You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
808 lines
21 KiB
808 lines
21 KiB
/* |
|
* quaternion.cpp |
|
* Copyright (C) Andrew Tridgell 2012 |
|
* |
|
* This file is free software: you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License as published by the |
|
* Free Software Foundation, either version 3 of the License, or |
|
* (at your option) any later version. |
|
* |
|
* This file is distributed in the hope that it will be useful, but |
|
* WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
|
* See the GNU General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public License along |
|
* with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
#pragma GCC optimize("O2") |
|
|
|
#include "AP_Math.h" |
|
#include <AP_InternalError/AP_InternalError.h> |
|
|
|
#define HALF_SQRT_2_PlUS_SQRT_2 0.92387953251128673848313610506011 // sqrt(2 + sqrt(2)) / 2 |
|
#define HALF_SQRT_2_MINUS_SQTR_2 0.38268343236508972626808144923416 // sqrt(2 - sqrt(2)) / 2 |
|
#define HALF_SQRT_HALF_TIMES_TWO_PLUS_SQRT_TWO 0.65328148243818828788676000840496 // sqrt((2 + sqrt(2))/2) / 2 |
|
#define HALF_SQRT_HALF_TIMES_TWO_MINUS_SQRT_TWO 0.27059805007309845059637609665515 // sqrt((2 - sqrt(2))/2) / 2 |
|
|
|
// return the rotation matrix equivalent for this quaternion |
|
template <typename T> |
|
void QuaternionT<T>::rotation_matrix(Matrix3d &m) const |
|
{ |
|
const T q3q3 = q3 * q3; |
|
const T q3q4 = q3 * q4; |
|
const T q2q2 = q2 * q2; |
|
const T q2q3 = q2 * q3; |
|
const T q2q4 = q2 * q4; |
|
const T q1q2 = q1 * q2; |
|
const T q1q3 = q1 * q3; |
|
const T q1q4 = q1 * q4; |
|
const T q4q4 = q4 * q4; |
|
|
|
m.a.x = 1.0f-2.0f*(q3q3 + q4q4); |
|
m.a.y = 2.0f*(q2q3 - q1q4); |
|
m.a.z = 2.0f*(q2q4 + q1q3); |
|
m.b.x = 2.0f*(q2q3 + q1q4); |
|
m.b.y = 1.0f-2.0f*(q2q2 + q4q4); |
|
m.b.z = 2.0f*(q3q4 - q1q2); |
|
m.c.x = 2.0f*(q2q4 - q1q3); |
|
m.c.y = 2.0f*(q3q4 + q1q2); |
|
m.c.z = 1.0f-2.0f*(q2q2 + q3q3); |
|
} |
|
|
|
// populate the supplied rotation matrix equivalent from this quaternion |
|
template <typename T> |
|
void QuaternionT<T>::rotation_matrix(Matrix3f &m) const |
|
{ |
|
const T q3q3 = q3 * q3; |
|
const T q3q4 = q3 * q4; |
|
const T q2q2 = q2 * q2; |
|
const T q2q3 = q2 * q3; |
|
const T q2q4 = q2 * q4; |
|
const T q1q2 = q1 * q2; |
|
const T q1q3 = q1 * q3; |
|
const T q1q4 = q1 * q4; |
|
const T q4q4 = q4 * q4; |
|
|
|
m.a.x = 1.0f-2.0f*(q3q3 + q4q4); |
|
m.a.y = 2.0f*(q2q3 - q1q4); |
|
m.a.z = 2.0f*(q2q4 + q1q3); |
|
m.b.x = 2.0f*(q2q3 + q1q4); |
|
m.b.y = 1.0f-2.0f*(q2q2 + q4q4); |
|
m.b.z = 2.0f*(q3q4 - q1q2); |
|
m.c.x = 2.0f*(q2q4 - q1q3); |
|
m.c.y = 2.0f*(q3q4 + q1q2); |
|
m.c.z = 1.0f-2.0f*(q2q2 + q3q3); |
|
} |
|
|
|
// make this quaternion equivalent to the supplied matrix |
|
// Thanks to Martin John Baker |
|
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm |
|
template <typename T> |
|
void QuaternionT<T>::from_rotation_matrix(const Matrix3<T> &m) |
|
{ |
|
const T &m00 = m.a.x; |
|
const T &m11 = m.b.y; |
|
const T &m22 = m.c.z; |
|
const T &m10 = m.b.x; |
|
const T &m01 = m.a.y; |
|
const T &m20 = m.c.x; |
|
const T &m02 = m.a.z; |
|
const T &m21 = m.c.y; |
|
const T &m12 = m.b.z; |
|
T &qw = q1; |
|
T &qx = q2; |
|
T &qy = q3; |
|
T &qz = q4; |
|
|
|
const T tr = m00 + m11 + m22; |
|
|
|
if (tr > 0) { |
|
const T S = sqrtF(tr+1) * 2; |
|
qw = 0.25f * S; |
|
qx = (m21 - m12) / S; |
|
qy = (m02 - m20) / S; |
|
qz = (m10 - m01) / S; |
|
} else if ((m00 > m11) && (m00 > m22)) { |
|
const T S = sqrtF(1.0f + m00 - m11 - m22) * 2.0f; |
|
qw = (m21 - m12) / S; |
|
qx = 0.25f * S; |
|
qy = (m01 + m10) / S; |
|
qz = (m02 + m20) / S; |
|
} else if (m11 > m22) { |
|
const T S = sqrtF(1.0f + m11 - m00 - m22) * 2.0f; |
|
qw = (m02 - m20) / S; |
|
qx = (m01 + m10) / S; |
|
qy = 0.25f * S; |
|
qz = (m12 + m21) / S; |
|
} else { |
|
const T S = sqrtF(1.0f + m22 - m00 - m11) * 2.0f; |
|
qw = (m10 - m01) / S; |
|
qx = (m02 + m20) / S; |
|
qy = (m12 + m21) / S; |
|
qz = 0.25f * S; |
|
} |
|
} |
|
|
|
// create a quaternion from a given rotation |
|
template <typename T> |
|
void QuaternionT<T>::from_rotation(enum Rotation rotation) |
|
{ |
|
// the constants below can be calculated using the following formula: |
|
// Matrix3f m_from_rot; |
|
// m_from_rot.from_rotation(rotation); |
|
// Quaternion q_from_m; |
|
// from_rotation_matrix(m_from_rot); |
|
|
|
switch (rotation) { |
|
case ROTATION_NONE: |
|
q1 = 1; |
|
q2 = q3 = q4 = 0; |
|
return; |
|
|
|
case ROTATION_YAW_45: |
|
q1 = HALF_SQRT_2_PlUS_SQRT_2; |
|
q2 = q3 = 0; |
|
q4 = HALF_SQRT_2_MINUS_SQTR_2; |
|
return; |
|
|
|
case ROTATION_YAW_90: |
|
q1 = HALF_SQRT_2; |
|
q2 = q3 = 0; |
|
q4 = HALF_SQRT_2; |
|
return; |
|
|
|
case ROTATION_YAW_135: |
|
q1 = HALF_SQRT_2_MINUS_SQTR_2; |
|
q2 = q3 = 0; |
|
q4 = HALF_SQRT_2_PlUS_SQRT_2; |
|
return; |
|
|
|
case ROTATION_YAW_180: |
|
q1 = q2 = q3 = 0; |
|
q4=1; |
|
return; |
|
|
|
case ROTATION_YAW_225: |
|
q1 = -HALF_SQRT_2_MINUS_SQTR_2; |
|
q2 = q3 = 0; |
|
q4 = HALF_SQRT_2_PlUS_SQRT_2; |
|
return; |
|
|
|
case ROTATION_YAW_270: |
|
q1 = HALF_SQRT_2; |
|
q2 = q3 = 0; |
|
q4 = -HALF_SQRT_2; |
|
return; |
|
|
|
case ROTATION_YAW_315: |
|
q1 = HALF_SQRT_2_PlUS_SQRT_2; |
|
q2 = q3 = 0; |
|
q4 = -HALF_SQRT_2_MINUS_SQTR_2; |
|
return; |
|
|
|
case ROTATION_ROLL_180: |
|
q1 = q3 = q4 = 0; |
|
q2 = 1; |
|
return; |
|
|
|
case ROTATION_ROLL_180_YAW_45: |
|
q1 = q4 = 0; |
|
q2 = HALF_SQRT_2_PlUS_SQRT_2; |
|
q3 = HALF_SQRT_2_MINUS_SQTR_2; |
|
return; |
|
|
|
case ROTATION_ROLL_180_YAW_90: |
|
case ROTATION_PITCH_180_YAW_270: |
|
q1 = q4 = 0; |
|
q2 = q3 = HALF_SQRT_2; |
|
return; |
|
|
|
case ROTATION_ROLL_180_YAW_135: |
|
q1 = q4 = 0; |
|
q2 = HALF_SQRT_2_MINUS_SQTR_2; |
|
q3 = HALF_SQRT_2_PlUS_SQRT_2; |
|
return; |
|
|
|
case ROTATION_PITCH_180: |
|
q1 = q2 = q4 = 0; |
|
q3 = 1; |
|
return; |
|
|
|
case ROTATION_ROLL_180_YAW_225: |
|
q1 = q4 = 0; |
|
q2 = -HALF_SQRT_2_MINUS_SQTR_2; |
|
q3 = HALF_SQRT_2_PlUS_SQRT_2; |
|
return; |
|
|
|
case ROTATION_ROLL_180_YAW_270: |
|
case ROTATION_PITCH_180_YAW_90: |
|
q1 = q4 = 0; |
|
q2 = -HALF_SQRT_2; |
|
q3 = HALF_SQRT_2; |
|
return; |
|
|
|
case ROTATION_ROLL_180_YAW_315: |
|
q1 = q4 = 0; |
|
q2 = HALF_SQRT_2_PlUS_SQRT_2; |
|
q3 = -HALF_SQRT_2_MINUS_SQTR_2; |
|
return; |
|
|
|
case ROTATION_ROLL_90: |
|
q1 = q2 = HALF_SQRT_2; |
|
q3 = q4 = 0; |
|
return; |
|
|
|
case ROTATION_ROLL_90_YAW_45: |
|
q1 = HALF_SQRT_HALF_TIMES_TWO_PLUS_SQRT_TWO; |
|
q2 = HALF_SQRT_HALF_TIMES_TWO_PLUS_SQRT_TWO; |
|
q3 = q4 = HALF_SQRT_HALF_TIMES_TWO_MINUS_SQRT_TWO; |
|
return; |
|
|
|
case ROTATION_ROLL_90_YAW_90: |
|
q1 = q2 = q3 = q4 = 0.5f; |
|
return; |
|
|
|
case ROTATION_ROLL_90_YAW_135: |
|
q1 = q2 = HALF_SQRT_HALF_TIMES_TWO_MINUS_SQRT_TWO; |
|
q3 = HALF_SQRT_HALF_TIMES_TWO_PLUS_SQRT_TWO; |
|
q4 = HALF_SQRT_HALF_TIMES_TWO_PLUS_SQRT_TWO; |
|
return; |
|
|
|
case ROTATION_ROLL_270: |
|
q1 = HALF_SQRT_2; |
|
q2 = -HALF_SQRT_2; |
|
q3 = q4 = 0; |
|
return; |
|
|
|
case ROTATION_ROLL_270_YAW_45: |
|
q1 = HALF_SQRT_HALF_TIMES_TWO_PLUS_SQRT_TWO; |
|
q2 = -HALF_SQRT_HALF_TIMES_TWO_PLUS_SQRT_TWO; |
|
q3 = -HALF_SQRT_HALF_TIMES_TWO_MINUS_SQRT_TWO; |
|
q4 = HALF_SQRT_HALF_TIMES_TWO_MINUS_SQRT_TWO; |
|
return; |
|
|
|
case ROTATION_ROLL_270_YAW_90: |
|
q1 = q4 = 0.5f; |
|
q2 = q3 = -0.5f; |
|
return; |
|
|
|
case ROTATION_ROLL_270_YAW_135: |
|
q1 = HALF_SQRT_HALF_TIMES_TWO_MINUS_SQRT_TWO; |
|
q2 = -HALF_SQRT_HALF_TIMES_TWO_MINUS_SQRT_TWO; |
|
q3 = -HALF_SQRT_HALF_TIMES_TWO_PLUS_SQRT_TWO; |
|
q4 = HALF_SQRT_HALF_TIMES_TWO_PLUS_SQRT_TWO; |
|
return; |
|
|
|
case ROTATION_PITCH_90: |
|
q1 = q3 = HALF_SQRT_2; |
|
q2 = q4 = 0; |
|
return; |
|
|
|
case ROTATION_PITCH_270: |
|
q1 = HALF_SQRT_2; |
|
q2 = q4 = 0; |
|
q3 = -HALF_SQRT_2; |
|
return; |
|
|
|
case ROTATION_ROLL_90_PITCH_90: |
|
q1 = q2 = q3 = -0.5f; |
|
q4 = 0.5f; |
|
return; |
|
|
|
case ROTATION_ROLL_180_PITCH_90: |
|
q1 = q3 = 0; |
|
q2 = -HALF_SQRT_2; |
|
q4 = HALF_SQRT_2; |
|
return; |
|
|
|
case ROTATION_ROLL_270_PITCH_90: |
|
q1 = q3 = q4 = 0.5f; |
|
q2 = -0.5f; |
|
return; |
|
|
|
case ROTATION_ROLL_90_PITCH_180: |
|
q1 = q2 = 0; |
|
q3 = -HALF_SQRT_2; |
|
q4 = HALF_SQRT_2; |
|
return; |
|
|
|
case ROTATION_ROLL_270_PITCH_180: |
|
q1 = q2 = 0; |
|
q3 = q4 = HALF_SQRT_2; |
|
return; |
|
|
|
case ROTATION_ROLL_90_PITCH_270: |
|
q1 = q2 = q4 = 0.5f; |
|
q3 = -0.5; |
|
return; |
|
|
|
case ROTATION_ROLL_180_PITCH_270: |
|
q1 = q3 = 0; |
|
q2 = q4 = HALF_SQRT_2; |
|
return; |
|
|
|
case ROTATION_ROLL_270_PITCH_270: |
|
q1 = -0.5f; |
|
q2 = q3 = q4 = 0.5f; |
|
return; |
|
|
|
case ROTATION_ROLL_90_PITCH_180_YAW_90: |
|
q1 = q3 = -0.5f; |
|
q2 = q4 = 0.5f; |
|
return; |
|
|
|
case ROTATION_ROLL_90_YAW_270: |
|
q1 = q2 = -0.5f; |
|
q3 = q4 = 0.5f; |
|
return; |
|
|
|
case ROTATION_ROLL_90_PITCH_68_YAW_293: |
|
q1 = 0.26774500501681575137524760066299; |
|
q2 = 0.70698804688952421315661922562867; |
|
q3 = 0.012957683254962659713527273197542; |
|
q4 = -0.65445596665363614530264158020145; |
|
return; |
|
|
|
case ROTATION_PITCH_315: |
|
q1 = HALF_SQRT_2_PlUS_SQRT_2; |
|
q2 = q4 = 0; |
|
q3 = -HALF_SQRT_2_MINUS_SQTR_2; |
|
return; |
|
|
|
case ROTATION_ROLL_90_PITCH_315: |
|
q1 = HALF_SQRT_HALF_TIMES_TWO_PLUS_SQRT_TWO; |
|
q2 = HALF_SQRT_HALF_TIMES_TWO_PLUS_SQRT_TWO; |
|
q3 = -HALF_SQRT_HALF_TIMES_TWO_MINUS_SQRT_TWO; |
|
q4 = HALF_SQRT_HALF_TIMES_TWO_MINUS_SQRT_TWO; |
|
return; |
|
|
|
case ROTATION_PITCH_7: |
|
q1 = 0.99813479842186692003735970502021; |
|
q2 = q4 = 0; |
|
q3 = 0.061048539534856872956769535676358; |
|
return; |
|
|
|
case ROTATION_ROLL_45: |
|
q1 = HALF_SQRT_2_PlUS_SQRT_2; |
|
q2 = HALF_SQRT_2_MINUS_SQTR_2; |
|
q3 = q4 = 0.0; |
|
return; |
|
|
|
case ROTATION_ROLL_315: |
|
q1 = HALF_SQRT_2_PlUS_SQRT_2; |
|
q2 = -HALF_SQRT_2_MINUS_SQTR_2; |
|
q3 = q4 = 0.0; |
|
return; |
|
|
|
case ROTATION_CUSTOM: |
|
// Error; custom rotations not supported |
|
INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control); |
|
return; |
|
|
|
case ROTATION_MAX: |
|
break; |
|
} |
|
// rotation invalid |
|
INTERNAL_ERROR(AP_InternalError::error_t::bad_rotation); |
|
} |
|
|
|
// rotate this quaternion by the given rotation |
|
template <typename T> |
|
void QuaternionT<T>::rotate(enum Rotation rotation) |
|
{ |
|
// create quaternion from rotation matrix |
|
QuaternionT<T> q_from_rot; |
|
q_from_rot.from_rotation(rotation); |
|
|
|
// rotate this quaternion |
|
*this *= q_from_rot; |
|
} |
|
|
|
// convert a vector from earth to body frame |
|
template <typename T> |
|
void QuaternionT<T>::earth_to_body(Vector3<T> &v) const |
|
{ |
|
Matrix3<T> m; |
|
rotation_matrix(m); |
|
v = m * v; |
|
} |
|
|
|
// create a quaternion from Euler angles |
|
template <typename T> |
|
void QuaternionT<T>::from_euler(T roll, T pitch, T yaw) |
|
{ |
|
const T cr2 = cosF(roll*0.5); |
|
const T cp2 = cosF(pitch*0.5); |
|
const T cy2 = cosF(yaw*0.5); |
|
const T sr2 = sinF(roll*0.5); |
|
const T sp2 = sinF(pitch*0.5); |
|
const T sy2 = sinF(yaw*0.5); |
|
|
|
q1 = cr2*cp2*cy2 + sr2*sp2*sy2; |
|
q2 = sr2*cp2*cy2 - cr2*sp2*sy2; |
|
q3 = cr2*sp2*cy2 + sr2*cp2*sy2; |
|
q4 = cr2*cp2*sy2 - sr2*sp2*cy2; |
|
} |
|
template <typename T> |
|
void QuaternionT<T>::from_euler(const Vector3<T> &v) |
|
{ |
|
from_euler(v[0], v[1], v[2]); |
|
} |
|
|
|
// create a quaternion from Euler angles applied in yaw, roll, pitch order |
|
// instead of the normal yaw, pitch, roll order |
|
template <typename T> |
|
void QuaternionT<T>::from_vector312(T roll, T pitch, T yaw) |
|
{ |
|
Matrix3<T> m; |
|
m.from_euler312(roll, pitch, yaw); |
|
|
|
from_rotation_matrix(m); |
|
} |
|
|
|
// create a quaternion from its axis-angle representation |
|
template <typename T> |
|
void QuaternionT<T>::from_axis_angle(Vector3<T> v) |
|
{ |
|
const T theta = v.length(); |
|
if (::is_zero(theta)) { |
|
q1 = 1.0f; |
|
q2=q3=q4=0.0f; |
|
return; |
|
} |
|
v /= theta; |
|
from_axis_angle(v,theta); |
|
} |
|
|
|
// create a quaternion from its axis-angle representation |
|
// the axis vector must be length 1, theta is in radians |
|
template <typename T> |
|
void QuaternionT<T>::from_axis_angle(const Vector3<T> &axis, T theta) |
|
{ |
|
// axis must be a unit vector as there is no check for length |
|
if (::is_zero(theta)) { |
|
q1 = 1.0f; |
|
q2=q3=q4=0.0f; |
|
return; |
|
} |
|
const T st2 = sinF(0.5*theta); |
|
|
|
q1 = cosF(0.5*theta); |
|
q2 = axis.x * st2; |
|
q3 = axis.y * st2; |
|
q4 = axis.z * st2; |
|
} |
|
|
|
// rotate by the provided axis angle |
|
template <typename T> |
|
void QuaternionT<T>::rotate(const Vector3<T> &v) |
|
{ |
|
QuaternionT<T> r; |
|
r.from_axis_angle(v); |
|
(*this) *= r; |
|
} |
|
|
|
// convert this quaternion to a rotation vector where the direction of the vector represents |
|
// the axis of rotation and the length of the vector represents the angle of rotation |
|
template <typename T> |
|
void QuaternionT<T>::to_axis_angle(Vector3<T> &v) const |
|
{ |
|
const T l = sqrtF(sq(q2)+sq(q3)+sq(q4)); |
|
v = Vector3<T>(q2,q3,q4); |
|
if (!::is_zero(l)) { |
|
v /= l; |
|
v *= wrap_PI(2.0f * atan2F(l,q1)); |
|
} |
|
} |
|
|
|
// create a quaternion from its axis-angle representation |
|
// only use with small angles. I.e. length of v should less than 0.17 radians (i.e. 10 degrees) |
|
template <typename T> |
|
void QuaternionT<T>::from_axis_angle_fast(Vector3<T> v) |
|
{ |
|
const T theta = v.length(); |
|
if (::is_zero(theta)) { |
|
q1 = 1.0f; |
|
q2=q3=q4=0.0f; |
|
return; |
|
} |
|
v /= theta; |
|
from_axis_angle_fast(v,theta); |
|
} |
|
|
|
// create a quaternion from its axis-angle representation |
|
// theta should less than 0.17 radians (i.e. 10 degrees) |
|
template <typename T> |
|
void QuaternionT<T>::from_axis_angle_fast(const Vector3<T> &axis, T theta) |
|
{ |
|
const T t2 = 0.5*theta; |
|
const T sqt2 = sq(t2); |
|
const T st2 = t2-sqt2*t2/6.0f; |
|
|
|
q1 = 1.0f-(0.5*sqt2)+sq(sqt2)/24.0f; |
|
q2 = axis.x * st2; |
|
q3 = axis.y * st2; |
|
q4 = axis.z * st2; |
|
} |
|
|
|
// rotate by the provided axis angle |
|
// only use with small angles. I.e. length of v should less than 0.17 radians (i.e. 10 degrees) |
|
template <typename T> |
|
void QuaternionT<T>::rotate_fast(const Vector3<T> &v) |
|
{ |
|
const T theta = v.length(); |
|
if (::is_zero(theta)) { |
|
return; |
|
} |
|
const T t2 = 0.5*theta; |
|
const T sqt2 = sq(t2); |
|
T st2 = t2-sqt2*t2/6.0f; |
|
st2 /= theta; |
|
|
|
//"rotation quaternion" |
|
const T w2 = 1.0f-(0.5*sqt2)+sq(sqt2)/24.0f; |
|
const T x2 = v.x * st2; |
|
const T y2 = v.y * st2; |
|
const T z2 = v.z * st2; |
|
|
|
//copy our quaternion |
|
const T w1 = q1; |
|
const T x1 = q2; |
|
const T y1 = q3; |
|
const T z1 = q4; |
|
|
|
//do the multiply into our quaternion |
|
q1 = w1*w2 - x1*x2 - y1*y2 - z1*z2; |
|
q2 = w1*x2 + x1*w2 + y1*z2 - z1*y2; |
|
q3 = w1*y2 - x1*z2 + y1*w2 + z1*x2; |
|
q4 = w1*z2 + x1*y2 - y1*x2 + z1*w2; |
|
} |
|
|
|
// get euler roll angle |
|
template <typename T> |
|
T QuaternionT<T>::get_euler_roll() const |
|
{ |
|
return (atan2F(2.0f*(q1*q2 + q3*q4), 1.0f - 2.0f*(q2*q2 + q3*q3))); |
|
} |
|
|
|
// get euler pitch angle |
|
template <typename T> |
|
T QuaternionT<T>::get_euler_pitch() const |
|
{ |
|
return safe_asin(2.0f*(q1*q3 - q4*q2)); |
|
} |
|
|
|
// get euler yaw angle |
|
template <typename T> |
|
T QuaternionT<T>::get_euler_yaw() const |
|
{ |
|
return atan2F(2.0f*(q1*q4 + q2*q3), 1.0f - 2.0f*(q3*q3 + q4*q4)); |
|
} |
|
|
|
// create eulers from a quaternion |
|
template <typename T> |
|
void QuaternionT<T>::to_euler(double &roll, double &pitch, double &yaw) const |
|
{ |
|
roll = get_euler_roll(); |
|
pitch = get_euler_pitch(); |
|
yaw = get_euler_yaw(); |
|
} |
|
|
|
template <typename T> |
|
void QuaternionT<T>::to_euler(float &roll, float &pitch, float &yaw) const |
|
{ |
|
roll = get_euler_roll(); |
|
pitch = get_euler_pitch(); |
|
yaw = get_euler_yaw(); |
|
} |
|
|
|
// create eulers from a quaternion |
|
template <typename T> |
|
Vector3<T> QuaternionT<T>::to_vector312(void) const |
|
{ |
|
Matrix3<T> m; |
|
rotation_matrix(m); |
|
return m.to_euler312(); |
|
} |
|
|
|
template <typename T> |
|
T QuaternionT<T>::length(void) const |
|
{ |
|
return sqrtF(sq(q1) + sq(q2) + sq(q3) + sq(q4)); |
|
} |
|
|
|
// gets the length squared of the quaternion |
|
template <typename T> |
|
T QuaternionT<T>::length_squared() const |
|
{ |
|
return (T)(q1*q1 + q2*q2 + q3*q3 + q4*q4); |
|
} |
|
|
|
// return the reverse rotation of this quaternion |
|
template <typename T> |
|
QuaternionT<T> QuaternionT<T>::inverse(void) const |
|
{ |
|
return QuaternionT<T>(q1, -q2, -q3, -q4); |
|
} |
|
|
|
// reverse the rotation of this quaternion |
|
template <typename T> |
|
void QuaternionT<T>::invert() |
|
{ |
|
q2 = -q2; |
|
q3 = -q3; |
|
q4 = -q4; |
|
} |
|
|
|
template <typename T> |
|
void QuaternionT<T>::normalize(void) |
|
{ |
|
const T quatMag = length(); |
|
if (!::is_zero(quatMag)) { |
|
const T quatMagInv = 1.0f/quatMag; |
|
q1 *= quatMagInv; |
|
q2 *= quatMagInv; |
|
q3 *= quatMagInv; |
|
q4 *= quatMagInv; |
|
} else { |
|
// The code goes here if the quaternion is [0,0,0,0]. This shouldn't happen. |
|
INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control); |
|
} |
|
} |
|
|
|
// Checks if each element of the quaternion is zero |
|
template <typename T> |
|
bool QuaternionT<T>::is_zero(void) const { |
|
return ::is_zero(q1) && ::is_zero(q2) && ::is_zero(q3) && ::is_zero(q4); |
|
} |
|
|
|
// zeros the quaternion to [0, 0, 0, 0], an invalid quaternion |
|
// See initialize() if you want the zero rotation quaternion |
|
template <typename T> |
|
void QuaternionT<T>::zero(void) |
|
{ |
|
q1 = q2 = q3 = q4 = 0.0; |
|
} |
|
|
|
// Checks if the quaternion is unit_length within a tolerance |
|
// Returns True: if its magnitude is close to unit length +/- 1E-3 |
|
// This limit is somewhat greater than sqrt(FLT_EPSL) |
|
template <typename T> |
|
bool QuaternionT<T>::is_unit_length(void) const |
|
{ |
|
if (fabsF(length_squared() - 1) < 1E-3) { |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
template <typename T> |
|
QuaternionT<T> QuaternionT<T>::operator*(const QuaternionT<T> &v) const |
|
{ |
|
QuaternionT<T> ret; |
|
const T &w1 = q1; |
|
const T &x1 = q2; |
|
const T &y1 = q3; |
|
const T &z1 = q4; |
|
|
|
const T w2 = v.q1; |
|
const T x2 = v.q2; |
|
const T y2 = v.q3; |
|
const T z2 = v.q4; |
|
|
|
ret.q1 = w1*w2 - x1*x2 - y1*y2 - z1*z2; |
|
ret.q2 = w1*x2 + x1*w2 + y1*z2 - z1*y2; |
|
ret.q3 = w1*y2 - x1*z2 + y1*w2 + z1*x2; |
|
ret.q4 = w1*z2 + x1*y2 - y1*x2 + z1*w2; |
|
|
|
return ret; |
|
} |
|
|
|
// Optimized quaternion rotation operator, equivalent to converting |
|
// (*this) to a rotation matrix then multiplying it to the argument `v`. |
|
// |
|
// 15 multiplies and 15 add / subtracts. Caches 3 floats |
|
template <typename T> |
|
Vector3<T> QuaternionT<T>::operator*(const Vector3<T> &v) const |
|
{ |
|
// This uses the formula |
|
// |
|
// v2 = v1 + 2 q1 * qv x v1 + 2 qv x qv x v1 |
|
// |
|
// where "x" is the cross product (explicitly inlined for performance below), |
|
// "q1" is the scalar part and "qv" is the vector part of this quaternion |
|
|
|
Vector3<T> ret = v; |
|
|
|
// Compute and cache "qv x v1" |
|
T uv[] = {q3 * v.z - q4 * v.y, q4 * v.x - q2 * v.z, q2 * v.y - q3 * v.x}; |
|
|
|
uv[0] += uv[0]; |
|
uv[1] += uv[1]; |
|
uv[2] += uv[2]; |
|
ret.x += q1 * uv[0] + q3 * uv[2] - q4 * uv[1]; |
|
ret.y += q1 * uv[1] + q4 * uv[0] - q2 * uv[2]; |
|
ret.z += q1 * uv[2] + q2 * uv[1] - q3 * uv[0]; |
|
return ret; |
|
} |
|
|
|
template <typename T> |
|
QuaternionT<T> &QuaternionT<T>::operator*=(const QuaternionT<T> &v) |
|
{ |
|
const T w1 = q1; |
|
const T x1 = q2; |
|
const T y1 = q3; |
|
const T z1 = q4; |
|
|
|
const T w2 = v.q1; |
|
const T x2 = v.q2; |
|
const T y2 = v.q3; |
|
const T z2 = v.q4; |
|
|
|
q1 = w1*w2 - x1*x2 - y1*y2 - z1*z2; |
|
q2 = w1*x2 + x1*w2 + y1*z2 - z1*y2; |
|
q3 = w1*y2 - x1*z2 + y1*w2 + z1*x2; |
|
q4 = w1*z2 + x1*y2 - y1*x2 + z1*w2; |
|
|
|
return *this; |
|
} |
|
|
|
template <typename T> |
|
QuaternionT<T> QuaternionT<T>::operator/(const QuaternionT<T> &v) const |
|
{ |
|
QuaternionT<T> ret; |
|
const T &quat0 = q1; |
|
const T &quat1 = q2; |
|
const T &quat2 = q3; |
|
const T &quat3 = q4; |
|
|
|
if (is_zero()) { |
|
// The code goes here if the quaternion is [0,0,0,0]. This shouldn't happen. |
|
INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control); |
|
} |
|
|
|
const T rquat0 = v.q1; |
|
const T rquat1 = v.q2; |
|
const T rquat2 = v.q3; |
|
const T rquat3 = v.q4; |
|
|
|
ret.q1 = (rquat0*quat0 + rquat1*quat1 + rquat2*quat2 + rquat3*quat3); |
|
ret.q2 = (rquat0*quat1 - rquat1*quat0 - rquat2*quat3 + rquat3*quat2); |
|
ret.q3 = (rquat0*quat2 + rquat1*quat3 - rquat2*quat0 - rquat3*quat1); |
|
ret.q4 = (rquat0*quat3 - rquat1*quat2 + rquat2*quat1 - rquat3*quat0); |
|
return ret; |
|
} |
|
|
|
// angular difference in radians between quaternions |
|
template <typename T> |
|
QuaternionT<T> QuaternionT<T>::angular_difference(const QuaternionT<T> &v) const |
|
{ |
|
return v.inverse() * *this; |
|
} |
|
|
|
// absolute (e.g. always positive) earth-frame roll-pitch difference (in radians) between this Quaternion and another |
|
template <typename T> |
|
T QuaternionT<T>::roll_pitch_difference(const QuaternionT<T> &v) const |
|
{ |
|
// convert Quaternions to rotation matrices |
|
Matrix3<T> m, vm; |
|
rotation_matrix(m); |
|
v.rotation_matrix(vm); |
|
|
|
// rotate earth frame vertical vector by each rotation matrix |
|
const Vector3<T> z_unit_vec{0,0,1}; |
|
const Vector3<T> z_unit_m = m.mul_transpose(z_unit_vec); |
|
const Vector3<T> z_unit_vm = vm.mul_transpose(z_unit_vec); |
|
const Vector3<T> vec_diff = z_unit_vm - z_unit_m; |
|
const T vec_len_div2 = constrain_float(vec_diff.length() * 0.5, 0.0, 1.0); |
|
|
|
// calculate and return angular difference |
|
return (2.0 * asinF(vec_len_div2)); |
|
} |
|
|
|
// define for float and double |
|
template class QuaternionT<float>; |
|
template class QuaternionT<double>;
|
|
|