You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
802 lines
28 KiB
802 lines
28 KiB
#pragma once |
|
|
|
// Gyro and Accelerometer calibration criteria |
|
#define AP_INERTIAL_SENSOR_ACCEL_TOT_MAX_OFFSET_CHANGE 4.0f |
|
#define AP_INERTIAL_SENSOR_ACCEL_MAX_OFFSET 250.0f |
|
#define AP_INERTIAL_SENSOR_ACCEL_VIBE_FLOOR_FILT_HZ 5.0f // accel vibration floor filter hz |
|
#define AP_INERTIAL_SENSOR_ACCEL_VIBE_FILT_HZ 2.0f // accel vibration filter hz |
|
#define AP_INERTIAL_SENSOR_ACCEL_PEAK_DETECT_TIMEOUT_MS 500 // peak-hold detector timeout |
|
|
|
#include <AP_HAL/AP_HAL_Boards.h> |
|
|
|
/** |
|
maximum number of INS instances available on this platform. If more |
|
than 1 then redundant sensors may be available |
|
*/ |
|
#ifndef INS_MAX_INSTANCES |
|
#define INS_MAX_INSTANCES 3 |
|
#endif |
|
#define INS_MAX_BACKENDS 2*INS_MAX_INSTANCES |
|
#define INS_MAX_NOTCHES 12 |
|
#ifndef INS_VIBRATION_CHECK_INSTANCES |
|
#if HAL_MEM_CLASS >= HAL_MEM_CLASS_300 |
|
#define INS_VIBRATION_CHECK_INSTANCES INS_MAX_INSTANCES |
|
#else |
|
#define INS_VIBRATION_CHECK_INSTANCES 1 |
|
#endif |
|
#endif |
|
#define XYZ_AXIS_COUNT 3 |
|
// The maximum we need to store is gyro-rate / loop-rate, worst case ArduCopter with BMI088 is 2000/400 |
|
#define INS_MAX_GYRO_WINDOW_SAMPLES 8 |
|
|
|
#define DEFAULT_IMU_LOG_BAT_MASK 0 |
|
|
|
#ifndef HAL_INS_TEMPERATURE_CAL_ENABLE |
|
#define HAL_INS_TEMPERATURE_CAL_ENABLE !HAL_MINIMIZE_FEATURES && BOARD_FLASH_SIZE > 1024 |
|
#endif |
|
|
|
#ifndef HAL_INS_NUM_HARMONIC_NOTCH_FILTERS |
|
#define HAL_INS_NUM_HARMONIC_NOTCH_FILTERS 2 |
|
#endif |
|
|
|
// time for the estimated gyro rates to converge |
|
#ifndef HAL_INS_CONVERGANCE_MS |
|
#define HAL_INS_CONVERGANCE_MS 30000 |
|
#endif |
|
|
|
#include <stdint.h> |
|
|
|
#include <AP_AccelCal/AP_AccelCal.h> |
|
#include <AP_HAL/utility/RingBuffer.h> |
|
#include <AP_Math/AP_Math.h> |
|
#include <AP_ExternalAHRS/AP_ExternalAHRS.h> |
|
#include <Filter/LowPassFilter2p.h> |
|
#include <Filter/LowPassFilter.h> |
|
#include <Filter/HarmonicNotchFilter.h> |
|
#include <AP_Math/polyfit.h> |
|
|
|
#ifndef AP_SIM_INS_ENABLED |
|
#define AP_SIM_INS_ENABLED AP_SIM_ENABLED |
|
#endif |
|
|
|
class AP_InertialSensor_Backend; |
|
class AuxiliaryBus; |
|
class AP_AHRS; |
|
|
|
/* |
|
forward declare AP_Logger class. We can't include logger.h |
|
because of mutual dependencies |
|
*/ |
|
class AP_Logger; |
|
|
|
/* AP_InertialSensor is an abstraction for gyro and accel measurements |
|
* which are correctly aligned to the body axes and scaled to SI units. |
|
* |
|
* Gauss-Newton accel calibration routines borrowed from Rolfe Schmidt |
|
* blog post describing the method: http://chionophilous.wordpress.com/2011/10/24/accelerometer-calibration-iv-1-implementing-gauss-newton-on-an-atmega/ |
|
* original sketch available at http://rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde |
|
*/ |
|
class AP_InertialSensor : AP_AccelCal_Client |
|
{ |
|
friend class AP_InertialSensor_Backend; |
|
|
|
public: |
|
AP_InertialSensor(); |
|
|
|
/* Do not allow copies */ |
|
AP_InertialSensor(const AP_InertialSensor &other) = delete; |
|
AP_InertialSensor &operator=(const AP_InertialSensor&) = delete; |
|
|
|
static AP_InertialSensor *get_singleton(); |
|
|
|
enum Gyro_Calibration_Timing { |
|
GYRO_CAL_NEVER = 0, |
|
GYRO_CAL_STARTUP_ONLY = 1 |
|
}; |
|
|
|
/// Perform startup initialisation. |
|
/// |
|
/// Called to initialise the state of the IMU. |
|
/// |
|
/// Gyros will be calibrated unless INS_GYRO_CAL is zero |
|
/// |
|
/// @param style The initialisation startup style. |
|
/// |
|
void init(uint16_t sample_rate_hz); |
|
|
|
/// Register a new gyro/accel driver, allocating an instance |
|
/// number |
|
bool register_gyro(uint8_t &instance, uint16_t raw_sample_rate_hz, uint32_t id); |
|
bool register_accel(uint8_t &instance, uint16_t raw_sample_rate_hz, uint32_t id); |
|
|
|
// a function called by the main thread at the main loop rate: |
|
void periodic(); |
|
|
|
bool calibrate_trim(Vector3f &trim_rad); |
|
|
|
/// calibrating - returns true if the gyros or accels are currently being calibrated |
|
bool calibrating() const; |
|
|
|
/// calibrating - returns true if a temperature calibration is running |
|
bool temperature_cal_running() const; |
|
|
|
/// Perform cold-start initialisation for just the gyros. |
|
/// |
|
/// @note This should not be called unless ::init has previously |
|
/// been called, as ::init may perform other work |
|
/// |
|
void init_gyro(void); |
|
|
|
// get startup messages to output to the GCS |
|
bool get_output_banner(uint8_t instance_id, char* banner, uint8_t banner_len); |
|
|
|
/// Fetch the current gyro values |
|
/// |
|
/// @returns vector of rotational rates in radians/sec |
|
/// |
|
const Vector3f &get_gyro(uint8_t i) const { return _gyro[i]; } |
|
const Vector3f &get_gyro(void) const { return get_gyro(_primary_gyro); } |
|
|
|
// set gyro offsets in radians/sec |
|
const Vector3f &get_gyro_offsets(uint8_t i) const { return _gyro_offset[i]; } |
|
const Vector3f &get_gyro_offsets(void) const { return get_gyro_offsets(_primary_gyro); } |
|
|
|
//get delta angle if available |
|
bool get_delta_angle(uint8_t i, Vector3f &delta_angle, float &delta_angle_dt) const; |
|
bool get_delta_angle(Vector3f &delta_angle, float &delta_angle_dt) const { |
|
return get_delta_angle(_primary_gyro, delta_angle, delta_angle_dt); |
|
} |
|
|
|
//get delta velocity if available |
|
bool get_delta_velocity(uint8_t i, Vector3f &delta_velocity, float &delta_velocity_dt) const; |
|
bool get_delta_velocity(Vector3f &delta_velocity, float &delta_velocity_dt) const { |
|
return get_delta_velocity(_primary_accel, delta_velocity, delta_velocity_dt); |
|
} |
|
|
|
/// Fetch the current accelerometer values |
|
/// |
|
/// @returns vector of current accelerations in m/s/s |
|
/// |
|
const Vector3f &get_accel(uint8_t i) const { return _accel[i]; } |
|
const Vector3f &get_accel(void) const { return get_accel(_primary_accel); } |
|
|
|
// multi-device interface |
|
bool get_gyro_health(uint8_t instance) const { return (instance<_gyro_count) ? _gyro_healthy[instance] : false; } |
|
bool get_gyro_health(void) const { return get_gyro_health(_primary_gyro); } |
|
bool get_gyro_health_all(void) const; |
|
uint8_t get_gyro_count(void) const { return MIN(INS_MAX_INSTANCES, _accel_count); } |
|
bool gyro_calibrated_ok(uint8_t instance) const { return _gyro_cal_ok[instance]; } |
|
bool gyro_calibrated_ok_all() const; |
|
bool use_gyro(uint8_t instance) const; |
|
Gyro_Calibration_Timing gyro_calibration_timing(); |
|
|
|
bool get_accel_health(uint8_t instance) const { return (instance<_accel_count) ? _accel_healthy[instance] : false; } |
|
bool get_accel_health(void) const { return get_accel_health(_primary_accel); } |
|
bool get_accel_health_all(void) const; |
|
uint8_t get_accel_count(void) const { return MIN(INS_MAX_INSTANCES, _accel_count); } |
|
bool accel_calibrated_ok_all() const; |
|
bool use_accel(uint8_t instance) const; |
|
|
|
// get observed sensor rates, including any internal sampling multiplier |
|
uint16_t get_gyro_rate_hz(uint8_t instance) const { return uint16_t(_gyro_raw_sample_rates[instance] * _gyro_over_sampling[instance]); } |
|
uint16_t get_accel_rate_hz(uint8_t instance) const { return uint16_t(_accel_raw_sample_rates[instance] * _accel_over_sampling[instance]); } |
|
|
|
// FFT support access |
|
#if HAL_WITH_DSP |
|
const Vector3f &get_raw_gyro(void) const { return _gyro_raw[_primary_gyro]; } |
|
FloatBuffer& get_raw_gyro_window(uint8_t instance, uint8_t axis) { return _gyro_window[instance][axis]; } |
|
FloatBuffer& get_raw_gyro_window(uint8_t axis) { return get_raw_gyro_window(_primary_gyro, axis); } |
|
uint16_t get_raw_gyro_rate_hz() const { return get_raw_gyro_rate_hz(_primary_gyro); } |
|
uint16_t get_raw_gyro_rate_hz(uint8_t instance) const { return _gyro_raw_sample_rates[_primary_gyro]; } |
|
#endif |
|
bool set_gyro_window_size(uint16_t size); |
|
// get accel offsets in m/s/s |
|
const Vector3f &get_accel_offsets(uint8_t i) const { return _accel_offset[i]; } |
|
const Vector3f &get_accel_offsets(void) const { return get_accel_offsets(_primary_accel); } |
|
|
|
// get accel scale |
|
const Vector3f &get_accel_scale(uint8_t i) const { return _accel_scale[i]; } |
|
const Vector3f &get_accel_scale(void) const { return get_accel_scale(_primary_accel); } |
|
|
|
// return a 3D vector defining the position offset of the IMU accelerometer in metres relative to the body frame origin |
|
const Vector3f &get_imu_pos_offset(uint8_t instance) const { |
|
return _accel_pos[instance]; |
|
} |
|
const Vector3f &get_imu_pos_offset(void) const { |
|
return _accel_pos[_primary_accel]; |
|
} |
|
|
|
// return the temperature if supported. Zero is returned if no |
|
// temperature is available |
|
float get_temperature(uint8_t instance) const { return _temperature[instance]; } |
|
|
|
/* get_delta_time returns the time period in seconds |
|
* overwhich the sensor data was collected |
|
*/ |
|
float get_delta_time() const { return MIN(_delta_time, _loop_delta_t_max); } |
|
|
|
// return the maximum gyro drift rate in radians/s/s. This |
|
// depends on what gyro chips are being used |
|
float get_gyro_drift_rate(void) const { return ToRad(0.5f/60); } |
|
|
|
// update gyro and accel values from accumulated samples |
|
void update(void) __RAMFUNC__; |
|
|
|
// wait for a sample to be available |
|
void wait_for_sample(void) __RAMFUNC__; |
|
|
|
// class level parameters |
|
static const struct AP_Param::GroupInfo var_info[]; |
|
|
|
// set overall board orientation |
|
void set_board_orientation(enum Rotation orientation) { |
|
_board_orientation = orientation; |
|
} |
|
|
|
// return the selected loop rate at which samples are made avilable |
|
uint16_t get_loop_rate_hz(void) const { return _loop_rate; } |
|
|
|
// return the main loop delta_t in seconds |
|
float get_loop_delta_t(void) const { return _loop_delta_t; } |
|
|
|
bool healthy(void) const { return get_gyro_health() && get_accel_health(); } |
|
|
|
uint8_t get_primary_accel(void) const { return _primary_accel; } |
|
uint8_t get_primary_gyro(void) const { return _primary_gyro; } |
|
|
|
// get the gyro filter rate in Hz |
|
uint16_t get_gyro_filter_hz(void) const { return _gyro_filter_cutoff; } |
|
|
|
// get the accel filter rate in Hz |
|
uint16_t get_accel_filter_hz(void) const { return _accel_filter_cutoff; } |
|
|
|
// setup the notch for throttle based tracking |
|
bool setup_throttle_gyro_harmonic_notch(float center_freq_hz, float ref); |
|
|
|
// write out harmonic notch log messages |
|
void write_notch_log_messages() const; |
|
|
|
// indicate which bit in LOG_BITMASK indicates raw logging enabled |
|
void set_log_raw_bit(uint32_t log_raw_bit) { _log_raw_bit = log_raw_bit; } |
|
|
|
// Logging Functions |
|
void Write_IMU() const; |
|
void Write_Vibration() const; |
|
|
|
// calculate vibration levels and check for accelerometer clipping (called by a backends) |
|
void calc_vibration_and_clipping(uint8_t instance, const Vector3f &accel, float dt); |
|
|
|
// retrieve latest calculated vibration levels |
|
Vector3f get_vibration_levels() const { return get_vibration_levels(_primary_accel); } |
|
Vector3f get_vibration_levels(uint8_t instance) const; |
|
|
|
// retrieve and clear accelerometer clipping count |
|
uint32_t get_accel_clip_count(uint8_t instance) const; |
|
|
|
// check for vibration movement. True when all axis show nearly zero movement |
|
bool is_still(); |
|
|
|
AuxiliaryBus *get_auxiliary_bus(int16_t backend_id) { return get_auxiliary_bus(backend_id, 0); } |
|
AuxiliaryBus *get_auxiliary_bus(int16_t backend_id, uint8_t instance); |
|
|
|
void detect_backends(void); |
|
|
|
// accel peak hold detector |
|
void set_accel_peak_hold(uint8_t instance, const Vector3f &accel); |
|
float get_accel_peak_hold_neg_x() const { return _peak_hold_state.accel_peak_hold_neg_x; } |
|
|
|
//Returns accel calibrator interface object pointer |
|
AP_AccelCal* get_acal() const { return _acal; } |
|
|
|
// Returns body fixed accelerometer level data averaged during accel calibration's first step |
|
bool get_fixed_mount_accel_cal_sample(uint8_t sample_num, Vector3f& ret) const; |
|
|
|
// Returns primary accelerometer level data averaged during accel calibration's first step |
|
bool get_primary_accel_cal_sample_avg(uint8_t sample_num, Vector3f& ret) const; |
|
|
|
// Returns newly calculated trim values if calculated |
|
bool get_new_trim(Vector3f &trim_rad); |
|
|
|
#if HAL_INS_ACCELCAL_ENABLED |
|
// initialise and register accel calibrator |
|
// called during the startup of accel cal |
|
void acal_init(); |
|
|
|
// update accel calibrator |
|
void acal_update(); |
|
#endif |
|
|
|
// simple accel calibration |
|
#if HAL_GCS_ENABLED |
|
MAV_RESULT simple_accel_cal(); |
|
#endif |
|
|
|
bool accel_cal_requires_reboot() const { return _accel_cal_requires_reboot; } |
|
|
|
// return time in microseconds of last update() call |
|
uint32_t get_last_update_usec(void) const { return _last_update_usec; } |
|
|
|
// for killing an IMU for testing purposes |
|
void kill_imu(uint8_t imu_idx, bool kill_it); |
|
|
|
enum IMU_SENSOR_TYPE { |
|
IMU_SENSOR_TYPE_ACCEL = 0, |
|
IMU_SENSOR_TYPE_GYRO = 1, |
|
}; |
|
|
|
class BatchSampler { |
|
public: |
|
BatchSampler(const AP_InertialSensor &imu) : |
|
type(IMU_SENSOR_TYPE_ACCEL), |
|
_imu(imu) { |
|
AP_Param::setup_object_defaults(this, var_info); |
|
}; |
|
|
|
void init(); |
|
void sample(uint8_t instance, IMU_SENSOR_TYPE _type, uint64_t sample_us, const Vector3f &sample) __RAMFUNC__; |
|
|
|
// a function called by the main thread at the main loop rate: |
|
void periodic(); |
|
|
|
bool doing_sensor_rate_logging() const { return _doing_sensor_rate_logging; } |
|
bool doing_post_filter_logging() const { |
|
return (_doing_post_filter_logging && (post_filter || !_doing_sensor_rate_logging)) |
|
|| (_doing_pre_post_filter_logging && post_filter); |
|
} |
|
|
|
// class level parameters |
|
static const struct AP_Param::GroupInfo var_info[]; |
|
|
|
// Parameters |
|
AP_Int16 _required_count; |
|
AP_Int8 _sensor_mask; |
|
AP_Int8 _batch_options_mask; |
|
|
|
// Parameters controlling pushing data to AP_Logger: |
|
// Each DF message is ~ 108 bytes in size, so we use about 1kB/s of |
|
// logging bandwidth with a 100ms interval. If we are taking |
|
// 1024 samples then we need to send 32 packets, so it will |
|
// take ~3 seconds to push a complete batch to the log. If |
|
// you are running a on an FMU with three IMUs then you |
|
// will loop back around to the first sensor after about |
|
// twenty seconds. |
|
AP_Int16 samples_per_msg; |
|
AP_Int8 push_interval_ms; |
|
|
|
// end Parameters |
|
|
|
private: |
|
|
|
enum batch_opt_t { |
|
BATCH_OPT_SENSOR_RATE = (1<<0), |
|
BATCH_OPT_POST_FILTER = (1<<1), |
|
BATCH_OPT_PRE_POST_FILTER = (1<<2), |
|
}; |
|
|
|
void rotate_to_next_sensor(); |
|
void update_doing_sensor_rate_logging(); |
|
|
|
bool should_log(uint8_t instance, IMU_SENSOR_TYPE type) __RAMFUNC__; |
|
void push_data_to_log(); |
|
|
|
// Logging functions |
|
bool Write_ISBH(const float sample_rate_hz) const; |
|
bool Write_ISBD() const; |
|
|
|
bool has_option(batch_opt_t option) const { return _batch_options_mask & uint16_t(option); } |
|
|
|
uint64_t measurement_started_us; |
|
|
|
bool initialised; |
|
bool isbh_sent; |
|
bool _doing_sensor_rate_logging; |
|
bool _doing_post_filter_logging; |
|
bool _doing_pre_post_filter_logging; |
|
uint8_t instance; // instance we are sending data for |
|
bool post_filter; // whether we are sending post-filter data |
|
AP_InertialSensor::IMU_SENSOR_TYPE type; |
|
uint16_t isb_seqnum; |
|
int16_t *data_x; |
|
int16_t *data_y; |
|
int16_t *data_z; |
|
uint16_t data_write_offset; // units: samples |
|
uint16_t data_read_offset; // units: samples |
|
uint32_t last_sent_ms; |
|
|
|
// all samples are multiplied by this |
|
uint16_t multiplier; // initialised as part of init() |
|
|
|
const AP_InertialSensor &_imu; |
|
}; |
|
BatchSampler batchsampler{*this}; |
|
|
|
#if HAL_EXTERNAL_AHRS_ENABLED |
|
// handle external AHRS data |
|
void handle_external(const AP_ExternalAHRS::ins_data_message_t &pkt); |
|
#endif |
|
|
|
#if HAL_INS_TEMPERATURE_CAL_ENABLE |
|
/* |
|
get a string representation of parameters that should be made |
|
persistent across changes of firmware type |
|
*/ |
|
void get_persistent_params(ExpandingString &str) const; |
|
#endif |
|
|
|
// force save of current calibration as valid |
|
void force_save_calibration(void); |
|
|
|
// structure per harmonic notch filter. This is public to allow for |
|
// easy iteration |
|
class HarmonicNotch { |
|
public: |
|
HarmonicNotchFilterParams params; |
|
HarmonicNotchFilterVector3f filter[INS_MAX_INSTANCES]; |
|
|
|
uint8_t num_dynamic_notches; |
|
|
|
// the current center frequency for the notch |
|
float calculated_notch_freq_hz[INS_MAX_NOTCHES]; |
|
uint8_t num_calculated_notch_frequencies; |
|
|
|
// Update the harmonic notch frequency |
|
void update_notch_freq_hz(float scaled_freq); |
|
|
|
// Update the harmonic notch frequencies |
|
void update_notch_frequencies_hz(uint8_t num_freqs, const float scaled_freq[]); |
|
|
|
// runtime update of notch parameters |
|
void update_params(uint8_t instance, bool converging, float gyro_rate); |
|
|
|
// Update the harmonic notch frequencies |
|
void update_freq_hz(float scaled_freq); |
|
void update_frequencies_hz(uint8_t num_freqs, const float scaled_freq[]); |
|
|
|
// enable/disable the notch |
|
void set_inactive(bool _inactive) { |
|
inactive = _inactive; |
|
} |
|
|
|
bool is_inactive(void) const { |
|
return inactive; |
|
} |
|
|
|
private: |
|
// support for updating harmonic filter at runtime |
|
float last_center_freq_hz[INS_MAX_INSTANCES]; |
|
float last_bandwidth_hz[INS_MAX_INSTANCES]; |
|
float last_attenuation_dB[INS_MAX_INSTANCES]; |
|
bool inactive; |
|
} harmonic_notches[HAL_INS_NUM_HARMONIC_NOTCH_FILTERS]; |
|
|
|
private: |
|
// load backend drivers |
|
bool _add_backend(AP_InertialSensor_Backend *backend); |
|
void _start_backends(); |
|
AP_InertialSensor_Backend *_find_backend(int16_t backend_id, uint8_t instance); |
|
|
|
// gyro initialisation |
|
void _init_gyro(); |
|
|
|
// Calibration routines borrowed from Rolfe Schmidt |
|
// blog post describing the method: http://chionophilous.wordpress.com/2011/10/24/accelerometer-calibration-iv-1-implementing-gauss-newton-on-an-atmega/ |
|
// original sketch available at http://rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde |
|
|
|
bool _calculate_trim(const Vector3f &accel_sample, Vector3f &trim_rad); |
|
|
|
// save gyro calibration values to eeprom |
|
void _save_gyro_calibration(); |
|
|
|
// Logging function |
|
void Write_IMU_instance(const uint64_t time_us, const uint8_t imu_instance) const; |
|
|
|
// backend objects |
|
AP_InertialSensor_Backend *_backends[INS_MAX_BACKENDS]; |
|
|
|
// number of gyros and accel drivers. Note that most backends |
|
// provide both accel and gyro data, so will increment both |
|
// counters on initialisation |
|
uint8_t _gyro_count; |
|
uint8_t _accel_count; |
|
uint8_t _backend_count; |
|
|
|
// the selected loop rate at which samples are made available |
|
uint16_t _loop_rate; |
|
float _loop_delta_t; |
|
float _loop_delta_t_max; |
|
|
|
// Most recent accelerometer reading |
|
Vector3f _accel[INS_MAX_INSTANCES]; |
|
Vector3f _delta_velocity[INS_MAX_INSTANCES]; |
|
float _delta_velocity_dt[INS_MAX_INSTANCES]; |
|
bool _delta_velocity_valid[INS_MAX_INSTANCES]; |
|
// delta velocity accumulator |
|
Vector3f _delta_velocity_acc[INS_MAX_INSTANCES]; |
|
// time accumulator for delta velocity accumulator |
|
float _delta_velocity_acc_dt[INS_MAX_INSTANCES]; |
|
|
|
// Low Pass filters for gyro and accel |
|
LowPassFilter2pVector3f _accel_filter[INS_MAX_INSTANCES]; |
|
LowPassFilter2pVector3f _gyro_filter[INS_MAX_INSTANCES]; |
|
Vector3f _accel_filtered[INS_MAX_INSTANCES]; |
|
Vector3f _gyro_filtered[INS_MAX_INSTANCES]; |
|
#if HAL_WITH_DSP |
|
// Thread-safe public version of _last_raw_gyro |
|
Vector3f _gyro_raw[INS_MAX_INSTANCES]; |
|
FloatBuffer _gyro_window[INS_MAX_INSTANCES][XYZ_AXIS_COUNT]; |
|
uint16_t _gyro_window_size; |
|
#endif |
|
bool _new_accel_data[INS_MAX_INSTANCES]; |
|
bool _new_gyro_data[INS_MAX_INSTANCES]; |
|
|
|
// Most recent gyro reading |
|
Vector3f _gyro[INS_MAX_INSTANCES]; |
|
Vector3f _delta_angle[INS_MAX_INSTANCES]; |
|
float _delta_angle_dt[INS_MAX_INSTANCES]; |
|
bool _delta_angle_valid[INS_MAX_INSTANCES]; |
|
// time accumulator for delta angle accumulator |
|
float _delta_angle_acc_dt[INS_MAX_INSTANCES]; |
|
Vector3f _delta_angle_acc[INS_MAX_INSTANCES]; |
|
Vector3f _last_delta_angle[INS_MAX_INSTANCES]; |
|
Vector3f _last_raw_gyro[INS_MAX_INSTANCES]; |
|
|
|
// bitmask indicating if a sensor is doing sensor-rate sampling: |
|
uint8_t _accel_sensor_rate_sampling_enabled; |
|
uint8_t _gyro_sensor_rate_sampling_enabled; |
|
|
|
// multipliers for data supplied via sensor-rate logging: |
|
uint16_t _accel_raw_sampling_multiplier[INS_MAX_INSTANCES]; |
|
uint16_t _gyro_raw_sampling_multiplier[INS_MAX_INSTANCES]; |
|
|
|
// IDs to uniquely identify each sensor: shall remain |
|
// the same across reboots |
|
AP_Int32 _accel_id[INS_MAX_INSTANCES]; |
|
AP_Int32 _gyro_id[INS_MAX_INSTANCES]; |
|
|
|
// accelerometer scaling and offsets |
|
AP_Vector3f _accel_scale[INS_MAX_INSTANCES]; |
|
AP_Vector3f _accel_offset[INS_MAX_INSTANCES]; |
|
AP_Vector3f _gyro_offset[INS_MAX_INSTANCES]; |
|
|
|
// accelerometer position offset in body frame |
|
AP_Vector3f _accel_pos[INS_MAX_INSTANCES]; |
|
|
|
// accelerometer max absolute offsets to be used for calibration |
|
float _accel_max_abs_offsets[INS_MAX_INSTANCES]; |
|
|
|
// accelerometer and gyro raw sample rate in units of Hz |
|
float _accel_raw_sample_rates[INS_MAX_INSTANCES]; |
|
float _gyro_raw_sample_rates[INS_MAX_INSTANCES]; |
|
|
|
// how many sensors samples per notify to the backend |
|
uint8_t _accel_over_sampling[INS_MAX_INSTANCES]; |
|
uint8_t _gyro_over_sampling[INS_MAX_INSTANCES]; |
|
|
|
// last sample time in microseconds. Use for deltaT calculations |
|
// on non-FIFO sensors |
|
uint64_t _accel_last_sample_us[INS_MAX_INSTANCES]; |
|
uint64_t _gyro_last_sample_us[INS_MAX_INSTANCES]; |
|
|
|
// sample times for checking real sensor rate for FIFO sensors |
|
uint16_t _sample_accel_count[INS_MAX_INSTANCES]; |
|
uint32_t _sample_accel_start_us[INS_MAX_INSTANCES]; |
|
uint16_t _sample_gyro_count[INS_MAX_INSTANCES]; |
|
uint32_t _sample_gyro_start_us[INS_MAX_INSTANCES]; |
|
|
|
// temperatures for an instance if available |
|
float _temperature[INS_MAX_INSTANCES]; |
|
|
|
// filtering frequency (0 means default) |
|
AP_Int16 _accel_filter_cutoff; |
|
AP_Int16 _gyro_filter_cutoff; |
|
AP_Int8 _gyro_cal_timing; |
|
|
|
// use for attitude, velocity, position estimates |
|
AP_Int8 _use[INS_MAX_INSTANCES]; |
|
|
|
// control enable of fast sampling |
|
AP_Int8 _fast_sampling_mask; |
|
|
|
// control enable of fast sampling |
|
AP_Int8 _fast_sampling_rate; |
|
|
|
// control enable of detected sensors |
|
AP_Int8 _enable_mask; |
|
|
|
// board orientation from AHRS |
|
enum Rotation _board_orientation; |
|
|
|
// per-sensor orientation to allow for board type defaults at runtime |
|
enum Rotation _gyro_orientation[INS_MAX_INSTANCES]; |
|
enum Rotation _accel_orientation[INS_MAX_INSTANCES]; |
|
|
|
// calibrated_ok/id_ok flags |
|
bool _gyro_cal_ok[INS_MAX_INSTANCES]; |
|
bool _accel_id_ok[INS_MAX_INSTANCES]; |
|
|
|
// primary accel and gyro |
|
uint8_t _primary_gyro; |
|
uint8_t _primary_accel; |
|
|
|
// mask of accels and gyros which we will be actively using |
|
// and this should wait for in wait_for_sample() |
|
uint8_t _gyro_wait_mask; |
|
uint8_t _accel_wait_mask; |
|
|
|
// bitmask bit which indicates if we should log raw accel and gyro data |
|
uint32_t _log_raw_bit; |
|
|
|
// has wait_for_sample() found a sample? |
|
bool _have_sample:1; |
|
|
|
bool _backends_detected:1; |
|
|
|
// are gyros or accels currently being calibrated |
|
bool _calibrating_accel; |
|
bool _calibrating_gyro; |
|
|
|
// the delta time in seconds for the last sample |
|
float _delta_time; |
|
|
|
// last time a wait_for_sample() returned a sample |
|
uint32_t _last_sample_usec; |
|
|
|
// target time for next wait_for_sample() return |
|
uint32_t _next_sample_usec; |
|
|
|
// time between samples in microseconds |
|
uint32_t _sample_period_usec; |
|
|
|
// last time update() completed |
|
uint32_t _last_update_usec; |
|
|
|
// health of gyros and accels |
|
bool _gyro_healthy[INS_MAX_INSTANCES]; |
|
bool _accel_healthy[INS_MAX_INSTANCES]; |
|
|
|
uint32_t _accel_error_count[INS_MAX_INSTANCES]; |
|
uint32_t _gyro_error_count[INS_MAX_INSTANCES]; |
|
|
|
// vibration and clipping |
|
uint32_t _accel_clip_count[INS_MAX_INSTANCES]; |
|
LowPassFilterVector3f _accel_vibe_floor_filter[INS_VIBRATION_CHECK_INSTANCES]; |
|
LowPassFilterVector3f _accel_vibe_filter[INS_VIBRATION_CHECK_INSTANCES]; |
|
|
|
// peak hold detector state for primary accel |
|
struct PeakHoldState { |
|
float accel_peak_hold_neg_x; |
|
uint32_t accel_peak_hold_neg_x_age; |
|
} _peak_hold_state; |
|
|
|
// threshold for detecting stillness |
|
AP_Float _still_threshold; |
|
|
|
// Trim options |
|
AP_Int8 _acc_body_aligned; |
|
AP_Int8 _trim_option; |
|
|
|
static AP_InertialSensor *_singleton; |
|
AP_AccelCal* _acal; |
|
|
|
AccelCalibrator *_accel_calibrator; |
|
|
|
//save accelerometer bias and scale factors |
|
void _acal_save_calibrations() override; |
|
void _acal_event_failure() override; |
|
|
|
// Returns AccelCalibrator objects pointer for specified acceleromter |
|
AccelCalibrator* _acal_get_calibrator(uint8_t i) override { return i<get_accel_count()?&(_accel_calibrator[i]):nullptr; } |
|
|
|
Vector3f _trim_rad; |
|
bool _new_trim; |
|
|
|
bool _accel_cal_requires_reboot; |
|
|
|
// sensor error count at startup (used to ignore errors within 2 seconds of startup) |
|
uint32_t _accel_startup_error_count[INS_MAX_INSTANCES]; |
|
uint32_t _gyro_startup_error_count[INS_MAX_INSTANCES]; |
|
bool _startup_error_counts_set; |
|
uint32_t _startup_ms; |
|
|
|
uint8_t imu_kill_mask; |
|
|
|
#if HAL_INS_TEMPERATURE_CAL_ENABLE |
|
public: |
|
// TCal class is public for use by SITL |
|
class TCal { |
|
public: |
|
static const struct AP_Param::GroupInfo var_info[]; |
|
void correct_accel(float temperature, float cal_temp, Vector3f &accel) const; |
|
void correct_gyro(float temperature, float cal_temp, Vector3f &accel) const; |
|
void sitl_apply_accel(float temperature, Vector3f &accel) const; |
|
void sitl_apply_gyro(float temperature, Vector3f &accel) const; |
|
|
|
void update_accel_learning(const Vector3f &accel); |
|
void update_gyro_learning(const Vector3f &accel); |
|
|
|
enum class Enable : uint8_t { |
|
Disabled = 0, |
|
Enabled = 1, |
|
LearnCalibration = 2, |
|
}; |
|
|
|
// add samples for learning |
|
void update_accel_learning(const Vector3f &gyro, float temperature); |
|
void update_gyro_learning(const Vector3f &accel, float temperature); |
|
|
|
// class for online learning of calibration |
|
class Learn { |
|
public: |
|
Learn(TCal &_tcal, float _start_temp); |
|
|
|
// state for accel/gyro (accel first) |
|
struct LearnState { |
|
float last_temp; |
|
uint32_t last_sample_ms; |
|
Vector3f sum; |
|
uint32_t sum_count; |
|
LowPassFilter2p<float> temp_filter; |
|
// double precision is needed for good results when we |
|
// span a wide range of temperatures |
|
PolyFit<4, double, Vector3f> pfit; |
|
} state[2]; |
|
|
|
void add_sample(const Vector3f &sample, float temperature, LearnState &state); |
|
void finish_calibration(float temperature); |
|
bool save_calibration(float temperature); |
|
void reset(float temperature); |
|
float start_temp; |
|
float start_tmax; |
|
uint32_t last_save_ms; |
|
|
|
TCal &tcal; |
|
uint8_t instance(void) const { |
|
return tcal.instance(); |
|
} |
|
Vector3f accel_start; |
|
}; |
|
|
|
AP_Enum<Enable> enable; |
|
|
|
// get persistent params for this instance |
|
void get_persistent_params(ExpandingString &str) const; |
|
|
|
private: |
|
AP_Float temp_max; |
|
AP_Float temp_min; |
|
AP_Vector3f accel_coeff[3]; |
|
AP_Vector3f gyro_coeff[3]; |
|
Vector3f accel_tref; |
|
Vector3f gyro_tref; |
|
Learn *learn; |
|
|
|
void correct_sensor(float temperature, float cal_temp, const AP_Vector3f coeff[3], Vector3f &v) const; |
|
Vector3f polynomial_eval(float temperature, const AP_Vector3f coeff[3]) const; |
|
|
|
// get instance number |
|
uint8_t instance(void) const; |
|
}; |
|
|
|
// instance number for logging |
|
uint8_t tcal_instance(const TCal &tc) const { |
|
return &tc - &tcal[0]; |
|
} |
|
private: |
|
TCal tcal[INS_MAX_INSTANCES]; |
|
|
|
enum class TCalOptions : uint8_t { |
|
PERSIST_TEMP_CAL = (1U<<0), |
|
PERSIST_ACCEL_CAL = (1U<<1), |
|
}; |
|
|
|
// temperature that last calibration was run at |
|
AP_Float caltemp_accel[INS_MAX_INSTANCES]; |
|
AP_Float caltemp_gyro[INS_MAX_INSTANCES]; |
|
AP_Int32 tcal_options; |
|
bool tcal_learning; |
|
#endif |
|
}; |
|
|
|
namespace AP { |
|
AP_InertialSensor &ins(); |
|
};
|
|
|