You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
191 lines
7.6 KiB
191 lines
7.6 KiB
/* |
|
* AP_MotorsTri.cpp - ArduCopter motors library |
|
* Code by RandyMackay. DIYDrones.com |
|
* |
|
* This library is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
*/ |
|
#include <AP_HAL.h> |
|
#include <AP_Math.h> |
|
#include "AP_MotorsTri.h" |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
// init |
|
void AP_MotorsTri::Init() |
|
{ |
|
// call parent Init function to set-up throttle curve |
|
AP_Motors::Init(); |
|
|
|
// set update rate for the 3 motors (but not the servo on channel 7) |
|
set_update_rate(_speed_hz); |
|
} |
|
|
|
// set update rate to motors - a value in hertz |
|
void AP_MotorsTri::set_update_rate( uint16_t speed_hz ) |
|
{ |
|
// record requested speed |
|
_speed_hz = speed_hz; |
|
|
|
// set update rate for the 3 motors (but not the servo on channel 7) |
|
uint32_t mask = |
|
1U << _motor_to_channel_map[AP_MOTORS_MOT_1] | |
|
1U << _motor_to_channel_map[AP_MOTORS_MOT_2] | |
|
1U << _motor_to_channel_map[AP_MOTORS_MOT_4]; |
|
hal.rcout->set_freq(mask, _speed_hz); |
|
} |
|
|
|
// enable - starts allowing signals to be sent to motors |
|
void AP_MotorsTri::enable() |
|
{ |
|
// enable output channels |
|
hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_1]); |
|
hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_2]); |
|
hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_4]); |
|
hal.rcout->enable_ch(AP_MOTORS_CH_TRI_YAW); |
|
} |
|
|
|
// output_min - sends minimum values out to the motors |
|
void AP_MotorsTri::output_min() |
|
{ |
|
// fill the motor_out[] array for HIL use |
|
motor_out[AP_MOTORS_MOT_1] = _rc_throttle->radio_min; |
|
motor_out[AP_MOTORS_MOT_2] = _rc_throttle->radio_min; |
|
motor_out[AP_MOTORS_MOT_4] = _rc_throttle->radio_min; |
|
|
|
// send minimum value to each motor |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _rc_throttle->radio_min); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _rc_throttle->radio_min); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _rc_throttle->radio_min); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_CH_TRI_YAW], _rc_yaw->radio_trim); |
|
} |
|
|
|
// output_armed - sends commands to the motors |
|
void AP_MotorsTri::output_armed() |
|
{ |
|
int16_t out_min = _rc_throttle->radio_min; |
|
int16_t out_max = _rc_throttle->radio_max; |
|
|
|
// Throttle is 0 to 1000 only |
|
_rc_throttle->servo_out = constrain(_rc_throttle->servo_out, 0, _max_throttle); |
|
|
|
if(_rc_throttle->servo_out > 0) |
|
out_min = _rc_throttle->radio_min + _min_throttle; |
|
|
|
// capture desired roll, pitch, yaw and throttle from receiver |
|
_rc_roll->calc_pwm(); |
|
_rc_pitch->calc_pwm(); |
|
_rc_throttle->calc_pwm(); |
|
_rc_yaw->calc_pwm(); |
|
|
|
int roll_out = (float)_rc_roll->pwm_out * 0.866f; |
|
int pitch_out = _rc_pitch->pwm_out / 2; |
|
|
|
//left front |
|
motor_out[AP_MOTORS_MOT_2] = _rc_throttle->radio_out + roll_out + pitch_out; |
|
//right front |
|
motor_out[AP_MOTORS_MOT_1] = _rc_throttle->radio_out - roll_out + pitch_out; |
|
// rear |
|
motor_out[AP_MOTORS_MOT_4] = _rc_throttle->radio_out - _rc_pitch->pwm_out; |
|
|
|
// Tridge's stability patch |
|
if(motor_out[AP_MOTORS_MOT_1] > out_max) { |
|
motor_out[AP_MOTORS_MOT_2] -= (motor_out[AP_MOTORS_MOT_1] - out_max) >> 1; |
|
motor_out[AP_MOTORS_MOT_4] -= (motor_out[AP_MOTORS_MOT_1] - out_max) >> 1; |
|
motor_out[AP_MOTORS_MOT_1] = out_max; |
|
} |
|
|
|
if(motor_out[AP_MOTORS_MOT_2] > out_max) { |
|
motor_out[AP_MOTORS_MOT_1] -= (motor_out[AP_MOTORS_MOT_2] - out_max) >> 1; |
|
motor_out[AP_MOTORS_MOT_4] -= (motor_out[AP_MOTORS_MOT_2] - out_max) >> 1; |
|
motor_out[AP_MOTORS_MOT_2] = out_max; |
|
} |
|
|
|
if(motor_out[AP_MOTORS_MOT_4] > out_max) { |
|
motor_out[AP_MOTORS_MOT_1] -= (motor_out[AP_MOTORS_MOT_4] - out_max) >> 1; |
|
motor_out[AP_MOTORS_MOT_2] -= (motor_out[AP_MOTORS_MOT_4] - out_max) >> 1; |
|
motor_out[AP_MOTORS_MOT_4] = out_max; |
|
} |
|
|
|
// adjust for throttle curve |
|
if( _throttle_curve_enabled ) { |
|
motor_out[AP_MOTORS_MOT_1] = _throttle_curve.get_y(motor_out[AP_MOTORS_MOT_1]); |
|
motor_out[AP_MOTORS_MOT_2] = _throttle_curve.get_y(motor_out[AP_MOTORS_MOT_2]); |
|
motor_out[AP_MOTORS_MOT_4] = _throttle_curve.get_y(motor_out[AP_MOTORS_MOT_4]); |
|
} |
|
|
|
// ensure motors don't drop below a minimum value and stop |
|
motor_out[AP_MOTORS_MOT_1] = max(motor_out[AP_MOTORS_MOT_1], out_min); |
|
motor_out[AP_MOTORS_MOT_2] = max(motor_out[AP_MOTORS_MOT_2], out_min); |
|
motor_out[AP_MOTORS_MOT_4] = max(motor_out[AP_MOTORS_MOT_4], out_min); |
|
|
|
#if CUT_MOTORS == ENABLED |
|
// if we are not sending a throttle output, we cut the motors |
|
if(_rc_throttle->servo_out == 0) { |
|
motor_out[AP_MOTORS_MOT_1] = _rc_throttle->radio_min; |
|
motor_out[AP_MOTORS_MOT_2] = _rc_throttle->radio_min; |
|
motor_out[AP_MOTORS_MOT_4] = _rc_throttle->radio_min; |
|
} |
|
#endif |
|
|
|
// send output to each motor |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], motor_out[AP_MOTORS_MOT_1]); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], motor_out[AP_MOTORS_MOT_2]); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], motor_out[AP_MOTORS_MOT_4]); |
|
|
|
// also send out to tail command (we rely on any auto pilot to have updated the rc_yaw->radio_out to the correct value) |
|
// note we do not save the radio_out to the motor_out array so it may not appear in the ch7out in the status screen of the mission planner |
|
// note: we use _rc_tail's (aka channel 7's) REV parameter to control whether the servo is reversed or not but this is a bit nonsensical. |
|
// a separate servo object (including min, max settings etc) would be better or at least a separate parameter to specify the direction of the tail servo |
|
if( _rc_tail->get_reverse() == true ) { |
|
hal.rcout->write(AP_MOTORS_CH_TRI_YAW, _rc_yaw->radio_trim - (_rc_yaw->radio_out - _rc_yaw->radio_trim)); |
|
}else{ |
|
hal.rcout->write(AP_MOTORS_CH_TRI_YAW, _rc_yaw->radio_out); |
|
} |
|
} |
|
|
|
// output_disarmed - sends commands to the motors |
|
void AP_MotorsTri::output_disarmed() |
|
{ |
|
if(_rc_throttle->control_in > 0) { |
|
// we have pushed up the throttle |
|
// remove safety |
|
_auto_armed = true; |
|
} |
|
|
|
// fill the motor_out[] array for HIL use |
|
for (unsigned char i = AP_MOTORS_MOT_1; i < AP_MOTORS_MOT_4; i++) { |
|
motor_out[i] = _rc_throttle->radio_min; |
|
} |
|
|
|
// Send minimum values to all motors |
|
output_min(); |
|
} |
|
|
|
// output_disarmed - sends commands to the motors |
|
void AP_MotorsTri::output_test() |
|
{ |
|
// Send minimum values to all motors |
|
output_min(); |
|
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _rc_throttle->radio_min); |
|
hal.scheduler->delay(4000); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _rc_throttle->radio_min + 100); |
|
hal.scheduler->delay(300); |
|
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _rc_throttle->radio_min); |
|
hal.scheduler->delay(2000); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _rc_throttle->radio_min + 100); |
|
hal.scheduler->delay(300); |
|
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _rc_throttle->radio_min); |
|
hal.scheduler->delay(2000); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _rc_throttle->radio_min + 100); |
|
hal.scheduler->delay(300); |
|
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], motor_out[AP_MOTORS_MOT_1]); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], motor_out[AP_MOTORS_MOT_2]); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], motor_out[AP_MOTORS_MOT_4]); |
|
}
|
|
|