You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
490 lines
19 KiB
490 lines
19 KiB
/* |
|
* This file is free software: you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License as published by the |
|
* Free Software Foundation, either version 3 of the License, or |
|
* (at your option) any later version. |
|
* |
|
* This file is distributed in the hope that it will be useful, but |
|
* WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
|
* See the GNU General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public License along |
|
* with this program. If not, see <http://www.gnu.org/licenses/>. |
|
* |
|
* Code by Andy Piper |
|
*/ |
|
|
|
#include <AP_Math/AP_Math.h> |
|
#include "AP_HAL.h" |
|
#include "DSP.h" |
|
#ifndef HAL_NO_UARTDRIVER |
|
#include <GCS_MAVLink/GCS.h> |
|
#endif |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL |
|
#include <assert.h> |
|
#endif |
|
|
|
#if HAL_WITH_DSP |
|
|
|
using namespace AP_HAL; |
|
|
|
extern const AP_HAL::HAL &hal; |
|
|
|
#define SQRT_2_3 0.816496580927726f |
|
#define SQRT_6 2.449489742783178f |
|
|
|
DSP::FFTWindowState::FFTWindowState(uint16_t window_size, uint16_t sample_rate, uint8_t sliding_window_size) |
|
: _window_size(window_size), |
|
_bin_count(window_size / 2), |
|
_num_stored_freqs(window_size / 2 + 1), |
|
_bin_resolution((float)sample_rate / (float)window_size), |
|
_sliding_window_size(sliding_window_size), |
|
_current_slice(0) |
|
{ |
|
// includes DC ad Nyquist components and needs to be large enough for intermediate steps |
|
_freq_bins = (float*)hal.util->malloc_type(sizeof(float) * _window_size, DSP_MEM_REGION); |
|
_derivative_freq_bins = (float*)hal.util->malloc_type(sizeof(float) * _num_stored_freqs, DSP_MEM_REGION); |
|
_hanning_window = (float*)hal.util->malloc_type(sizeof(float) * _window_size, DSP_MEM_REGION); |
|
// allocate workspace, including Nyquist component |
|
_rfft_data = (float*)hal.util->malloc_type(sizeof(float) * (_window_size + 2), DSP_MEM_REGION); |
|
// sliding window of frequency bin frames |
|
if (_sliding_window_size > 0) { |
|
_sliding_window = (float*)hal.util->malloc_type(sizeof(float) * _num_stored_freqs * _sliding_window_size, DSP_MEM_REGION); |
|
_avg_freq_bins = (float*)hal.util->malloc_type(sizeof(float) * _num_stored_freqs, DSP_MEM_REGION); |
|
// we can still fallback to non-averaging if there is not enough memory |
|
if (_avg_freq_bins == nullptr) { |
|
hal.util->free_type(_sliding_window, sizeof(float) * _num_stored_freqs * _sliding_window_size, DSP_MEM_REGION); |
|
_sliding_window = nullptr; |
|
} |
|
} |
|
|
|
if (_freq_bins == nullptr || _hanning_window == nullptr || _rfft_data == nullptr || _derivative_freq_bins == nullptr) { |
|
free_data_structures(); |
|
return; |
|
} |
|
|
|
// create the Hanning window |
|
// https://holometer.fnal.gov/GH_FFT.pdf - equation 19 |
|
for (uint16_t i = 0; i < window_size; i++) { |
|
_hanning_window[i] = (0.5f - 0.5f * cosf(2.0f * M_PI * i / ((float)window_size - 1))); |
|
_window_scale += _hanning_window[i]; |
|
} |
|
// Calculate the inverse of the Effective Noise Bandwidth - equation 24 |
|
_window_scale = 2.0f / sq(_window_scale); |
|
} |
|
|
|
DSP::FFTWindowState::~FFTWindowState() |
|
{ |
|
free_data_structures(); |
|
} |
|
|
|
void DSP::FFTWindowState::free_data_structures() |
|
{ |
|
hal.util->free_type(_freq_bins, sizeof(float) * _window_size * _sliding_window_size, DSP_MEM_REGION); |
|
_freq_bins = nullptr; |
|
hal.util->free_type(_derivative_freq_bins, sizeof(float) * _num_stored_freqs, DSP_MEM_REGION); |
|
_derivative_freq_bins = nullptr; |
|
hal.util->free_type(_hanning_window, sizeof(float) * (_window_size), DSP_MEM_REGION); |
|
_hanning_window = nullptr; |
|
hal.util->free_type(_rfft_data, sizeof(float) * (_window_size + 2), DSP_MEM_REGION); |
|
_rfft_data = nullptr; |
|
hal.util->free_type(_avg_freq_bins, sizeof(float) * _num_stored_freqs, DSP_MEM_REGION); |
|
_avg_freq_bins = nullptr; |
|
hal.util->free_type(_sliding_window, sizeof(float) * _num_stored_freqs * _sliding_window_size, DSP_MEM_REGION); |
|
_sliding_window = nullptr; |
|
} |
|
|
|
// step 3: find the magnitudes of the complex data |
|
void DSP::step_cmplx_mag(FFTWindowState* fft, uint16_t start_bin, uint16_t end_bin, float noise_att_cutoff) |
|
{ |
|
// fft->_freq_bins is populated with the complex magnitude values of the fft data |
|
// find the maximum power in the range we are interested in |
|
// in order to see a peak in the last bin we need to allow all the way up to the nyquist |
|
const uint16_t smoothwidth = 1; |
|
float* freq_data = fft->_freq_bins; |
|
|
|
if (fft->_sliding_window != nullptr) { |
|
update_average_from_sliding_window(fft); |
|
freq_data = fft->_avg_freq_bins; |
|
} else { |
|
// scale the power to account for the input window |
|
vector_scale_float(fft->_freq_bins, fft->_window_scale, fft->_freq_bins, fft->_bin_count); |
|
} |
|
|
|
uint16_t bin_range = (MIN(end_bin + ((smoothwidth + 1) >> 1) + 2, fft->_bin_count) - start_bin) + 1; |
|
// find the three highest peaks using a zero crossing algorithm |
|
uint16_t peaks[MAX_TRACKED_PEAKS] {}; |
|
memset(fft->_peak_data, 0, sizeof(fft->_peak_data)); |
|
uint16_t numpeaks = find_peaks(&freq_data[start_bin], bin_range, fft->_derivative_freq_bins, peaks, MAX_TRACKED_PEAKS, 0.0f, -1.0f, smoothwidth, 2); |
|
//hal.console->printf("found %d peaks\n", numpeaks); |
|
|
|
for (uint16_t i = 0; i < MAX_TRACKED_PEAKS; i++) { |
|
fft->_peak_data[i]._bin = peaks[i] + start_bin; |
|
} |
|
|
|
uint16_t top = 0, bottom = 0; |
|
fft->_peak_data[CENTER]._noise_width_hz = find_noise_width(freq_data, start_bin, end_bin, fft->_peak_data[CENTER]._bin, noise_att_cutoff, fft->_bin_resolution, top, bottom); |
|
if (numpeaks > 1) { |
|
fft->_peak_data[LOWER_SHOULDER]._noise_width_hz = find_noise_width(freq_data, start_bin, end_bin, fft->_peak_data[LOWER_SHOULDER]._bin, noise_att_cutoff, fft->_bin_resolution, top, bottom); |
|
} |
|
if (numpeaks > 2) { |
|
fft->_peak_data[UPPER_SHOULDER]._noise_width_hz = find_noise_width(freq_data, start_bin, end_bin, fft->_peak_data[UPPER_SHOULDER]._bin, noise_att_cutoff, fft->_bin_resolution, top, bottom); |
|
} |
|
|
|
// average the FFT data |
|
if (fft->_averaging) { |
|
vector_add_float(fft->_avg_freq_bins, fft->_freq_bins, fft->_avg_freq_bins, fft->_bin_count); |
|
fft->_averaging_samples++; |
|
} |
|
} |
|
|
|
// calculate the noise width of a peak based on the input parameters |
|
// freq_bins can be scaled or unscaled for power |
|
float DSP::find_noise_width(float* freq_bins, uint16_t start_bin, uint16_t end_bin, uint16_t max_energy_bin, float cutoff, float bin_resolution, uint16_t& peak_top, uint16_t& peak_bottom) const |
|
{ |
|
// max_energy_bin is guaranteed to be between start_bin and end_bin |
|
peak_top = end_bin; |
|
peak_bottom = start_bin; |
|
|
|
// calculate the width of the peak |
|
float noise_width_hz = 1; |
|
|
|
// -attenuation/2 dB point above the center bin |
|
if (max_energy_bin < end_bin) { |
|
for (uint16_t b = max_energy_bin + 1; b <= end_bin; b++) { |
|
if (freq_bins[b] < freq_bins[max_energy_bin] * cutoff) { |
|
// we assume that the 3dB point is in the middle of the final shoulder bin |
|
noise_width_hz += (b - max_energy_bin - 0.5f); |
|
peak_top = b; |
|
break; |
|
} |
|
} |
|
} |
|
// -attenuation/2 dB point below the center bin |
|
if (max_energy_bin > start_bin) { |
|
for (uint16_t b = max_energy_bin - 1; b >= start_bin; b--) { |
|
if (freq_bins[b] < freq_bins[max_energy_bin] * cutoff) { |
|
// we assume that the 3dB point is in the middle of the final shoulder bin |
|
noise_width_hz += (max_energy_bin - b - 0.5f); |
|
peak_bottom = b; |
|
break; |
|
} |
|
} |
|
} |
|
noise_width_hz *= bin_resolution; |
|
|
|
return noise_width_hz; |
|
} |
|
|
|
// step 4: find the bin with the highest energy and interpolate the required frequency |
|
uint16_t DSP::step_calc_frequencies(FFTWindowState* fft, uint16_t start_bin, uint16_t end_bin) |
|
{ |
|
fft->_peak_data[CENTER]._freq_hz = calc_frequency(fft, start_bin, fft->_peak_data[CENTER]._bin, end_bin); |
|
fft->_peak_data[UPPER_SHOULDER]._freq_hz = calc_frequency(fft, start_bin, fft->_peak_data[UPPER_SHOULDER]._bin, end_bin); |
|
fft->_peak_data[LOWER_SHOULDER]._freq_hz = calc_frequency(fft, start_bin, fft->_peak_data[LOWER_SHOULDER]._bin, end_bin); |
|
|
|
return fft->_peak_data[CENTER]._bin; |
|
} |
|
|
|
void DSP::update_average_from_sliding_window(FFTWindowState* fft) |
|
{ |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL |
|
#define ASSERT_MAX(v) assert((v)<(fft->_num_stored_freqs * fft->_sliding_window_size)) |
|
#else |
|
#define ASSERT_MAX(v) |
|
#endif |
|
|
|
// copy and scale the new slice |
|
const uint16_t slice_index = fft->_current_slice * fft->_num_stored_freqs; |
|
ASSERT_MAX(slice_index); |
|
float* slice = &fft->_sliding_window[slice_index]; |
|
|
|
const uint16_t old_slice_index = ((fft->_current_slice + 1) % fft->_sliding_window_size) * fft->_num_stored_freqs; |
|
ASSERT_MAX(old_slice_index); |
|
float* old_slice = &fft->_sliding_window[old_slice_index]; |
|
|
|
const float inv_ssize = 1.0f / fft->_sliding_window_size; |
|
|
|
for (uint16_t i = 0; i < fft->_bin_count; i++) { |
|
slice[i] = fft->_freq_bins[i] * fft->_window_scale * inv_ssize; |
|
fft->_avg_freq_bins[i] = fft->_avg_freq_bins[i] + slice[i] - old_slice[i]; |
|
} |
|
|
|
// advance the current slice |
|
fft->_current_slice = (fft->_current_slice + 1) % fft->_sliding_window_size; |
|
} |
|
|
|
// calculate a single frequency |
|
uint16_t DSP::calc_frequency(FFTWindowState* fft, uint16_t start_bin, uint16_t peak_bin, uint16_t end_bin) |
|
{ |
|
if (peak_bin == 0 || is_zero(fft->get_freq_bin(peak_bin))) { |
|
return start_bin * fft->_bin_resolution; |
|
} |
|
|
|
peak_bin = constrain_int16(peak_bin, start_bin, end_bin); |
|
|
|
// It turns out that Jain is pretty good and works with only magnitudes, but Candan is significantly better |
|
// if you have access to the complex values and Quinn is a little better still. Quinn is computationally |
|
// more expensive, but compared to the overall FFT cost seems worth it. |
|
if (fft->_sliding_window != nullptr) { |
|
return (peak_bin + calculate_jains_estimator(fft, fft->_avg_freq_bins, peak_bin)) * fft->_bin_resolution; |
|
} else { |
|
return (peak_bin + calculate_quinns_second_estimator(fft, fft->_rfft_data, peak_bin)) * fft->_bin_resolution; |
|
} |
|
} |
|
|
|
// Interpolate center frequency using https://dspguru.com/dsp/howtos/how-to-interpolate-fft-peak/ |
|
float DSP::calculate_quinns_second_estimator(const FFTWindowState* fft, const float* complex_fft, uint16_t k_max) const |
|
{ |
|
if (k_max <= 1 || k_max >= fft->_bin_count) { |
|
return 0.0f; |
|
} |
|
|
|
const uint16_t k_m1 = (k_max - 1) * 2; |
|
const uint16_t k_p1 = (k_max + 1) * 2; |
|
const uint16_t k = k_max * 2; |
|
|
|
const float divider = complex_fft[k] * complex_fft[k] + complex_fft[k+1] * complex_fft[k+1]; |
|
const float ap = (complex_fft[k_p1] * complex_fft[k] + complex_fft[k_p1 + 1] * complex_fft[k+1]) / divider; |
|
const float am = (complex_fft[k_m1] * complex_fft[k] + complex_fft[k_m1 + 1] * complex_fft[k + 1]) / divider; |
|
|
|
// sanity check |
|
if (fabsf(1.0f - ap) < 0.01f || fabsf(1.0f - am) < 0.01f) { |
|
return 0.0f; |
|
} |
|
|
|
const float dp = -ap / (1.0f - ap); |
|
const float dm = am / (1.0f - am); |
|
|
|
float d = (dp + dm) * 0.5f + tau(dp * dp) - tau(dm * dm); |
|
|
|
// -0.5 < d < 0.5 which is the fraction of the sample spacing about the center element |
|
return constrain_float(d, -0.5f, 0.5f); |
|
} |
|
|
|
static const float TAU_FACTOR = SQRT_6 / 24.0f; |
|
|
|
// Helper function used for Quinn's frequency estimation |
|
float DSP::tau(const float x) const |
|
{ |
|
float p1 = logf(3.0f * sq(x) + 6.0f * x + 1.0f); |
|
float part1 = x + 1.0f - SQRT_2_3; |
|
float part2 = x + 1.0f + SQRT_2_3; |
|
float p2 = logf(part1 / part2); |
|
return (0.25f * p1 - TAU_FACTOR * p2); |
|
} |
|
|
|
// from https://dspguru.com/dsp/howtos/how-to-interpolate-fft-peak/ |
|
// Works on magnitudes only, which is useful when using averaged data |
|
float DSP::calculate_jains_estimator(const FFTWindowState* fft, const float* real_fft, uint16_t k_max) |
|
{ |
|
if (k_max <= 1 || k_max >= fft->_bin_count) { |
|
return 0.0f; |
|
} |
|
|
|
float y1 = real_fft[k_max-1]; |
|
float y2 = real_fft[k_max]; |
|
float y3 = real_fft[k_max+1]; |
|
float d = 0.0f; |
|
|
|
if (y1 > y3) { |
|
float a = y2 / y1; |
|
d = a / (1 + a) - 1; |
|
} else { |
|
float a = y3 / y2; |
|
d = a / (1 + a); |
|
} |
|
return constrain_float(d, -0.5f, 0.5f); |
|
} |
|
|
|
// initialize averaging FFT windows as they are calculated |
|
bool DSP::fft_init_average(FFTWindowState* fft) |
|
{ |
|
if (fft->_avg_freq_bins == nullptr) { |
|
fft->_avg_freq_bins = (float*)hal.util->malloc_type(sizeof(float) * fft->_num_stored_freqs, DSP_MEM_REGION); |
|
if (fft->_avg_freq_bins == nullptr) { |
|
return false; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
// start averaging FFT windows as they are calculated |
|
bool DSP::fft_start_average(FFTWindowState* fft) |
|
{ |
|
if (fft->_averaging) { |
|
return false; |
|
} |
|
|
|
if (!fft_init_average(fft)) { |
|
return false; |
|
} |
|
|
|
fft->_averaging_samples = 0; |
|
fft->_averaging = true; |
|
return true; |
|
} |
|
|
|
// start averaging FFT windows as they are calculated |
|
uint16_t DSP::fft_stop_average(FFTWindowState* fft, uint16_t start_bin, uint16_t end_bin, float* freqs) |
|
{ |
|
// ensure the window has been allocated even if we do nothing else |
|
if (!fft_init_average(fft)) { |
|
return 0; |
|
} |
|
|
|
if (!fft->_averaging) { |
|
return 0; |
|
} |
|
|
|
fft->_averaging = false; |
|
|
|
// scale by the number of samples |
|
vector_scale_float(fft->_avg_freq_bins, fft->_averaging_samples, fft->_avg_freq_bins, fft->_bin_count); |
|
|
|
const uint16_t smoothwidth = 1; |
|
uint16_t bin_range = (MIN(end_bin + ((smoothwidth + 1) >> 1) + 2, fft->_bin_count) - start_bin) + 1; |
|
|
|
// find the three highest peaks using a zero crossing algorithm |
|
// allocate the scratch space locally as we are in a different thread to the regular FFT |
|
float* scratch_space = (float*)hal.util->malloc_type(sizeof(float) * fft->_num_stored_freqs, DSP_MEM_REGION); |
|
if (scratch_space == nullptr) { |
|
return false; |
|
} |
|
uint16_t peaks[MAX_TRACKED_PEAKS] {}; |
|
uint16_t numpeaks = find_peaks(&fft->_avg_freq_bins[start_bin], bin_range, |
|
scratch_space, peaks, MAX_TRACKED_PEAKS, 0.0f, -1.0f, smoothwidth, 2); |
|
hal.util->free_type(scratch_space, sizeof(float) * fft->_num_stored_freqs, DSP_MEM_REGION); |
|
|
|
// now try and find the lowest harmonic |
|
for (uint16_t i = 0; i < numpeaks; i++) { |
|
const uint16_t bin = peaks[i] + start_bin; |
|
float d = calculate_jains_estimator(fft, fft->_avg_freq_bins, bin); |
|
freqs[i] = (bin + d) * fft->_bin_resolution; |
|
} |
|
|
|
fft->_averaging_samples = 0; |
|
return numpeaks; |
|
} |
|
|
|
// find all the peaks in the fft window using https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm |
|
// in general peakgrup > 2 is only good for very broad noisy peaks, <= 2 better for spikey peaks, although 1 will miss |
|
// a true spike 50% of the time |
|
uint16_t DSP::find_peaks(const float* input, uint16_t length, float* d, uint16_t* peaks, uint16_t peaklen, |
|
float slopeThreshold, float ampThreshold, uint16_t smoothwidth, uint16_t peakgroup) const |
|
{ |
|
if (smoothwidth > 1) { |
|
derivative(input, d, length); |
|
fastsmooth(d, length, smoothwidth); |
|
} else { |
|
derivative(input, d, length); |
|
} |
|
|
|
uint16_t n = ((peakgroup + 1) >> 1) + 1; |
|
uint16_t halfw = (smoothwidth + 1) >> 1; |
|
uint16_t numpeaks = 0; |
|
uint16_t peakX = 0; |
|
float peakY = 0; |
|
uint16_t pindex; |
|
uint16_t xx[peakgroup]; |
|
float yy[peakgroup]; |
|
memset(xx, 0, peakgroup * sizeof(uint16_t)); |
|
memset(yy, 0, peakgroup * sizeof(float)); |
|
|
|
for (uint16_t j = (halfw << 1) - 2; j < length - smoothwidth - 1; j++) { |
|
if (d[j] >= 0 && d[j + 1] <= 0 && !is_equal(d[j], d[j + 1])) { // detect zero crossing |
|
if ((d[j] - d[j + 1]) > slopeThreshold) { |
|
for (uint16_t k = 0; k < peakgroup; k++) { |
|
uint16_t groupIndex = j + k - n + 2; |
|
groupIndex = constrain_int16(groupIndex, 0, length - 1); |
|
xx[k] = groupIndex; |
|
yy[k] = input[groupIndex]; |
|
} |
|
if (peakgroup < 3) { |
|
vector_max_float(yy, peakgroup, &peakY, &pindex); |
|
} else { |
|
peakY = vector_mean_float(yy, peakgroup); |
|
pindex = val2index(yy, peakgroup, peakY); |
|
} |
|
peakX = xx[pindex]; |
|
//hal.console->printf("zero %d, gindex %d -> %d, index %d, val %f\n", j, j -n +2, j+peakgroup -1 - n +2, peakX, peakY); |
|
// see if we have a valid peak |
|
if (isfinite(peakY) && peakY >= ampThreshold) { |
|
// record in amplitude order |
|
for (int16_t i = 0; i < peaklen; i++) { |
|
if (i >= numpeaks) { |
|
peaks[i] = peakX; |
|
break; |
|
} |
|
if (peakY > input[peaks[i]]) { |
|
for (int16_t a = peaklen - 1; a > i; a--) { |
|
peaks[a] = peaks[a - 1]; |
|
} |
|
peaks[i] = peakX; |
|
break; |
|
} |
|
} |
|
numpeaks++; |
|
} |
|
} |
|
} |
|
} |
|
|
|
return numpeaks; |
|
} |
|
|
|
// Returns the index and the value of the element of a vector that is closest to val |
|
uint16_t DSP::val2index(const float* vector, uint16_t n, float val) const |
|
{ |
|
float minval = FLT_MAX; |
|
uint16_t minidx = 0; |
|
for (uint16_t i = 0; i < n; i++) { |
|
float dif = fabsf(vector[i] - val); |
|
if (dif < minval) { |
|
minval = dif; |
|
minidx = i; |
|
} |
|
} |
|
return minidx; |
|
} |
|
|
|
// First derivative of vector using 2-point central difference. |
|
void DSP::derivative(const float* input, float* output, uint16_t n) const |
|
{ |
|
output[0] = input[1] - input[0]; |
|
output[n - 1] = input[n - 1] - input[n - 2]; |
|
for (uint16_t i = 1; i < n - 1; i++) { |
|
output[i] = (input[i + 1] - input[i - 1]) / 2.0f; |
|
} |
|
} |
|
|
|
// smooth a vector in-place |
|
void DSP::fastsmooth(float* input, uint16_t n, uint16_t smoothwidth) const |
|
{ |
|
float window[smoothwidth]; |
|
memset(window, 0, smoothwidth * sizeof(float)); |
|
float sumpoints = 0.0f; |
|
for (int i = 0; i < smoothwidth; i++) { |
|
sumpoints += input[i]; |
|
} |
|
uint16_t halfw = (smoothwidth + 1) >> 1; |
|
for (int i = 0; i < n - smoothwidth; i++) { |
|
window[i % smoothwidth] = sumpoints; |
|
sumpoints -= input[i]; |
|
sumpoints += input[i + smoothwidth]; |
|
input[i] = window[(i + smoothwidth - 1) % smoothwidth] / smoothwidth; |
|
} |
|
uint16_t last = n - smoothwidth + halfw; |
|
input[last] = 0.0f; |
|
for (int i = last + 1; i < n; i++) { |
|
input[last] += input[i]; |
|
} |
|
input[n - smoothwidth + halfw] /= smoothwidth; |
|
for (int i = last + 1; i < n; i++) { |
|
input[i] = 0.0f; |
|
} |
|
} |
|
|
|
#endif // HAL_WITH_DSP
|
|
|