You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
578 lines
23 KiB
578 lines
23 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
#include <AP_HAL.h> |
|
#include "AP_InertialSensor_MPU6000.h" |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
// MPU6000 accelerometer scaling |
|
#define MPU6000_ACCEL_SCALE_1G (GRAVITY_MSS / 4096.0f) |
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2 |
|
#define MPU6000_DRDY_PIN 70 |
|
#elif CONFIG_HAL_BOARD == HAL_BOARD_LINUX |
|
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLE || CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXF |
|
#include "../AP_HAL_Linux/GPIO.h" |
|
#define MPU6000_DRDY_PIN BBB_P8_14 |
|
#endif |
|
#endif |
|
|
|
// MPU 6000 registers |
|
#define MPUREG_XG_OFFS_TC 0x00 |
|
#define MPUREG_YG_OFFS_TC 0x01 |
|
#define MPUREG_ZG_OFFS_TC 0x02 |
|
#define MPUREG_X_FINE_GAIN 0x03 |
|
#define MPUREG_Y_FINE_GAIN 0x04 |
|
#define MPUREG_Z_FINE_GAIN 0x05 |
|
#define MPUREG_XA_OFFS_H 0x06 // X axis accelerometer offset (high byte) |
|
#define MPUREG_XA_OFFS_L 0x07 // X axis accelerometer offset (low byte) |
|
#define MPUREG_YA_OFFS_H 0x08 // Y axis accelerometer offset (high byte) |
|
#define MPUREG_YA_OFFS_L 0x09 // Y axis accelerometer offset (low byte) |
|
#define MPUREG_ZA_OFFS_H 0x0A // Z axis accelerometer offset (high byte) |
|
#define MPUREG_ZA_OFFS_L 0x0B // Z axis accelerometer offset (low byte) |
|
#define MPUREG_PRODUCT_ID 0x0C // Product ID Register |
|
#define MPUREG_XG_OFFS_USRH 0x13 // X axis gyro offset (high byte) |
|
#define MPUREG_XG_OFFS_USRL 0x14 // X axis gyro offset (low byte) |
|
#define MPUREG_YG_OFFS_USRH 0x15 // Y axis gyro offset (high byte) |
|
#define MPUREG_YG_OFFS_USRL 0x16 // Y axis gyro offset (low byte) |
|
#define MPUREG_ZG_OFFS_USRH 0x17 // Z axis gyro offset (high byte) |
|
#define MPUREG_ZG_OFFS_USRL 0x18 // Z axis gyro offset (low byte) |
|
#define MPUREG_SMPLRT_DIV 0x19 // sample rate. Fsample= 1Khz/(<this value>+1) = 200Hz |
|
# define MPUREG_SMPLRT_1000HZ 0x00 |
|
# define MPUREG_SMPLRT_500HZ 0x01 |
|
# define MPUREG_SMPLRT_250HZ 0x03 |
|
# define MPUREG_SMPLRT_200HZ 0x04 |
|
# define MPUREG_SMPLRT_100HZ 0x09 |
|
# define MPUREG_SMPLRT_50HZ 0x13 |
|
#define MPUREG_CONFIG 0x1A |
|
#define MPUREG_GYRO_CONFIG 0x1B |
|
// bit definitions for MPUREG_GYRO_CONFIG |
|
# define BITS_GYRO_FS_250DPS 0x00 |
|
# define BITS_GYRO_FS_500DPS 0x08 |
|
# define BITS_GYRO_FS_1000DPS 0x10 |
|
# define BITS_GYRO_FS_2000DPS 0x18 |
|
# define BITS_GYRO_FS_MASK 0x18 // only bits 3 and 4 are used for gyro full scale so use this to mask off other bits |
|
# define BITS_GYRO_ZGYRO_SELFTEST 0x20 |
|
# define BITS_GYRO_YGYRO_SELFTEST 0x40 |
|
# define BITS_GYRO_XGYRO_SELFTEST 0x80 |
|
#define MPUREG_ACCEL_CONFIG 0x1C |
|
#define MPUREG_MOT_THR 0x1F // detection threshold for Motion interrupt generation. Motion is detected when the absolute value of any of the accelerometer measurements exceeds this |
|
#define MPUREG_MOT_DUR 0x20 // duration counter threshold for Motion interrupt generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit of 1 LSB = 1 ms |
|
#define MPUREG_ZRMOT_THR 0x21 // detection threshold for Zero Motion interrupt generation. |
|
#define MPUREG_ZRMOT_DUR 0x22 // duration counter threshold for Zero Motion interrupt generation. The duration counter ticks at 16 Hz, therefore ZRMOT_DUR has a unit of 1 LSB = 64 ms. |
|
#define MPUREG_FIFO_EN 0x23 |
|
#define MPUREG_INT_PIN_CFG 0x37 |
|
# define BIT_INT_RD_CLEAR 0x10 // clear the interrupt when any read occurs |
|
# define BIT_LATCH_INT_EN 0x20 // latch data ready pin |
|
#define MPUREG_INT_ENABLE 0x38 |
|
// bit definitions for MPUREG_INT_ENABLE |
|
# define BIT_RAW_RDY_EN 0x01 |
|
# define BIT_DMP_INT_EN 0x02 // enabling this bit (DMP_INT_EN) also enables RAW_RDY_EN it seems |
|
# define BIT_UNKNOWN_INT_EN 0x04 |
|
# define BIT_I2C_MST_INT_EN 0x08 |
|
# define BIT_FIFO_OFLOW_EN 0x10 |
|
# define BIT_ZMOT_EN 0x20 |
|
# define BIT_MOT_EN 0x40 |
|
# define BIT_FF_EN 0x80 |
|
#define MPUREG_INT_STATUS 0x3A |
|
// bit definitions for MPUREG_INT_STATUS (same bit pattern as above because this register shows what interrupt actually fired) |
|
# define BIT_RAW_RDY_INT 0x01 |
|
# define BIT_DMP_INT 0x02 |
|
# define BIT_UNKNOWN_INT 0x04 |
|
# define BIT_I2C_MST_INT 0x08 |
|
# define BIT_FIFO_OFLOW_INT 0x10 |
|
# define BIT_ZMOT_INT 0x20 |
|
# define BIT_MOT_INT 0x40 |
|
# define BIT_FF_INT 0x80 |
|
#define MPUREG_ACCEL_XOUT_H 0x3B |
|
#define MPUREG_ACCEL_XOUT_L 0x3C |
|
#define MPUREG_ACCEL_YOUT_H 0x3D |
|
#define MPUREG_ACCEL_YOUT_L 0x3E |
|
#define MPUREG_ACCEL_ZOUT_H 0x3F |
|
#define MPUREG_ACCEL_ZOUT_L 0x40 |
|
#define MPUREG_TEMP_OUT_H 0x41 |
|
#define MPUREG_TEMP_OUT_L 0x42 |
|
#define MPUREG_GYRO_XOUT_H 0x43 |
|
#define MPUREG_GYRO_XOUT_L 0x44 |
|
#define MPUREG_GYRO_YOUT_H 0x45 |
|
#define MPUREG_GYRO_YOUT_L 0x46 |
|
#define MPUREG_GYRO_ZOUT_H 0x47 |
|
#define MPUREG_GYRO_ZOUT_L 0x48 |
|
#define MPUREG_USER_CTRL 0x6A |
|
// bit definitions for MPUREG_USER_CTRL |
|
# define BIT_USER_CTRL_SIG_COND_RESET 0x01 // resets signal paths and results registers for all sensors (gyros, accel, temp) |
|
# define BIT_USER_CTRL_I2C_MST_RESET 0x02 // reset I2C Master (only applicable if I2C_MST_EN bit is set) |
|
# define BIT_USER_CTRL_FIFO_RESET 0x04 // Reset (i.e. clear) FIFO buffer |
|
# define BIT_USER_CTRL_DMP_RESET 0x08 // Reset DMP |
|
# define BIT_USER_CTRL_I2C_IF_DIS 0x10 // Disable primary I2C interface and enable hal.spi->interface |
|
# define BIT_USER_CTRL_I2C_MST_EN 0x20 // Enable MPU to act as the I2C Master to external slave sensors |
|
# define BIT_USER_CTRL_FIFO_EN 0x40 // Enable FIFO operations |
|
# define BIT_USER_CTRL_DMP_EN 0x80 // Enable DMP operations |
|
#define MPUREG_PWR_MGMT_1 0x6B |
|
# define BIT_PWR_MGMT_1_CLK_INTERNAL 0x00 // clock set to internal 8Mhz oscillator |
|
# define BIT_PWR_MGMT_1_CLK_XGYRO 0x01 // PLL with X axis gyroscope reference |
|
# define BIT_PWR_MGMT_1_CLK_YGYRO 0x02 // PLL with Y axis gyroscope reference |
|
# define BIT_PWR_MGMT_1_CLK_ZGYRO 0x03 // PLL with Z axis gyroscope reference |
|
# define BIT_PWR_MGMT_1_CLK_EXT32KHZ 0x04 // PLL with external 32.768kHz reference |
|
# define BIT_PWR_MGMT_1_CLK_EXT19MHZ 0x05 // PLL with external 19.2MHz reference |
|
# define BIT_PWR_MGMT_1_CLK_STOP 0x07 // Stops the clock and keeps the timing generator in reset |
|
# define BIT_PWR_MGMT_1_TEMP_DIS 0x08 // disable temperature sensor |
|
# define BIT_PWR_MGMT_1_CYCLE 0x20 // put sensor into cycle mode. cycles between sleep mode and waking up to take a single sample of data from active sensors at a rate determined by LP_WAKE_CTRL |
|
# define BIT_PWR_MGMT_1_SLEEP 0x40 // put sensor into low power sleep mode |
|
# define BIT_PWR_MGMT_1_DEVICE_RESET 0x80 // reset entire device |
|
#define MPUREG_PWR_MGMT_2 0x6C // allows the user to configure the frequency of wake-ups in Accelerometer Only Low Power Mode |
|
#define MPUREG_BANK_SEL 0x6D // DMP bank selection register (used to indirectly access DMP registers) |
|
#define MPUREG_MEM_START_ADDR 0x6E // DMP memory start address (used to indirectly write to dmp memory) |
|
#define MPUREG_MEM_R_W 0x6F // DMP related register |
|
#define MPUREG_DMP_CFG_1 0x70 // DMP related register |
|
#define MPUREG_DMP_CFG_2 0x71 // DMP related register |
|
#define MPUREG_FIFO_COUNTH 0x72 |
|
#define MPUREG_FIFO_COUNTL 0x73 |
|
#define MPUREG_FIFO_R_W 0x74 |
|
#define MPUREG_WHOAMI 0x75 |
|
|
|
|
|
// Configuration bits MPU 3000 and MPU 6000 (not revised)? |
|
#define BITS_DLPF_CFG_256HZ_NOLPF2 0x00 |
|
#define BITS_DLPF_CFG_188HZ 0x01 |
|
#define BITS_DLPF_CFG_98HZ 0x02 |
|
#define BITS_DLPF_CFG_42HZ 0x03 |
|
#define BITS_DLPF_CFG_20HZ 0x04 |
|
#define BITS_DLPF_CFG_10HZ 0x05 |
|
#define BITS_DLPF_CFG_5HZ 0x06 |
|
#define BITS_DLPF_CFG_2100HZ_NOLPF 0x07 |
|
#define BITS_DLPF_CFG_MASK 0x07 |
|
|
|
// Product ID Description for MPU6000 |
|
// high 4 bits low 4 bits |
|
// Product Name Product Revision |
|
#define MPU6000ES_REV_C4 0x14 // 0001 0100 |
|
#define MPU6000ES_REV_C5 0x15 // 0001 0101 |
|
#define MPU6000ES_REV_D6 0x16 // 0001 0110 |
|
#define MPU6000ES_REV_D7 0x17 // 0001 0111 |
|
#define MPU6000ES_REV_D8 0x18 // 0001 1000 |
|
#define MPU6000_REV_C4 0x54 // 0101 0100 |
|
#define MPU6000_REV_C5 0x55 // 0101 0101 |
|
#define MPU6000_REV_D6 0x56 // 0101 0110 |
|
#define MPU6000_REV_D7 0x57 // 0101 0111 |
|
#define MPU6000_REV_D8 0x58 // 0101 1000 |
|
#define MPU6000_REV_D9 0x59 // 0101 1001 |
|
|
|
|
|
/* |
|
* RM-MPU-6000A-00.pdf, page 33, section 4.25 lists LSB sensitivity of |
|
* gyro as 16.4 LSB/DPS at scale factor of +/- 2000dps (FS_SEL==3) |
|
*/ |
|
const float AP_InertialSensor_MPU6000::_gyro_scale = (0.0174532f / 16.4f); |
|
|
|
/* |
|
* RM-MPU-6000A-00.pdf, page 31, section 4.23 lists LSB sensitivity of |
|
* accel as 4096 LSB/mg at scale factor of +/- 8g (AFS_SEL==2) |
|
* |
|
* See note below about accel scaling of engineering sample MPU6k |
|
* variants however |
|
*/ |
|
|
|
AP_InertialSensor_MPU6000::AP_InertialSensor_MPU6000(AP_InertialSensor &imu) : |
|
AP_InertialSensor_Backend(imu), |
|
_drdy_pin(NULL), |
|
_spi(NULL), |
|
_spi_sem(NULL), |
|
_sample_count(0), |
|
_last_filter_hz(0), |
|
_error_count(0), |
|
_sum_count(0) |
|
{ |
|
_accel_sum.zero(); |
|
_gyro_sum.zero(); |
|
} |
|
|
|
/* |
|
detect the sensor |
|
*/ |
|
AP_InertialSensor_Backend *AP_InertialSensor_MPU6000::detect(AP_InertialSensor &_imu, |
|
AP_InertialSensor::Sample_rate sample_rate) |
|
{ |
|
AP_InertialSensor_MPU6000 *sensor = new AP_InertialSensor_MPU6000(_imu); |
|
if (sensor == NULL) { |
|
return NULL; |
|
} |
|
if (!sensor->_init_sensor(sample_rate)) { |
|
delete sensor; |
|
return NULL; |
|
} |
|
|
|
return sensor; |
|
} |
|
|
|
/* |
|
initialise the sensor |
|
*/ |
|
bool AP_InertialSensor_MPU6000::_init_sensor(AP_InertialSensor::Sample_rate sample_rate) |
|
{ |
|
_spi = hal.spi->device(AP_HAL::SPIDevice_MPU6000); |
|
_spi_sem = _spi->get_semaphore(); |
|
|
|
#ifdef MPU6000_DRDY_PIN |
|
_drdy_pin = hal.gpio->channel(MPU6000_DRDY_PIN); |
|
_drdy_pin->mode(HAL_GPIO_INPUT); |
|
#endif |
|
|
|
hal.scheduler->suspend_timer_procs(); |
|
|
|
uint8_t tries = 0; |
|
do { |
|
bool success = _hardware_init(sample_rate); |
|
if (success) { |
|
hal.scheduler->delay(5+2); |
|
if (!_spi_sem->take(100)) { |
|
return false; |
|
} |
|
if (_data_ready()) { |
|
_spi_sem->give(); |
|
break; |
|
} else { |
|
return false; |
|
} |
|
_spi_sem->give(); |
|
} |
|
if (tries++ > 5) { |
|
hal.console->print_P(PSTR("failed to boot MPU6000 5 times")); |
|
return false; |
|
} |
|
} while (1); |
|
|
|
// grab the used instances |
|
_gyro_instance = _imu.register_gyro(); |
|
_accel_instance = _imu.register_accel(); |
|
|
|
hal.scheduler->resume_timer_procs(); |
|
|
|
// start the timer process to read samples |
|
hal.scheduler->register_timer_process(AP_HAL_MEMBERPROC(&AP_InertialSensor_MPU6000::_poll_data)); |
|
|
|
#if MPU6000_DEBUG |
|
_dump_registers(); |
|
#endif |
|
|
|
return true; |
|
} |
|
|
|
|
|
/* |
|
process any |
|
*/ |
|
bool AP_InertialSensor_MPU6000::update( void ) |
|
{ |
|
if (_sum_count < _sample_count) { |
|
// we don't have enough samples yet |
|
return false; |
|
} |
|
|
|
// we have a full set of samples |
|
uint16_t num_samples; |
|
uint32_t now = hal.scheduler->micros(); |
|
Vector3f accel, gyro; |
|
|
|
hal.scheduler->suspend_timer_procs(); |
|
gyro(_gyro_sum.x, _gyro_sum.y, _gyro_sum.z); |
|
accel(_accel_sum.x, _accel_sum.y, _accel_sum.z); |
|
num_samples = _sum_count; |
|
_accel_sum.zero(); |
|
_gyro_sum.zero(); |
|
_sum_count = 0; |
|
hal.scheduler->resume_timer_procs(); |
|
|
|
gyro *= _gyro_scale / num_samples; |
|
_rotate_and_offset_gyro(_gyro_instance, gyro, now); |
|
|
|
accel *= MPU6000_ACCEL_SCALE_1G / num_samples; |
|
_rotate_and_offset_accel(_accel_instance, accel, now); |
|
|
|
if (_last_filter_hz != _imu.get_filter()) { |
|
if (_spi_sem->take(10)) { |
|
_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW); |
|
_set_filter_register(_imu.get_filter(), 0); |
|
_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH); |
|
_spi_sem->give(); |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
/*================ HARDWARE FUNCTIONS ==================== */ |
|
|
|
/** |
|
* Return true if the MPU6000 has new data available for reading. |
|
* |
|
* We use the data ready pin if it is available. Otherwise, read the |
|
* status register. |
|
*/ |
|
bool AP_InertialSensor_MPU6000::_data_ready() |
|
{ |
|
if (_drdy_pin) { |
|
return _drdy_pin->read() != 0; |
|
} |
|
uint8_t status = _register_read(MPUREG_INT_STATUS); |
|
return (status & BIT_RAW_RDY_INT) != 0; |
|
} |
|
|
|
/** |
|
* Timer process to poll for new data from the MPU6000. |
|
*/ |
|
void AP_InertialSensor_MPU6000::_poll_data(void) |
|
{ |
|
if (!_spi_sem->take_nonblocking()) { |
|
return; |
|
} |
|
if (_data_ready()) { |
|
_read_data_transaction(); |
|
} |
|
_spi_sem->give(); |
|
} |
|
|
|
|
|
void AP_InertialSensor_MPU6000::_read_data_transaction() { |
|
/* one resister address followed by seven 2-byte registers */ |
|
struct PACKED { |
|
uint8_t cmd; |
|
uint8_t int_status; |
|
uint8_t v[14]; |
|
} rx, tx = { cmd : MPUREG_INT_STATUS | 0x80, }; |
|
|
|
_spi->transaction((const uint8_t *)&tx, (uint8_t *)&rx, sizeof(rx)); |
|
|
|
/* |
|
detect a bad SPI bus transaction by looking for all 14 bytes |
|
zero, or the wrong INT_STATUS register value. This is used to |
|
detect a too high SPI bus speed. |
|
*/ |
|
uint8_t i; |
|
for (i=0; i<14; i++) { |
|
if (rx.v[i] != 0) break; |
|
} |
|
if ((rx.int_status&~0x6) != (_drdy_pin==NULL?0:BIT_RAW_RDY_INT) || i == 14) { |
|
// likely a bad bus transaction |
|
if (++_error_count > 4) { |
|
_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW); |
|
} |
|
} |
|
|
|
#define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx] << 8) | v[2*idx+1])) |
|
_accel_sum.x += int16_val(rx.v, 1); |
|
_accel_sum.y += int16_val(rx.v, 0); |
|
_accel_sum.z -= int16_val(rx.v, 2); |
|
_gyro_sum.x += int16_val(rx.v, 5); |
|
_gyro_sum.y += int16_val(rx.v, 4); |
|
_gyro_sum.z -= int16_val(rx.v, 6); |
|
_sum_count++; |
|
|
|
if (_sum_count == 0) { |
|
// rollover - v unlikely |
|
_accel_sum.zero(); |
|
_gyro_sum.zero(); |
|
} |
|
} |
|
|
|
uint8_t AP_InertialSensor_MPU6000::_register_read( uint8_t reg ) |
|
{ |
|
uint8_t addr = reg | 0x80; // Set most significant bit |
|
|
|
uint8_t tx[2]; |
|
uint8_t rx[2]; |
|
|
|
tx[0] = addr; |
|
tx[1] = 0; |
|
_spi->transaction(tx, rx, 2); |
|
|
|
return rx[1]; |
|
} |
|
|
|
void AP_InertialSensor_MPU6000::_register_write(uint8_t reg, uint8_t val) |
|
{ |
|
uint8_t tx[2]; |
|
uint8_t rx[2]; |
|
|
|
tx[0] = reg; |
|
tx[1] = val; |
|
_spi->transaction(tx, rx, 2); |
|
} |
|
|
|
/* |
|
useful when debugging SPI bus errors |
|
*/ |
|
void AP_InertialSensor_MPU6000::_register_write_check(uint8_t reg, uint8_t val) |
|
{ |
|
uint8_t readed; |
|
_register_write(reg, val); |
|
readed = _register_read(reg); |
|
if (readed != val){ |
|
hal.console->printf_P(PSTR("Values doesn't match; written: %02x; read: %02x "), val, readed); |
|
} |
|
#if MPU6000_DEBUG |
|
hal.console->printf_P(PSTR("Values written: %02x; readed: %02x "), val, readed); |
|
#endif |
|
} |
|
|
|
/* |
|
set the DLPF filter frequency. Assumes caller has taken semaphore |
|
*/ |
|
void AP_InertialSensor_MPU6000::_set_filter_register(uint8_t filter_hz, uint8_t default_filter) |
|
{ |
|
uint8_t filter = default_filter; |
|
// choose filtering frequency |
|
switch (filter_hz) { |
|
case 5: |
|
filter = BITS_DLPF_CFG_5HZ; |
|
break; |
|
case 10: |
|
filter = BITS_DLPF_CFG_10HZ; |
|
break; |
|
case 20: |
|
filter = BITS_DLPF_CFG_20HZ; |
|
break; |
|
case 42: |
|
filter = BITS_DLPF_CFG_42HZ; |
|
break; |
|
case 98: |
|
filter = BITS_DLPF_CFG_98HZ; |
|
break; |
|
} |
|
|
|
if (filter != 0) { |
|
_last_filter_hz = filter_hz; |
|
_register_write(MPUREG_CONFIG, filter); |
|
} |
|
} |
|
|
|
|
|
bool AP_InertialSensor_MPU6000::_hardware_init(AP_InertialSensor::Sample_rate sample_rate) |
|
{ |
|
if (!_spi_sem->take(100)) { |
|
hal.scheduler->panic(PSTR("MPU6000: Unable to get semaphore")); |
|
} |
|
|
|
// initially run the bus at low speed (500kHz on APM2) |
|
_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW); |
|
|
|
// Chip reset |
|
uint8_t tries; |
|
for (tries = 0; tries<5; tries++) { |
|
_register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_DEVICE_RESET); |
|
hal.scheduler->delay(100); |
|
|
|
// Wake up device and select GyroZ clock. Note that the |
|
// MPU6000 starts up in sleep mode, and it can take some time |
|
// for it to come out of sleep |
|
_register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_CLK_ZGYRO); |
|
hal.scheduler->delay(5); |
|
|
|
// check it has woken up |
|
if (_register_read(MPUREG_PWR_MGMT_1) == BIT_PWR_MGMT_1_CLK_ZGYRO) { |
|
break; |
|
} |
|
#if MPU6000_DEBUG |
|
_dump_registers(); |
|
#endif |
|
} |
|
if (tries == 5) { |
|
hal.console->println_P(PSTR("Failed to boot MPU6000 5 times")); |
|
_spi_sem->give(); |
|
return false; |
|
} |
|
|
|
_register_write(MPUREG_PWR_MGMT_2, 0x00); // only used for wake-up in accelerometer only low power mode |
|
hal.scheduler->delay(1); |
|
|
|
// Disable I2C bus (recommended on datasheet) |
|
_register_write(MPUREG_USER_CTRL, BIT_USER_CTRL_I2C_IF_DIS); |
|
hal.scheduler->delay(1); |
|
|
|
uint8_t default_filter; |
|
|
|
// sample rate and filtering |
|
// to minimise the effects of aliasing we choose a filter |
|
// that is less than half of the sample rate |
|
switch (sample_rate) { |
|
case AP_InertialSensor::RATE_50HZ: |
|
// this is used for plane and rover, where noise resistance is |
|
// more important than update rate. Tests on an aerobatic plane |
|
// show that 10Hz is fine, and makes it very noise resistant |
|
default_filter = BITS_DLPF_CFG_10HZ; |
|
_sample_count = 4; |
|
break; |
|
case AP_InertialSensor::RATE_100HZ: |
|
default_filter = BITS_DLPF_CFG_20HZ; |
|
_sample_count = 2; |
|
break; |
|
case AP_InertialSensor::RATE_200HZ: |
|
default_filter = BITS_DLPF_CFG_20HZ; |
|
_sample_count = 1; |
|
break; |
|
default: |
|
return false; |
|
} |
|
|
|
_set_filter_register(_imu.get_filter(), default_filter); |
|
|
|
// set sample rate to 200Hz, and use _sample_divider to give |
|
// the requested rate to the application |
|
_register_write(MPUREG_SMPLRT_DIV, MPUREG_SMPLRT_200HZ); |
|
hal.scheduler->delay(1); |
|
|
|
_register_write(MPUREG_GYRO_CONFIG, BITS_GYRO_FS_2000DPS); // Gyro scale 2000º/s |
|
hal.scheduler->delay(1); |
|
|
|
// read the product ID rev c has 1/2 the sensitivity of rev d |
|
uint8_t product_id = _register_read(MPUREG_PRODUCT_ID); |
|
//Serial.printf("Product_ID= 0x%x\n", (unsigned) _mpu6000_product_id); |
|
|
|
if ((product_id == MPU6000ES_REV_C4) || |
|
(product_id == MPU6000ES_REV_C5) || |
|
(product_id == MPU6000_REV_C4) || |
|
(product_id == MPU6000_REV_C5)) { |
|
// Accel scale 8g (4096 LSB/g) |
|
// Rev C has different scaling than rev D |
|
_register_write(MPUREG_ACCEL_CONFIG,1<<3); |
|
} else { |
|
// Accel scale 8g (4096 LSB/g) |
|
_register_write(MPUREG_ACCEL_CONFIG,2<<3); |
|
} |
|
hal.scheduler->delay(1); |
|
|
|
// configure interrupt to fire when new data arrives |
|
_register_write(MPUREG_INT_ENABLE, BIT_RAW_RDY_EN); |
|
hal.scheduler->delay(1); |
|
|
|
// clear interrupt on any read, and hold the data ready pin high |
|
// until we clear the interrupt |
|
_register_write(MPUREG_INT_PIN_CFG, BIT_INT_RD_CLEAR | BIT_LATCH_INT_EN); |
|
|
|
// now that we have initialised, we set the SPI bus speed to high |
|
// (8MHz on APM2) |
|
_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH); |
|
|
|
_spi_sem->give(); |
|
|
|
return true; |
|
} |
|
|
|
#if MPU6000_DEBUG |
|
// dump all config registers - used for debug |
|
void AP_InertialSensor_MPU6000::_dump_registers(void) |
|
{ |
|
hal.console->println_P(PSTR("MPU6000 registers")); |
|
if (_spi_sem->take(100)) { |
|
for (uint8_t reg=MPUREG_PRODUCT_ID; reg<=108; reg++) { |
|
uint8_t v = _register_read(reg); |
|
hal.console->printf_P(PSTR("%02x:%02x "), (unsigned)reg, (unsigned)v); |
|
if ((reg - (MPUREG_PRODUCT_ID-1)) % 16 == 0) { |
|
hal.console->println(); |
|
} |
|
} |
|
hal.console->println(); |
|
_spi_sem->give(); |
|
} |
|
} |
|
#endif
|
|
|