stopping_point_length > fence_radius - margin_cm) { |
|
// Unsafe desired velocity - will not be able to stop before fence breach |
|
// Project stopping point radially onto fence boundary |
|
// Adjusted velocity will point towards this projected point at a safe speed |
|
Vector2f target = stopping_point * ((fence_radius - margin_cm) / stopping_point_length); |
|
Vector2f target_direction = target - position_xy; |
|
float distance_to_target = target_direction.length(); |
|
float max_speed = get_max_speed(kP, accel_cmss, distance_to_target); |
|
desired_vel = target_direction * (MIN(speed,max_speed) / distance_to_target); |
|
} |
|
} |
|
} |
|
|
|
/* |
|
* Adjusts the desired velocity for the polygon fence. |
|
*/ |
|
void AC_Avoid::adjust_velocity_polygon_fence(float kP, float accel_cmss, Vector2f &desired_vel) |
|
{ |
|
// exit if the polygon fence is not enabled |
|
if ((_fence.get_enabled_fences() & AC_FENCE_TYPE_POLYGON) == 0) { |
|
return; |
|
} |
|
|
|
// exit if the polygon fence has already been breached |
|
if ((_fence.get_breaches() & AC_FENCE_TYPE_POLYGON) != 0) { |
|
return; |
|
} |
|
|
|
// exit immediately if no desired velocity |
|
if (desired_vel.is_zero()) { |
|
return; |
|
} |
|
|
|
// get polygon boundary |
|
// Note: first point in list is the return-point (which copter does not use) |
|
uint16_t num_points; |
|
Vector2f* boundary = _fence.get_polygon_points(num_points); |
|
|
|
// adjust velocity using polygon |
|
adjust_velocity_polygon(kP, accel_cmss, desired_vel, boundary, num_points, true, _fence.get_margin()); |
|
} |
|
|
|
/* |
|
* Adjusts the desired velocity for the beacon fence. |
|
*/ |
|
void AC_Avoid::adjust_velocity_beacon_fence(float kP, float accel_cmss, Vector2f &desired_vel) |
|
{ |
|
// exit if the beacon is not present |
|
if (_beacon == nullptr) { |
|
return; |
|
} |
|
|
|
// exit immediately if no desired velocity |
|
if (desired_vel.is_zero()) { |
|
return; |
|
} |
|
|
|
// get boundary from beacons |
|
uint16_t num_points; |
|
const Vector2f* boundary = _beacon->get_boundary_points(num_points); |
|
if (boundary == nullptr || num_points == 0) { |
|
return; |
|
} |
|
|
|
// adjust velocity using beacon |
|
adjust_velocity_polygon(kP, accel_cmss, desired_vel, boundary, num_points, true, _fence.get_margin()); |
|
} |
|
|
|
/* |
|
* Adjusts the desired velocity based on output from the proximity sensor |
|
*/ |
|
void AC_Avoid::adjust_velocity_proximity(float kP, float accel_cmss, Vector2f &desired_vel) |
|
{ |
|
// exit immediately if proximity sensor is not present |
|
if (_proximity.get_status() != AP_Proximity::Proximity_Good) { |
|
return; |
|
} |
|
|
|
// exit immediately if no desired velocity |
|
if (desired_vel.is_zero()) { |
|
return; |
|
} |
|
|
|
// get boundary from proximity sensor |
|
uint16_t num_points; |
|
const Vector2f *boundary = _proximity.get_boundary_points(num_points); |
|
adjust_velocity_polygon(kP, accel_cmss, desired_vel, boundary, num_points, false, _margin); |
|
} |
|
|
|
/* |
|
* Adjusts the desired velocity for the polygon fence. |
|
*/ |
|
void AC_Avoid::adjust_velocity_polygon(float kP, float accel_cmss, Vector2f &desired_vel, const Vector2f* boundary, uint16_t num_points, bool earth_frame, float margin) |
|
{ |
|
// exit if there are no points |
|
if (boundary == nullptr || num_points == 0) { |
|
return; |
|
} |
|
|
|
// do not adjust velocity if vehicle is outside the polygon fence |
|
Vector3f position; |
|
if (earth_frame) { |
|
position = _inav.get_position(); |
|
} |
|
Vector2f position_xy(position.x, position.y); |
|
if (_fence.boundary_breached(position_xy, num_points, boundary)) { |
|
return; |
|
} |
|
|
|
// Safe_vel will be adjusted to remain within fence. |
|
// We need a separate vector in case adjustment fails, |
|
// e.g. if we are exactly on the boundary. |
|
Vector2f safe_vel(desired_vel); |
|
|
|
// if boundary points are in body-frame, rotate velocity vector from earth frame to body-frame |
|
if (!earth_frame) { |
|
safe_vel.x = desired_vel.y * _ahrs.sin_yaw() + desired_vel.x * _ahrs.cos_yaw(); // right |
|
safe_vel.y = desired_vel.y * _ahrs.cos_yaw() - desired_vel.x * _ahrs.sin_yaw(); // forward |
|
} |
|
|
|
// calc margin in cm |
|
float margin_cm = MAX(margin * 100.0f, 0); |
|
|
|
uint16_t i, j; |
|
for (i = 1, j = num_points-1; i < num_points; j = i++) { |
|
// end points of current edge |
|
Vector2f start = boundary[j]; |
|
Vector2f end = boundary[i]; |
|
// vector from current position to closest point on current edge |
|
Vector2f limit_direction = Vector2f::closest_point(position_xy, start, end) - position_xy; |
|
// distance to closest point |
|
const float limit_distance = limit_direction.length(); |
|
if (!is_zero(limit_distance)) { |
|
// We are strictly inside the given edge. |
|
// Adjust velocity to not violate this edge. |
|
limit_direction /= limit_distance; |
|
limit_velocity(kP, accel_cmss, safe_vel, limit_direction, MAX(limit_distance - margin_cm,0.0f)); |
|
} else { |
|
// We are exactly on the edge - treat this as a fence breach. |
|
// i.e. do not adjust velocity. |
|
return; |
|
} |
|
} |
|
|
|
// set modified desired velocity vector |
|
if (earth_frame) { |
|
desired_vel = safe_vel; |
|
} else { |
|
// if points were in body-frame, rotate resulting vector back to earth-frame |
|
desired_vel.x = safe_vel.x * _ahrs.cos_yaw() - safe_vel.y * _ahrs.sin_yaw(); |
|
desired_vel.y = safe_vel.x * _ahrs.sin_yaw() + safe_vel.y * _ahrs.cos_yaw(); |
|
} |
|
} |
|
|
|
/* |
|
* Limits the component of desired_vel in the direction of the unit vector |
|
* limit_direction to be at most the maximum speed permitted by the limit_distance. |
|
* |
|
* Uses velocity adjustment idea from Randy's second email on this thread: |
|
* https://groups.google.com/forum/#!searchin/drones-discuss/obstacle/drones-discuss/QwUXz__WuqY/qo3G8iTLSJAJ |
|
*/ |
|
void AC_Avoid::limit_velocity(float kP, float accel_cmss, Vector2f &desired_vel, const Vector2f& limit_direction, float limit_distance) const |
|
{ |
|
const float max_speed = get_max_speed(kP, accel_cmss, limit_distance); |
|
// project onto limit direction |
|
const float speed = desired_vel * limit_direction; |
|
if (speed > max_speed) { |
|
// subtract difference between desired speed and maximum acceptable speed |
|
desired_vel += limit_direction*(max_speed - speed); |
|
} |
|
} |
|
|
|
/* |
|
* Gets the current xy-position, relative to home (not relative to EKF origin) |
|
*/ |
|
Vector2f AC_Avoid::get_position() const |
|
{ |
|
const Vector3f position_xyz = _inav.get_position(); |
|
const Vector2f position_xy(position_xyz.x,position_xyz.y); |
|
const Vector2f diff = location_diff(_inav.get_origin(),_ahrs.get_home()) * 100.0f; |
|
return position_xy - diff; |
|
} |
|
|
|
/* |
|
* Gets the altitude above home in cm |
|
*/ |
|
float AC_Avoid::get_alt_above_home() const |
|
{ |
|
// vehicle's alt above ekf origin + ekf origin's alt above sea level - home's alt above sea level |
|
return _inav.get_altitude() + _inav.get_origin().alt - _ahrs.get_home().alt; |
|
} |
|
|
|
/* |
|
* Computes the speed such that the stopping distance |
|
* of the vehicle will be exactly the input distance. |
|
*/ |
|
float AC_Avoid::get_max_speed(float kP, float accel_cmss, float distance) const |
|
{ |
|
return AC_AttitudeControl::sqrt_controller(distance, kP, accel_cmss); |
|
} |
|
|
|
/* |
|
* Computes distance required to stop, given current speed. |
|
* |
|
* Implementation copied from AC_PosControl. |
|
*/ |
|
float AC_Avoid::get_stopping_distance(float kP, float accel_cmss, float speed) const |
|
{ |
|
// avoid divide by zero by using current position if the velocity is below 10cm/s, kP is very low or acceleration is zero |
|
if (kP <= 0.0f || accel_cmss <= 0.0f || is_zero(speed)) { |
|
return 0.0f; |
|
} |
|
|
|
// calculate distance within which we can stop |
|
// accel_cmss/kP is the point at which velocity switches from linear to sqrt |
|
if (speed < accel_cmss/kP) { |
|
return speed/kP; |
|
} else { |
|
// accel_cmss/(2.0f*kP*kP) is the distance at which we switch from linear to sqrt response |
|
return accel_cmss/(2.0f*kP*kP) + (speed*speed)/(2.0f*accel_cmss); |
|
} |
|
} |
|
|
|
// convert distance (in meters) to a lean percentage (in 0~1 range) for use in manual flight modes |
|
float AC_Avoid::distance_to_lean_pct(float dist_m) |
|
{ |
|
// ignore objects beyond DIST_MAX |
|
if (dist_m < 0.0f || dist_m >= _dist_max || _dist_max <= 0.0f) { |
|
return 0.0f; |
|
} |
|
// inverted but linear response |
|
return 1.0f - (dist_m / _dist_max); |
|
} |
|
|
|
// returns the maximum positive and negative roll and pitch percentages (in -1 ~ +1 range) based on the proximity sensor |
|
void AC_Avoid::get_proximity_roll_pitch_pct(float &roll_positive, float &roll_negative, float &pitch_positive, float &pitch_negative) |
|
{ |
|
// exit immediately if proximity sensor is not present |
|
if (_proximity.get_status() != AP_Proximity::Proximity_Good) { |
|
return; |
|
} |
|
|
|
uint8_t obj_count = _proximity.get_object_count(); |
|
|
|
// if no objects return |
|
if (obj_count == 0) { |
|
return; |
|
} |
|
|
|
// calculate maximum roll, pitch values from objects |
|
for (uint8_t i=0; i<obj_count; i++) { |
|
float ang_deg, dist_m; |
|
if (_proximity.get_object_angle_and_distance(i, ang_deg, dist_m)) { |
|
if (dist_m < _dist_max) { |
|
// convert distance to lean angle (in 0 to 1 range) |
|
const float lean_pct = distance_to_lean_pct(dist_m); |
|
// convert angle to roll and pitch lean percentages |
|
const float angle_rad = radians(ang_deg); |
|
const float roll_pct = -sinf(angle_rad) * lean_pct; |
|
const float pitch_pct = cosf(angle_rad) * lean_pct; |
|
// update roll, pitch maximums |
|
if (roll_pct > 0.0f) { |
|
roll_positive = MAX(roll_positive, roll_pct); |
|
} |
|
if (roll_pct < 0.0f) { |
|
roll_negative = MIN(roll_negative, roll_pct); |
|
} |
|
if (pitch_pct > 0.0f) { |
|
pitch_positive = MAX(pitch_positive, pitch_pct); |
|
} |
|
if (pitch_pct < 0.0f) { |
|
pitch_negative = MIN(pitch_negative, pitch_pct); |
|
} |
|
} |
|
} |
|
} |
|
}
|
|
|