You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
899 lines
32 KiB
899 lines
32 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
/* |
|
main logic for servo control |
|
*/ |
|
|
|
#include "Plane.h" |
|
|
|
|
|
/***************************************** |
|
* Throttle slew limit |
|
*****************************************/ |
|
void Plane::throttle_slew_limit(int16_t last_throttle) |
|
{ |
|
uint8_t slewrate = aparm.throttle_slewrate; |
|
if (control_mode==AUTO) { |
|
if (auto_state.takeoff_complete == false && g.takeoff_throttle_slewrate != 0) { |
|
slewrate = g.takeoff_throttle_slewrate; |
|
} else if (g.land_throttle_slewrate != 0 && |
|
(flight_stage == AP_SpdHgtControl::FLIGHT_LAND_APPROACH || flight_stage == AP_SpdHgtControl::FLIGHT_LAND_FINAL || flight_stage == AP_SpdHgtControl::FLIGHT_LAND_PREFLARE)) { |
|
slewrate = g.land_throttle_slewrate; |
|
} |
|
} |
|
// if slew limit rate is set to zero then do not slew limit |
|
if (slewrate) { |
|
// limit throttle change by the given percentage per second |
|
float temp = slewrate * G_Dt * 0.01f * fabsf(channel_throttle->get_radio_max() - channel_throttle->get_radio_min()); |
|
// allow a minimum change of 1 PWM per cycle |
|
if (temp < 1) { |
|
temp = 1; |
|
} |
|
channel_throttle->set_radio_out(constrain_int16(channel_throttle->get_radio_out(), last_throttle - temp, last_throttle + temp)); |
|
} |
|
} |
|
|
|
/***************************************** |
|
Flap slew limit |
|
*****************************************/ |
|
void Plane::flap_slew_limit(int8_t &last_value, int8_t &new_value) |
|
{ |
|
uint8_t slewrate = g.flap_slewrate; |
|
// if slew limit rate is set to zero then do not slew limit |
|
if (slewrate) { |
|
// limit flap change by the given percentage per second |
|
float temp = slewrate * G_Dt; |
|
// allow a minimum change of 1% per cycle. This means the |
|
// slowest flaps we can do is full change over 2 seconds |
|
if (temp < 1) { |
|
temp = 1; |
|
} |
|
new_value = constrain_int16(new_value, last_value - temp, last_value + temp); |
|
} |
|
last_value = new_value; |
|
} |
|
|
|
/* We want to suppress the throttle if we think we are on the ground and in an autopilot controlled throttle mode. |
|
|
|
Disable throttle if following conditions are met: |
|
* 1 - We are in Circle mode (which we use for short term failsafe), or in FBW-B or higher |
|
* AND |
|
* 2 - Our reported altitude is within 10 meters of the home altitude. |
|
* 3 - Our reported speed is under 5 meters per second. |
|
* 4 - We are not performing a takeoff in Auto mode or takeoff speed/accel not yet reached |
|
* OR |
|
* 5 - Home location is not set |
|
*/ |
|
bool Plane::suppress_throttle(void) |
|
{ |
|
#if PARACHUTE == ENABLED |
|
if (auto_throttle_mode && parachute.release_initiated()) { |
|
// throttle always suppressed in auto-throttle modes after parachute release initiated |
|
throttle_suppressed = true; |
|
return true; |
|
} |
|
#endif |
|
|
|
if (!throttle_suppressed) { |
|
// we've previously met a condition for unsupressing the throttle |
|
return false; |
|
} |
|
if (!auto_throttle_mode) { |
|
// the user controls the throttle |
|
throttle_suppressed = false; |
|
return false; |
|
} |
|
|
|
if (control_mode==AUTO && g.auto_fbw_steer == 42) { |
|
// user has throttle control |
|
return false; |
|
} |
|
|
|
bool gps_movement = (gps.status() >= AP_GPS::GPS_OK_FIX_2D && gps.ground_speed() >= 5); |
|
|
|
if (control_mode==AUTO && |
|
auto_state.takeoff_complete == false) { |
|
|
|
uint32_t launch_duration_ms = ((int32_t)g.takeoff_throttle_delay)*100 + 2000; |
|
if (is_flying() && |
|
millis() - started_flying_ms > MAX(launch_duration_ms, 5000U) && // been flying >5s in any mode |
|
adjusted_relative_altitude_cm() > 500 && // are >5m above AGL/home |
|
labs(ahrs.pitch_sensor) < 3000 && // not high pitch, which happens when held before launch |
|
gps_movement) { // definite gps movement |
|
// we're already flying, do not suppress the throttle. We can get |
|
// stuck in this condition if we reset a mission and cmd 1 is takeoff |
|
// but we're currently flying around below the takeoff altitude |
|
throttle_suppressed = false; |
|
return false; |
|
} |
|
if (auto_takeoff_check()) { |
|
// we're in auto takeoff |
|
throttle_suppressed = false; |
|
auto_state.baro_takeoff_alt = barometer.get_altitude(); |
|
return false; |
|
} |
|
// keep throttle suppressed |
|
return true; |
|
} |
|
|
|
if (relative_altitude_abs_cm() >= 1000) { |
|
// we're more than 10m from the home altitude |
|
throttle_suppressed = false; |
|
return false; |
|
} |
|
|
|
if (gps_movement) { |
|
// if we have an airspeed sensor, then check it too, and |
|
// require 5m/s. This prevents throttle up due to spiky GPS |
|
// groundspeed with bad GPS reception |
|
if ((!ahrs.airspeed_sensor_enabled()) || airspeed.get_airspeed() >= 5) { |
|
// we're moving at more than 5 m/s |
|
throttle_suppressed = false; |
|
return false; |
|
} |
|
} |
|
|
|
if (quadplane.is_flying()) { |
|
throttle_suppressed = false; |
|
} |
|
|
|
// throttle remains suppressed |
|
return true; |
|
} |
|
|
|
/* |
|
implement a software VTail or elevon mixer. There are 4 different mixing modes |
|
*/ |
|
void Plane::channel_output_mixer(uint8_t mixing_type, int16_t & chan1_out, int16_t & chan2_out)const |
|
{ |
|
int16_t c1, c2; |
|
int16_t v1, v2; |
|
|
|
// first get desired elevator and rudder as -500..500 values |
|
c1 = chan1_out - 1500; |
|
c2 = chan2_out - 1500; |
|
|
|
// apply MIXING_OFFSET to input channels using long-integer version |
|
// of formula: x = x * (g.mixing_offset/100.0 + 1.0) |
|
// -100 => 2x on 'c1', 100 => 2x on 'c2' |
|
if (g.mixing_offset < 0) { |
|
c1 = (int16_t)(((int32_t)c1) * (-g.mixing_offset+100) / 100); |
|
} else if (g.mixing_offset > 0) { |
|
c2 = (int16_t)(((int32_t)c2) * (g.mixing_offset+100) / 100); |
|
} |
|
|
|
v1 = (c1 - c2) * g.mixing_gain; |
|
v2 = (c1 + c2) * g.mixing_gain; |
|
|
|
// now map to mixed output |
|
switch (mixing_type) { |
|
case MIXING_DISABLED: |
|
return; |
|
|
|
case MIXING_UPUP: |
|
break; |
|
|
|
case MIXING_UPDN: |
|
v2 = -v2; |
|
break; |
|
|
|
case MIXING_DNUP: |
|
v1 = -v1; |
|
break; |
|
|
|
case MIXING_DNDN: |
|
v1 = -v1; |
|
v2 = -v2; |
|
break; |
|
|
|
case MIXING_UPUP_SWP: |
|
std::swap(v1, v2); |
|
break; |
|
|
|
case MIXING_UPDN_SWP: |
|
v2 = -v2; |
|
std::swap(v1, v2); |
|
break; |
|
|
|
case MIXING_DNUP_SWP: |
|
v1 = -v1; |
|
std::swap(v1, v2); |
|
break; |
|
|
|
case MIXING_DNDN_SWP: |
|
v1 = -v1; |
|
v2 = -v2; |
|
std::swap(v1, v2); |
|
break; |
|
} |
|
|
|
// scale for a 1500 center and 900..2100 range, symmetric |
|
v1 = constrain_int16(v1, -600, 600); |
|
v2 = constrain_int16(v2, -600, 600); |
|
|
|
chan1_out = 1500 + v1; |
|
chan2_out = 1500 + v2; |
|
} |
|
|
|
void Plane::channel_output_mixer(uint8_t mixing_type, RC_Channel* chan1, RC_Channel* chan2)const |
|
{ |
|
int16_t ch1 = chan1->get_radio_out(); |
|
int16_t ch2 = chan2->get_radio_out(); |
|
|
|
channel_output_mixer(mixing_type,ch1,ch2); |
|
|
|
chan1->set_radio_out(ch1); |
|
chan2->set_radio_out(ch2); |
|
} |
|
|
|
/* |
|
setup flaperon output channels |
|
*/ |
|
void Plane::flaperon_update(int8_t flap_percent) |
|
{ |
|
if (!RC_Channel_aux::function_assigned(RC_Channel_aux::k_flaperon1) || |
|
!RC_Channel_aux::function_assigned(RC_Channel_aux::k_flaperon2)) { |
|
return; |
|
} |
|
int16_t ch1, ch2; |
|
/* |
|
flaperons are implemented as a mixer between aileron and a |
|
percentage of flaps. Flap input can come from a manual channel |
|
or from auto flaps. |
|
|
|
Use k_flaperon1 and k_flaperon2 channel trims to center servos. |
|
Then adjust aileron trim for level flight (note that aileron trim is affected |
|
by mixing gain). flapin_channel's trim is not used. |
|
*/ |
|
|
|
ch1 = channel_roll->get_radio_out(); |
|
// The *5 is to take a percentage to a value from -500 to 500 for the mixer |
|
ch2 = 1500 - flap_percent * 5; |
|
channel_output_mixer(g.flaperon_output, ch1, ch2); |
|
RC_Channel_aux::set_radio_trimmed(RC_Channel_aux::k_flaperon1, ch1); |
|
RC_Channel_aux::set_radio_trimmed(RC_Channel_aux::k_flaperon2, ch2); |
|
} |
|
|
|
/* |
|
setup servos for idle mode |
|
Idle mode is used during balloon launch to keep servos still, apart |
|
from occasional wiggle to prevent freezing up |
|
*/ |
|
void Plane::set_servos_idle(void) |
|
{ |
|
RC_Channel_aux::output_ch_all(); |
|
if (auto_state.idle_wiggle_stage == 0) { |
|
RC_Channel::output_trim_all(); |
|
return; |
|
} |
|
int16_t servo_value = 0; |
|
// move over full range for 2 seconds |
|
auto_state.idle_wiggle_stage += 2; |
|
if (auto_state.idle_wiggle_stage < 50) { |
|
servo_value = auto_state.idle_wiggle_stage * (4500 / 50); |
|
} else if (auto_state.idle_wiggle_stage < 100) { |
|
servo_value = (100 - auto_state.idle_wiggle_stage) * (4500 / 50); |
|
} else if (auto_state.idle_wiggle_stage < 150) { |
|
servo_value = (100 - auto_state.idle_wiggle_stage) * (4500 / 50); |
|
} else if (auto_state.idle_wiggle_stage < 200) { |
|
servo_value = (auto_state.idle_wiggle_stage-200) * (4500 / 50); |
|
} else { |
|
auto_state.idle_wiggle_stage = 0; |
|
} |
|
channel_roll->set_servo_out(servo_value); |
|
channel_pitch->set_servo_out(servo_value); |
|
channel_rudder->set_servo_out(servo_value); |
|
channel_roll->calc_pwm(); |
|
channel_pitch->calc_pwm(); |
|
channel_rudder->calc_pwm(); |
|
channel_throttle->output_trim(); |
|
} |
|
|
|
/* |
|
return minimum throttle PWM value, taking account of throttle reversal. For reverse thrust you get the throttle off position |
|
*/ |
|
uint16_t Plane::throttle_min(void) const |
|
{ |
|
if (aparm.throttle_min < 0) { |
|
return channel_throttle->get_radio_trim(); |
|
} |
|
return channel_throttle->get_reverse() ? channel_throttle->get_radio_max() : channel_throttle->get_radio_min(); |
|
}; |
|
|
|
|
|
/* |
|
pass through channels in manual mode |
|
*/ |
|
void Plane::set_servos_manual_passthrough(void) |
|
{ |
|
// do a direct pass through of radio values |
|
if (g.mix_mode == 0 || g.elevon_output != MIXING_DISABLED) { |
|
channel_roll->set_radio_out(channel_roll->get_radio_in()); |
|
channel_pitch->set_radio_out(channel_pitch->get_radio_in()); |
|
} else { |
|
channel_roll->set_radio_out(channel_roll->read()); |
|
channel_pitch->set_radio_out(channel_pitch->read()); |
|
} |
|
channel_throttle->set_radio_out(channel_throttle->get_radio_in()); |
|
channel_rudder->set_radio_out(channel_rudder->get_radio_in()); |
|
|
|
// setup extra channels. We want this to come from the |
|
// main input channel, but using the 2nd channels dead |
|
// zone, reverse and min/max settings. We need to use |
|
// pwm_to_angle_dz() to ensure we don't trim the value for the |
|
// deadzone of the main aileron channel, otherwise the 2nd |
|
// aileron won't quite follow the first one |
|
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_aileron, channel_roll->pwm_to_angle_dz(0)); |
|
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_elevator, channel_pitch->pwm_to_angle_dz(0)); |
|
|
|
// this variant assumes you have the corresponding |
|
// input channel setup in your transmitter for manual control |
|
// of the 2nd aileron |
|
RC_Channel_aux::copy_radio_in_out(RC_Channel_aux::k_aileron_with_input); |
|
RC_Channel_aux::copy_radio_in_out(RC_Channel_aux::k_elevator_with_input); |
|
} |
|
|
|
/* |
|
old (deprecated) elevon support |
|
*/ |
|
void Plane::set_servos_old_elevons(void) |
|
{ |
|
/*Elevon mode*/ |
|
float ch1; |
|
float ch2; |
|
ch1 = channel_pitch->get_servo_out() - (BOOL_TO_SIGN(g.reverse_elevons) * channel_roll->get_servo_out()); |
|
ch2 = channel_pitch->get_servo_out() + (BOOL_TO_SIGN(g.reverse_elevons) * channel_roll->get_servo_out()); |
|
|
|
/* Differential Spoilers |
|
If differential spoilers are setup, then we translate |
|
rudder control into splitting of the two ailerons on |
|
the side of the aircraft where we want to induce |
|
additional drag. |
|
*/ |
|
if (RC_Channel_aux::function_assigned(RC_Channel_aux::k_dspoiler1) && RC_Channel_aux::function_assigned(RC_Channel_aux::k_dspoiler2)) { |
|
float ch3 = ch1; |
|
float ch4 = ch2; |
|
if ( BOOL_TO_SIGN(g.reverse_elevons) * channel_rudder->get_servo_out() < 0) { |
|
ch1 += abs(channel_rudder->get_servo_out()); |
|
ch3 -= abs(channel_rudder->get_servo_out()); |
|
} else { |
|
ch2 += abs(channel_rudder->get_servo_out()); |
|
ch4 -= abs(channel_rudder->get_servo_out()); |
|
} |
|
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_dspoiler1, ch3); |
|
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_dspoiler2, ch4); |
|
} |
|
|
|
// directly set the radio_out values for elevon mode |
|
channel_roll->set_radio_out(elevon.trim1 + (BOOL_TO_SIGN(g.reverse_ch1_elevon) * (ch1 * 500.0f/ SERVO_MAX))); |
|
channel_pitch->set_radio_out(elevon.trim2 + (BOOL_TO_SIGN(g.reverse_ch2_elevon) * (ch2 * 500.0f/ SERVO_MAX))); |
|
} |
|
|
|
|
|
/* |
|
calculate any throttle limits based on the watt limiter |
|
*/ |
|
void Plane::throttle_watt_limiter(int8_t &min_throttle, int8_t &max_throttle) |
|
{ |
|
uint32_t now = millis(); |
|
if (battery.overpower_detected()) { |
|
// overpower detected, cut back on the throttle if we're maxing it out by calculating a limiter value |
|
// throttle limit will attack by 10% per second |
|
|
|
if (channel_throttle->get_servo_out() > 0 && // demanding too much positive thrust |
|
throttle_watt_limit_max < max_throttle - 25 && |
|
now - throttle_watt_limit_timer_ms >= 1) { |
|
// always allow for 25% throttle available regardless of battery status |
|
throttle_watt_limit_timer_ms = now; |
|
throttle_watt_limit_max++; |
|
|
|
} else if (channel_throttle->get_servo_out() < 0 && |
|
min_throttle < 0 && // reverse thrust is available |
|
throttle_watt_limit_min < -(min_throttle) - 25 && |
|
now - throttle_watt_limit_timer_ms >= 1) { |
|
// always allow for 25% throttle available regardless of battery status |
|
throttle_watt_limit_timer_ms = now; |
|
throttle_watt_limit_min++; |
|
} |
|
|
|
} else if (now - throttle_watt_limit_timer_ms >= 1000) { |
|
// it has been 1 second since last over-current, check if we can resume higher throttle. |
|
// this throttle release is needed to allow raising the max_throttle as the battery voltage drains down |
|
// throttle limit will release by 1% per second |
|
if (channel_throttle->get_servo_out() > throttle_watt_limit_max && // demanding max forward thrust |
|
throttle_watt_limit_max > 0) { // and we're currently limiting it |
|
throttle_watt_limit_timer_ms = now; |
|
throttle_watt_limit_max--; |
|
|
|
} else if (channel_throttle->get_servo_out() < throttle_watt_limit_min && // demanding max negative thrust |
|
throttle_watt_limit_min > 0) { // and we're limiting it |
|
throttle_watt_limit_timer_ms = now; |
|
throttle_watt_limit_min--; |
|
} |
|
} |
|
|
|
max_throttle = constrain_int16(max_throttle, 0, max_throttle - throttle_watt_limit_max); |
|
if (min_throttle < 0) { |
|
min_throttle = constrain_int16(min_throttle, min_throttle + throttle_watt_limit_min, 0); |
|
} |
|
} |
|
|
|
|
|
|
|
/* |
|
setup output channels all non-manual modes |
|
*/ |
|
void Plane::set_servos_controlled(void) |
|
{ |
|
if (g.mix_mode != 0) { |
|
set_servos_old_elevons(); |
|
} else { |
|
// both types of secondary aileron are slaved to the roll servo out |
|
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_aileron, channel_roll->get_servo_out()); |
|
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_aileron_with_input, channel_roll->get_servo_out()); |
|
|
|
// both types of secondary elevator are slaved to the pitch servo out |
|
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_elevator, channel_pitch->get_servo_out()); |
|
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_elevator_with_input, channel_pitch->get_servo_out()); |
|
|
|
// push out the PWM values |
|
channel_roll->calc_pwm(); |
|
channel_pitch->calc_pwm(); |
|
} |
|
|
|
channel_rudder->calc_pwm(); |
|
|
|
// convert 0 to 100% (or -100 to +100) into PWM |
|
int8_t min_throttle = aparm.throttle_min.get(); |
|
int8_t max_throttle = aparm.throttle_max.get(); |
|
|
|
if (min_throttle < 0 && !allow_reverse_thrust()) { |
|
// reverse thrust is available but inhibited. |
|
min_throttle = 0; |
|
} |
|
|
|
if (control_mode == AUTO) { |
|
if (flight_stage == AP_SpdHgtControl::FLIGHT_LAND_FINAL) { |
|
min_throttle = 0; |
|
} |
|
|
|
if (flight_stage == AP_SpdHgtControl::FLIGHT_TAKEOFF || flight_stage == AP_SpdHgtControl::FLIGHT_LAND_ABORT) { |
|
if(aparm.takeoff_throttle_max != 0) { |
|
max_throttle = aparm.takeoff_throttle_max; |
|
} else { |
|
max_throttle = aparm.throttle_max; |
|
} |
|
} |
|
} |
|
|
|
// apply watt limiter |
|
throttle_watt_limiter(min_throttle, max_throttle); |
|
|
|
channel_throttle->set_servo_out(constrain_int16(channel_throttle->get_servo_out(), |
|
min_throttle, |
|
max_throttle)); |
|
|
|
if (!hal.util->get_soft_armed()) { |
|
channel_throttle->set_servo_out(0); |
|
channel_throttle->calc_pwm(); |
|
} else if (suppress_throttle()) { |
|
// throttle is suppressed in auto mode |
|
channel_throttle->set_servo_out(0); |
|
if (g.throttle_suppress_manual) { |
|
// manual pass through of throttle while throttle is suppressed |
|
channel_throttle->set_radio_out(channel_throttle->get_radio_in()); |
|
} else { |
|
channel_throttle->calc_pwm(); |
|
} |
|
} else if (g.throttle_passthru_stabilize && |
|
(control_mode == STABILIZE || |
|
control_mode == TRAINING || |
|
control_mode == ACRO || |
|
control_mode == FLY_BY_WIRE_A || |
|
control_mode == AUTOTUNE) && |
|
!failsafe.ch3_counter) { |
|
// manual pass through of throttle while in FBWA or |
|
// STABILIZE mode with THR_PASS_STAB set |
|
channel_throttle->set_radio_out(channel_throttle->get_radio_in()); |
|
} else if ((control_mode == GUIDED || control_mode == AVOID_ADSB) && |
|
guided_throttle_passthru) { |
|
// manual pass through of throttle while in GUIDED |
|
channel_throttle->set_radio_out(channel_throttle->get_radio_in()); |
|
} else if (quadplane.in_vtol_mode()) { |
|
// ask quadplane code for forward throttle |
|
channel_throttle->set_servo_out(quadplane.forward_throttle_pct()); |
|
channel_throttle->calc_pwm(); |
|
} else { |
|
// normal throttle calculation based on servo_out |
|
channel_throttle->calc_pwm(); |
|
} |
|
} |
|
|
|
/* |
|
setup flap outputs |
|
*/ |
|
void Plane::set_servos_flaps(void) |
|
{ |
|
// Auto flap deployment |
|
int8_t auto_flap_percent = 0; |
|
int8_t manual_flap_percent = 0; |
|
static int8_t last_auto_flap; |
|
static int8_t last_manual_flap; |
|
|
|
// work out any manual flap input |
|
RC_Channel *flapin = RC_Channel::rc_channel(g.flapin_channel-1); |
|
if (flapin != NULL && !failsafe.ch3_failsafe && failsafe.ch3_counter == 0) { |
|
flapin->input(); |
|
manual_flap_percent = flapin->percent_input(); |
|
} |
|
|
|
if (auto_throttle_mode) { |
|
int16_t flapSpeedSource = 0; |
|
if (ahrs.airspeed_sensor_enabled()) { |
|
flapSpeedSource = target_airspeed_cm * 0.01f; |
|
} else { |
|
flapSpeedSource = aparm.throttle_cruise; |
|
} |
|
if (g.flap_2_speed != 0 && flapSpeedSource <= g.flap_2_speed) { |
|
auto_flap_percent = g.flap_2_percent; |
|
} else if ( g.flap_1_speed != 0 && flapSpeedSource <= g.flap_1_speed) { |
|
auto_flap_percent = g.flap_1_percent; |
|
} //else flaps stay at default zero deflection |
|
|
|
/* |
|
special flap levels for takeoff and landing. This works |
|
better than speed based flaps as it leads to less |
|
possibility of oscillation |
|
*/ |
|
if (control_mode == AUTO) { |
|
switch (flight_stage) { |
|
case AP_SpdHgtControl::FLIGHT_TAKEOFF: |
|
case AP_SpdHgtControl::FLIGHT_LAND_ABORT: |
|
if (g.takeoff_flap_percent != 0) { |
|
auto_flap_percent = g.takeoff_flap_percent; |
|
} |
|
break; |
|
case AP_SpdHgtControl::FLIGHT_NORMAL: |
|
if (auto_flap_percent != 0 && in_preLaunch_flight_stage()) { |
|
// TODO: move this to a new FLIGHT_PRE_TAKEOFF stage |
|
auto_flap_percent = g.takeoff_flap_percent; |
|
} |
|
break; |
|
case AP_SpdHgtControl::FLIGHT_LAND_APPROACH: |
|
case AP_SpdHgtControl::FLIGHT_LAND_PREFLARE: |
|
case AP_SpdHgtControl::FLIGHT_LAND_FINAL: |
|
if (g.land_flap_percent != 0) { |
|
auto_flap_percent = g.land_flap_percent; |
|
} |
|
break; |
|
default: |
|
break; |
|
} |
|
} |
|
} |
|
|
|
// manual flap input overrides auto flap input |
|
if (abs(manual_flap_percent) > auto_flap_percent) { |
|
auto_flap_percent = manual_flap_percent; |
|
} |
|
|
|
flap_slew_limit(last_auto_flap, auto_flap_percent); |
|
flap_slew_limit(last_manual_flap, manual_flap_percent); |
|
|
|
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_flap_auto, auto_flap_percent); |
|
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_flap, manual_flap_percent); |
|
|
|
if (g.flaperon_output != MIXING_DISABLED && g.elevon_output == MIXING_DISABLED && g.mix_mode == 0) { |
|
flaperon_update(auto_flap_percent); |
|
} |
|
} |
|
|
|
|
|
/* |
|
apply vtail and elevon mixers |
|
the rewrites radio_out for the corresponding channels |
|
*/ |
|
void Plane::servo_output_mixers(void) |
|
{ |
|
if (g.vtail_output != MIXING_DISABLED) { |
|
channel_output_mixer(g.vtail_output, channel_pitch, channel_rudder); |
|
} else if (g.elevon_output != MIXING_DISABLED) { |
|
channel_output_mixer(g.elevon_output, channel_pitch, channel_roll); |
|
// if (both) differential spoilers setup then apply rudder |
|
// control into splitting the two elevons on the side of |
|
// the aircraft where we want to induce additional drag: |
|
if (RC_Channel_aux::function_assigned(RC_Channel_aux::k_dspoiler1) && |
|
RC_Channel_aux::function_assigned(RC_Channel_aux::k_dspoiler2)) { |
|
int16_t ch3 = channel_roll->get_radio_out(); //diff spoiler 1 |
|
int16_t ch4 = channel_pitch->get_radio_out(); //diff spoiler 2 |
|
// convert rudder-servo output (-4500 to 4500) to PWM offset |
|
// value (-500 to 500) and multiply by DSPOILR_RUD_RATE/100 |
|
// (rudder->servo_out * 500 / SERVO_MAX * dspoiler_rud_rate/100): |
|
int16_t ruddVal = (int16_t)((int32_t)(channel_rudder->get_servo_out()) * |
|
g.dspoiler_rud_rate / (SERVO_MAX/5)); |
|
if (ruddVal != 0) { //if nonzero rudder then apply to spoilers |
|
int16_t ch1 = ch3; //elevon 1 |
|
int16_t ch2 = ch4; //elevon 2 |
|
if (ruddVal > 0) { //apply rudder to right or left side |
|
ch1 += ruddVal; |
|
ch3 -= ruddVal; |
|
} else { |
|
ch2 += ruddVal; |
|
ch4 -= ruddVal; |
|
} |
|
// change elevon 1 & 2 positions; constrain min/max: |
|
channel_roll->set_radio_out(constrain_int16(ch1, 900, 2100)); |
|
channel_pitch->set_radio_out(constrain_int16(ch2, 900, 2100)); |
|
// constrain min/max for intermediate dspoiler positions: |
|
ch3 = constrain_int16(ch3, 900, 2100); |
|
ch4 = constrain_int16(ch4, 900, 2100); |
|
} |
|
// set positions of differential spoilers (convert PWM |
|
// 900-2100 range to servo output (-4500 to 4500) |
|
// and use function that supports rev/min/max/trim): |
|
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_dspoiler1, |
|
(ch3-(int16_t)1500) * (int16_t)(SERVO_MAX/300) / (int16_t)2); |
|
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_dspoiler2, |
|
(ch4-(int16_t)1500) * (int16_t)(SERVO_MAX/300) / (int16_t)2); |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
Set the flight control servos based on the current calculated values |
|
|
|
This function operates by first building up output values for |
|
channels using set_servo() and set_radio_out(). Using |
|
set_radio_out() is for when a raw PWM value of output is given which |
|
does not depend on any output scaling. Using set_servo() is for when |
|
scaling and mixing will be needed. |
|
|
|
Finally servos_output() is called to push the final PWM values |
|
for output channels |
|
*/ |
|
void Plane::set_servos(void) |
|
{ |
|
// start with output corked. the cork is released when we run |
|
// servos_output(), which is run from all code paths in this |
|
// function |
|
hal.rcout->cork(); |
|
|
|
// this is to allow the failsafe module to deliberately crash |
|
// the plane. Only used in extreme circumstances to meet the |
|
// OBC rules |
|
if (afs.should_crash_vehicle()) { |
|
afs.terminate_vehicle(); |
|
return; |
|
} |
|
|
|
int16_t last_throttle = channel_throttle->get_radio_out(); |
|
|
|
// do any transition updates for quadplane |
|
quadplane.update(); |
|
|
|
if (control_mode == AUTO && auto_state.idle_mode) { |
|
// special handling for balloon launch |
|
set_servos_idle(); |
|
servos_output(); |
|
return; |
|
} |
|
|
|
/* |
|
see if we are doing ground steering. |
|
*/ |
|
if (!steering_control.ground_steering) { |
|
// we are not at an altitude for ground steering. Set the nose |
|
// wheel to the rudder just in case the barometer has drifted |
|
// a lot |
|
steering_control.steering = steering_control.rudder; |
|
} else if (!RC_Channel_aux::function_assigned(RC_Channel_aux::k_steering)) { |
|
// we are within the ground steering altitude but don't have a |
|
// dedicated steering channel. Set the rudder to the ground |
|
// steering output |
|
steering_control.rudder = steering_control.steering; |
|
} |
|
channel_rudder->set_servo_out(steering_control.rudder); |
|
|
|
// clear ground_steering to ensure manual control if the yaw stabilizer doesn't run |
|
steering_control.ground_steering = false; |
|
|
|
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_rudder, steering_control.rudder); |
|
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_steering, steering_control.steering); |
|
|
|
if (control_mode == MANUAL) { |
|
set_servos_manual_passthrough(); |
|
} else { |
|
set_servos_controlled(); |
|
} |
|
|
|
// setup flap outputs |
|
set_servos_flaps(); |
|
|
|
if (control_mode >= FLY_BY_WIRE_B || |
|
quadplane.in_assisted_flight() || |
|
quadplane.in_vtol_mode()) { |
|
/* only do throttle slew limiting in modes where throttle |
|
* control is automatic */ |
|
throttle_slew_limit(last_throttle); |
|
} |
|
|
|
if (control_mode == TRAINING) { |
|
// copy rudder in training mode |
|
channel_rudder->set_radio_out(channel_rudder->get_radio_in()); |
|
} |
|
|
|
if (!arming.is_armed()) { |
|
//Some ESCs get noisy (beep error msgs) if PWM == 0. |
|
//This little segment aims to avoid this. |
|
switch (arming.arming_required()) { |
|
case AP_Arming::NO: |
|
//keep existing behavior: do nothing to radio_out |
|
//(don't disarm throttle channel even if AP_Arming class is) |
|
break; |
|
|
|
case AP_Arming::YES_ZERO_PWM: |
|
channel_throttle->set_servo_out(0); |
|
channel_throttle->set_radio_out(0); |
|
break; |
|
|
|
case AP_Arming::YES_MIN_PWM: |
|
default: |
|
channel_throttle->set_servo_out(0); |
|
channel_throttle->set_radio_out(throttle_min()); |
|
break; |
|
} |
|
} |
|
|
|
#if HIL_SUPPORT |
|
if (g.hil_mode == 1) { |
|
// get the servos to the GCS immediately for HIL |
|
if (HAVE_PAYLOAD_SPACE(MAVLINK_COMM_0, RC_CHANNELS_SCALED)) { |
|
send_servo_out(MAVLINK_COMM_0); |
|
} |
|
if (!g.hil_servos) { |
|
// we don't run the output mixer |
|
return; |
|
} |
|
} |
|
#endif |
|
|
|
if (g.land_then_servos_neutral > 0 && |
|
control_mode == AUTO && |
|
g.land_disarm_delay > 0 && |
|
auto_state.land_complete && |
|
!arming.is_armed()) { |
|
// after an auto land and auto disarm, set the servos to be neutral just |
|
// in case we're upside down or some crazy angle and straining the servos. |
|
if (g.land_then_servos_neutral == 1) { |
|
channel_roll->set_radio_out(channel_roll->get_radio_trim()); |
|
channel_pitch->set_radio_out(channel_pitch->get_radio_trim()); |
|
channel_rudder->set_radio_out(channel_rudder->get_radio_trim()); |
|
} else if (g.land_then_servos_neutral == 2) { |
|
channel_roll->disable_out(); |
|
channel_pitch->disable_out(); |
|
channel_rudder->disable_out(); |
|
} |
|
} |
|
|
|
uint8_t override_pct; |
|
if (g2.ice_control.throttle_override(override_pct)) { |
|
// the ICE controller wants to override the throttle for starting |
|
channel_throttle->set_servo_out(override_pct); |
|
channel_throttle->calc_pwm(); |
|
} |
|
|
|
// allow for secondary throttle |
|
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_throttle, channel_throttle->get_servo_out()); |
|
|
|
// run output mixer and send values to the hal for output |
|
servos_output(); |
|
} |
|
|
|
|
|
/* |
|
run configured output mixer. This takes calculated servo_out values |
|
for each channel and calculates PWM values, then pushes them to |
|
hal.rcout |
|
*/ |
|
void Plane::servos_output(void) |
|
{ |
|
hal.rcout->cork(); |
|
|
|
if (g.rudder_only != 0) { |
|
channel_roll->set_radio_out(channel_roll->get_radio_trim()); |
|
} |
|
|
|
// to enable the throttle slew rate to work we need to remember |
|
// and restore the throttle radio_out |
|
uint16_t thr_radio_out_saved = channel_throttle->get_radio_out(); |
|
|
|
// remap servo output to SERVO* ranges if enabled |
|
g2.servo_channels.remap_servo_output(); |
|
|
|
// run vtail and elevon mixers |
|
servo_output_mixers(); |
|
|
|
channel_roll->output(); |
|
channel_pitch->output(); |
|
channel_throttle->output(); |
|
channel_rudder->output(); |
|
|
|
if (!afs.should_crash_vehicle()) { |
|
RC_Channel_aux::output_ch_all(); |
|
} |
|
|
|
hal.rcout->push(); |
|
|
|
// restore throttle radio out |
|
channel_throttle->set_radio_out(thr_radio_out_saved); |
|
|
|
if (g2.servo_channels.auto_trim_enabled()) { |
|
servos_auto_trim(); |
|
} |
|
} |
|
|
|
/* |
|
implement automatic persistent trim of control surfaces with |
|
AUTO_TRIM=2, only available when SERVO_RNG_ENABLE=1 as otherwise it |
|
would impact R/C transmitter calibration |
|
*/ |
|
void Plane::servos_auto_trim(void) |
|
{ |
|
if (!g2.servo_channels.enabled()) { |
|
// only possible with SERVO_RNG_ENABLE=1 |
|
return; |
|
} |
|
// only in auto modes and FBWA |
|
if (!auto_throttle_mode && control_mode != FLY_BY_WIRE_A) { |
|
return; |
|
} |
|
if (!hal.util->get_soft_armed()) { |
|
return; |
|
} |
|
if (!is_flying()) { |
|
return; |
|
} |
|
if (quadplane.in_assisted_flight() || quadplane.in_vtol_mode()) { |
|
// can't auto-trim with quadplane motors running |
|
return; |
|
} |
|
if (abs(nav_roll_cd) > 700 || abs(nav_pitch_cd) > 700) { |
|
// only when close to level |
|
return; |
|
} |
|
uint32_t now = AP_HAL::millis(); |
|
if (now - auto_trim.last_trim_check < 500) { |
|
// check twice a second. We want slow trim update |
|
return; |
|
} |
|
if (ahrs.groundspeed() < 8 || smoothed_airspeed < 8) { |
|
// only when definately moving |
|
return; |
|
} |
|
|
|
// adjust trim on channels by a small amount according to I value |
|
g2.servo_channels.adjust_trim(channel_roll->get_ch_out(), rollController.get_pid_info().I); |
|
g2.servo_channels.adjust_trim(channel_pitch->get_ch_out(), pitchController.get_pid_info().I); |
|
|
|
auto_trim.last_trim_check = now; |
|
|
|
if (now - auto_trim.last_trim_save > 10000) { |
|
auto_trim.last_trim_save = now; |
|
g2.servo_channels.save_trim(); |
|
} |
|
|
|
}
|
|
|