You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
500 lines
24 KiB
500 lines
24 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
#include <AP_HAL/AP_HAL.h> |
|
|
|
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_150 |
|
|
|
#include "AP_NavEKF2.h" |
|
#include "AP_NavEKF2_core.h" |
|
#include <AP_AHRS/AP_AHRS.h> |
|
#include <AP_Vehicle/AP_Vehicle.h> |
|
|
|
#include <stdio.h> |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
/******************************************************** |
|
* RESET FUNCTIONS * |
|
********************************************************/ |
|
|
|
// Reset velocity states to last GPS measurement if available or to zero if in constant position mode or if PV aiding is not absolute |
|
// Do not reset vertical velocity using GPS as there is baro alt available to constrain drift |
|
void NavEKF2_core::ResetVelocity(void) |
|
{ |
|
if (PV_AidingMode != AID_ABSOLUTE) { |
|
stateStruct.velocity.zero(); |
|
} else if (!gpsNotAvailable) { |
|
// reset horizontal velocity states, applying an offset to the GPS velocity to prevent the GPS position being rejected when the GPS position offset is being decayed to zero. |
|
stateStruct.velocity.x = gpsDataNew.vel.x + gpsVelGlitchOffset.x; // north velocity from blended accel data |
|
stateStruct.velocity.y = gpsDataNew.vel.y + gpsVelGlitchOffset.y; // east velocity from blended accel data |
|
} |
|
for (uint8_t i=0; i<IMU_BUFFER_LENGTH; i++) { |
|
storedOutput[i].velocity.x = stateStruct.velocity.x; |
|
storedOutput[i].velocity.y = stateStruct.velocity.y; |
|
} |
|
outputDataNew.velocity.x = stateStruct.velocity.x; |
|
outputDataNew.velocity.y = stateStruct.velocity.y; |
|
outputDataDelayed.velocity.x = stateStruct.velocity.x; |
|
outputDataDelayed.velocity.y = stateStruct.velocity.y; |
|
} |
|
|
|
// resets position states to last GPS measurement or to zero if in constant position mode |
|
void NavEKF2_core::ResetPosition(void) |
|
{ |
|
if (PV_AidingMode != AID_ABSOLUTE) { |
|
// reset all position state history to the last known position |
|
stateStruct.position.x = lastKnownPositionNE.x; |
|
stateStruct.position.y = lastKnownPositionNE.y; |
|
} else if (!gpsNotAvailable) { |
|
// write to state vector and compensate for offset between last GPs measurement and the EKF time horizon |
|
stateStruct.position.x = gpsDataNew.pos.x + gpsPosGlitchOffsetNE.x + 0.001f*gpsDataNew.vel.x*(float(imuDataDelayed.time_ms) - float(lastTimeGpsReceived_ms)); |
|
stateStruct.position.y = gpsDataNew.pos.y + gpsPosGlitchOffsetNE.y + 0.001f*gpsDataNew.vel.y*(float(imuDataDelayed.time_ms) - float(lastTimeGpsReceived_ms)); |
|
} |
|
for (uint8_t i=0; i<IMU_BUFFER_LENGTH; i++) { |
|
storedOutput[i].position.x = stateStruct.position.x; |
|
storedOutput[i].position.y = stateStruct.position.y; |
|
} |
|
outputDataNew.position.x = stateStruct.position.x; |
|
outputDataNew.position.y = stateStruct.position.y; |
|
outputDataDelayed.position.x = stateStruct.position.x; |
|
outputDataDelayed.position.y = stateStruct.position.y; |
|
} |
|
|
|
// reset the vertical position state using the last height measurement |
|
void NavEKF2_core::ResetHeight(void) |
|
{ |
|
// read the altimeter |
|
readHgtData(); |
|
// write to the state vector |
|
stateStruct.position.z = -baroDataNew.hgt; // down position from blended accel data |
|
terrainState = stateStruct.position.z + rngOnGnd; |
|
for (uint8_t i=0; i<IMU_BUFFER_LENGTH; i++) { |
|
storedOutput[i].position.z = stateStruct.position.z; |
|
} |
|
outputDataNew.position.z = stateStruct.position.z; |
|
outputDataDelayed.position.z = stateStruct.position.z; |
|
} |
|
|
|
// Reset the baro so that it reads zero at the current height |
|
// Reset the EKF height to zero |
|
// Adjust the EKf origin height so that the EKF height + origin height is the same as before |
|
// Return true if the height datum reset has been performed |
|
// If using a range finder for height do not reset and return false |
|
bool NavEKF2_core::resetHeightDatum(void) |
|
{ |
|
// if we are using a range finder for height, return false |
|
if (frontend._altSource == 1) { |
|
return false; |
|
} |
|
// record the old height estimate |
|
float oldHgt = -stateStruct.position.z; |
|
// reset the barometer so that it reads zero at the current height |
|
_baro.update_calibration(); |
|
// reset the height state |
|
stateStruct.position.z = 0.0f; |
|
// adjust the height of the EKF origin so that the origin plus baro height before and afer the reset is the same |
|
if (validOrigin) { |
|
EKF_origin.alt += oldHgt*100; |
|
} |
|
return true; |
|
} |
|
|
|
/******************************************************** |
|
* FUSE MEASURED_DATA * |
|
********************************************************/ |
|
// select fusion of velocity, position and height measurements |
|
void NavEKF2_core::SelectVelPosFusion() |
|
{ |
|
// Check if the magnetometer has been fused on that time step and the filter is running at faster than 200 Hz |
|
// If so, don't fuse measurements on this time step to reduce frame over-runs |
|
// Only allow one time slip to prevent high rate magnetometer data preventing fusion of other measurements |
|
if (magFusePerformed && dtIMUavg < 0.005f && !posVelFusionDelayed) { |
|
posVelFusionDelayed = true; |
|
return; |
|
} else { |
|
posVelFusionDelayed = false; |
|
} |
|
|
|
// check for and read new GPS data |
|
readGpsData(); |
|
|
|
// Determine if we need to fuse position and velocity data on this time step |
|
if (RecallGPS() && PV_AidingMode != AID_RELATIVE) { |
|
// Don't fuse velocity data if GPS doesn't support it |
|
// If no aiding is avaialble, then we use zeroed GPS position and elocity data to constrain |
|
// tilt errors assuming that the vehicle is not accelerating |
|
if (frontend._fusionModeGPS <= 1 || PV_AidingMode == AID_NONE) { |
|
fuseVelData = true; |
|
} else { |
|
fuseVelData = false; |
|
} |
|
fusePosData = true; |
|
} else { |
|
fuseVelData = false; |
|
fusePosData = false; |
|
} |
|
|
|
// check for and read new height data |
|
readHgtData(); |
|
|
|
// If we haven't received height data for a while, then declare the height data as being timed out |
|
// set timeout period based on whether we have vertical GPS velocity available to constrain drift |
|
hgtRetryTime_ms = (useGpsVertVel && !velTimeout) ? frontend.hgtRetryTimeMode0_ms : frontend.hgtRetryTimeMode12_ms; |
|
if (imuSampleTime_ms - lastHgtReceived_ms > hgtRetryTime_ms) { |
|
hgtTimeout = true; |
|
} |
|
|
|
// command fusion of height data |
|
// wait until the EKF time horizon catches up with the measurement |
|
if (RecallBaro()) { |
|
// enable fusion |
|
fuseHgtData = true; |
|
} |
|
|
|
// perform fusion |
|
if (fuseVelData || fusePosData || fuseHgtData) { |
|
// ensure that the covariance prediction is up to date before fusing data |
|
if (!covPredStep) CovariancePrediction(); |
|
FuseVelPosNED(); |
|
} |
|
} |
|
|
|
// fuse selected position, velocity and height measurements |
|
void NavEKF2_core::FuseVelPosNED() |
|
{ |
|
// start performance timer |
|
hal.util->perf_begin(_perf_FuseVelPosNED); |
|
|
|
// health is set bad until test passed |
|
velHealth = false; |
|
posHealth = false; |
|
hgtHealth = false; |
|
|
|
// declare variables used to check measurement errors |
|
Vector3f velInnov; |
|
|
|
// declare variables used to control access to arrays |
|
bool fuseData[6] = {false,false,false,false,false,false}; |
|
uint8_t stateIndex; |
|
uint8_t obsIndex; |
|
|
|
// declare variables used by state and covariance update calculations |
|
float posErr; |
|
Vector6 R_OBS; // Measurement variances used for fusion |
|
Vector6 R_OBS_DATA_CHECKS; // Measurement variances used for data checks only |
|
Vector6 observation; |
|
float SK; |
|
|
|
// perform sequential fusion of GPS measurements. This assumes that the |
|
// errors in the different velocity and position components are |
|
// uncorrelated which is not true, however in the absence of covariance |
|
// data from the GPS receiver it is the only assumption we can make |
|
// so we might as well take advantage of the computational efficiencies |
|
// associated with sequential fusion |
|
if (fuseVelData || fusePosData || fuseHgtData) { |
|
|
|
// set the GPS data timeout depending on whether airspeed data is present |
|
uint32_t gpsRetryTime; |
|
if (useAirspeed()) gpsRetryTime = frontend.gpsRetryTimeUseTAS_ms; |
|
else gpsRetryTime = frontend.gpsRetryTimeNoTAS_ms; |
|
|
|
// form the observation vector and zero velocity and horizontal position observations if in constant position mode |
|
// If in constant velocity mode, hold the last known horizontal velocity vector |
|
if (PV_AidingMode == AID_ABSOLUTE) { |
|
observation[0] = gpsDataDelayed.vel.x + gpsVelGlitchOffset.x; |
|
observation[1] = gpsDataDelayed.vel.y + gpsVelGlitchOffset.y; |
|
observation[2] = gpsDataDelayed.vel.z; |
|
observation[3] = gpsDataDelayed.pos.x + gpsPosGlitchOffsetNE.x; |
|
observation[4] = gpsDataDelayed.pos.y + gpsPosGlitchOffsetNE.y; |
|
} else if (PV_AidingMode == AID_NONE) { |
|
for (uint8_t i=0; i<=4; i++) observation[i] = 0.0f; |
|
} |
|
observation[5] = -baroDataDelayed.hgt; |
|
|
|
// calculate additional error in GPS position caused by manoeuvring |
|
posErr = frontend.gpsPosVarAccScale * accNavMag; |
|
|
|
// estimate the GPS Velocity, GPS horiz position and height measurement variances. |
|
// if the GPS is able to report a speed error, we use it to adjust the observation noise for GPS velocity |
|
// otherwise we scale it using manoeuvre acceleration |
|
if (gpsSpdAccuracy > 0.0f) { |
|
// use GPS receivers reported speed accuracy - floor at value set by gps noise parameter |
|
R_OBS[0] = sq(constrain_float(gpsSpdAccuracy, frontend._gpsHorizVelNoise, 50.0f)); |
|
R_OBS[2] = sq(constrain_float(gpsSpdAccuracy, frontend._gpsVertVelNoise, 50.0f)); |
|
} else { |
|
// calculate additional error in GPS velocity caused by manoeuvring |
|
R_OBS[0] = sq(constrain_float(frontend._gpsHorizVelNoise, 0.05f, 5.0f)) + sq(frontend.gpsNEVelVarAccScale * accNavMag); |
|
R_OBS[2] = sq(constrain_float(frontend._gpsVertVelNoise, 0.05f, 5.0f)) + sq(frontend.gpsDVelVarAccScale * accNavMag); |
|
} |
|
R_OBS[1] = R_OBS[0]; |
|
R_OBS[3] = sq(constrain_float(frontend._gpsHorizPosNoise, 0.1f, 10.0f)) + sq(posErr); |
|
R_OBS[4] = R_OBS[3]; |
|
R_OBS[5] = sq(constrain_float(frontend._baroAltNoise, 0.1f, 10.0f)); |
|
|
|
// reduce weighting (increase observation noise) on baro if we are likely to be in ground effect |
|
if (getTakeoffExpected() || getTouchdownExpected()) { |
|
R_OBS[5] *= frontend.gndEffectBaroScaler; |
|
} |
|
|
|
// For data integrity checks we use the same measurement variances as used to calculate the Kalman gains for all measurements except GPS horizontal velocity |
|
// For horizontal GPs velocity we don't want the acceptance radius to increase with reported GPS accuracy so we use a value based on best GPs perfomrance |
|
// plus a margin for manoeuvres. It is better to reject GPS horizontal velocity errors early |
|
for (uint8_t i=0; i<=1; i++) R_OBS_DATA_CHECKS[i] = sq(constrain_float(frontend._gpsHorizVelNoise, 0.05f, 5.0f)) + sq(frontend.gpsNEVelVarAccScale * accNavMag); |
|
for (uint8_t i=2; i<=5; i++) R_OBS_DATA_CHECKS[i] = R_OBS[i]; |
|
|
|
|
|
// if vertical GPS velocity data is being used, check to see if the GPS vertical velocity and barometer |
|
// innovations have the same sign and are outside limits. If so, then it is likely aliasing is affecting |
|
// the accelerometers and we should disable the GPS and barometer innovation consistency checks. |
|
if (useGpsVertVel && fuseVelData && (imuSampleTime_ms - lastHgtReceived_ms) < (2 * frontend.hgtAvg_ms)) { |
|
// calculate innovations for height and vertical GPS vel measurements |
|
float hgtErr = stateStruct.position.z - observation[5]; |
|
float velDErr = stateStruct.velocity.z - observation[2]; |
|
// check if they are the same sign and both more than 3-sigma out of bounds |
|
if ((hgtErr*velDErr > 0.0f) && (sq(hgtErr) > 9.0f * (P[8][8] + R_OBS_DATA_CHECKS[5])) && (sq(velDErr) > 9.0f * (P[5][5] + R_OBS_DATA_CHECKS[2]))) { |
|
badIMUdata = true; |
|
} else { |
|
badIMUdata = false; |
|
} |
|
} |
|
|
|
// calculate innovations and check GPS data validity using an innovation consistency check |
|
// test position measurements |
|
if (fusePosData) { |
|
// test horizontal position measurements |
|
innovVelPos[3] = stateStruct.position.x - observation[3]; |
|
innovVelPos[4] = stateStruct.position.y - observation[4]; |
|
varInnovVelPos[3] = P[6][6] + R_OBS_DATA_CHECKS[3]; |
|
varInnovVelPos[4] = P[7][7] + R_OBS_DATA_CHECKS[4]; |
|
// apply an innovation consistency threshold test, but don't fail if bad IMU data |
|
float maxPosInnov2 = sq(frontend._gpsPosInnovGate)*(varInnovVelPos[3] + varInnovVelPos[4]); |
|
posTestRatio = (sq(innovVelPos[3]) + sq(innovVelPos[4])) / maxPosInnov2; |
|
posHealth = ((posTestRatio < 1.0f) || badIMUdata); |
|
// declare a timeout condition if we have been too long without data or not aiding |
|
posTimeout = (((imuSampleTime_ms - lastPosPassTime_ms) > gpsRetryTime) || PV_AidingMode == AID_NONE); |
|
// use position data if healthy, timed out, or in constant position mode |
|
if (posHealth || posTimeout || (PV_AidingMode == AID_NONE)) { |
|
posHealth = true; |
|
// only reset the failed time and do glitch timeout checks if we are doing full aiding |
|
if (PV_AidingMode == AID_ABSOLUTE) { |
|
lastPosPassTime_ms = imuSampleTime_ms; |
|
// if timed out or outside the specified uncertainty radius, increment the offset applied to GPS data to compensate for large GPS position jumps |
|
if (posTimeout || ((varInnovVelPos[3] + varInnovVelPos[4]) > sq(float(frontend._gpsGlitchRadiusMax)))) { |
|
gpsPosGlitchOffsetNE.x += innovVelPos[3]; |
|
gpsPosGlitchOffsetNE.y += innovVelPos[4]; |
|
// limit the radius of the offset and decay the offset to zero radially |
|
decayGpsOffset(); |
|
// reset the position to the current GPS position which will include the glitch correction offset |
|
ResetPosition(); |
|
// reset the velocity to the GPS velocity |
|
ResetVelocity(); |
|
// don't fuse data on this time step |
|
fusePosData = false; |
|
// Reset the normalised innovation to avoid false failing the bad position fusion test |
|
posTestRatio = 0.0f; |
|
velTestRatio = 0.0f; |
|
} |
|
} |
|
} else { |
|
posHealth = false; |
|
} |
|
} |
|
|
|
// test velocity measurements |
|
if (fuseVelData) { |
|
// test velocity measurements |
|
uint8_t imax = 2; |
|
if (frontend._fusionModeGPS == 1) { |
|
imax = 1; |
|
} |
|
float innovVelSumSq = 0; // sum of squares of velocity innovations |
|
float varVelSum = 0; // sum of velocity innovation variances |
|
for (uint8_t i = 0; i<=imax; i++) { |
|
// velocity states start at index 3 |
|
stateIndex = i + 3; |
|
// calculate innovations using blended and single IMU predicted states |
|
velInnov[i] = stateStruct.velocity[i] - observation[i]; // blended |
|
// calculate innovation variance |
|
varInnovVelPos[i] = P[stateIndex][stateIndex] + R_OBS_DATA_CHECKS[i]; |
|
// sum the innovation and innovation variances |
|
innovVelSumSq += sq(velInnov[i]); |
|
varVelSum += varInnovVelPos[i]; |
|
} |
|
// apply an innovation consistency threshold test, but don't fail if bad IMU data |
|
// calculate the test ratio |
|
velTestRatio = innovVelSumSq / (varVelSum * sq(frontend._gpsVelInnovGate)); |
|
// fail if the ratio is greater than 1 |
|
velHealth = ((velTestRatio < 1.0f) || badIMUdata); |
|
// declare a timeout if we have not fused velocity data for too long or not aiding |
|
velTimeout = (((imuSampleTime_ms - lastVelPassTime_ms) > gpsRetryTime) || PV_AidingMode == AID_NONE); |
|
// if data is healthy or in constant velocity mode we fuse it |
|
if (velHealth || velTimeout) { |
|
velHealth = true; |
|
// restart the timeout count |
|
lastVelPassTime_ms = imuSampleTime_ms; |
|
} else if (velTimeout && !posHealth && PV_AidingMode == AID_ABSOLUTE) { |
|
// if data is not healthy and timed out and position is unhealthy and we are using aiding, we reset the velocity, but do not fuse data on this time step |
|
ResetVelocity(); |
|
fuseVelData = false; |
|
// Reset the normalised innovation to avoid false failing the bad position fusion test |
|
velTestRatio = 0.0f; |
|
} else { |
|
// if data is unhealthy and position is healthy, we do not fuse it |
|
velHealth = false; |
|
} |
|
} |
|
|
|
// test height measurements |
|
if (fuseHgtData) { |
|
// calculate height innovations |
|
innovVelPos[5] = stateStruct.position.z - observation[5]; |
|
|
|
varInnovVelPos[5] = P[8][8] + R_OBS_DATA_CHECKS[5]; |
|
// calculate the innovation consistency test ratio |
|
hgtTestRatio = sq(innovVelPos[5]) / (sq(frontend._hgtInnovGate) * varInnovVelPos[5]); |
|
// fail if the ratio is > 1, but don't fail if bad IMU data |
|
hgtHealth = ((hgtTestRatio < 1.0f) || badIMUdata); |
|
hgtTimeout = (imuSampleTime_ms - lastHgtPassTime_ms) > hgtRetryTime_ms; |
|
// Fuse height data if healthy or timed out or in constant position mode |
|
if (hgtHealth || hgtTimeout || (PV_AidingMode == AID_NONE)) { |
|
hgtHealth = true; |
|
lastHgtPassTime_ms = imuSampleTime_ms; |
|
// if timed out, reset the height, but do not fuse data on this time step |
|
if (hgtTimeout) { |
|
ResetHeight(); |
|
fuseHgtData = false; |
|
} |
|
} |
|
else { |
|
hgtHealth = false; |
|
} |
|
} |
|
|
|
// set range for sequential fusion of velocity and position measurements depending on which data is available and its health |
|
if (fuseVelData && velHealth) { |
|
fuseData[0] = true; |
|
fuseData[1] = true; |
|
if (useGpsVertVel) { |
|
fuseData[2] = true; |
|
} |
|
tiltErrVec.zero(); |
|
} |
|
if (fusePosData && posHealth) { |
|
fuseData[3] = true; |
|
fuseData[4] = true; |
|
tiltErrVec.zero(); |
|
} |
|
if (fuseHgtData && hgtHealth) { |
|
fuseData[5] = true; |
|
} |
|
|
|
// fuse measurements sequentially |
|
for (obsIndex=0; obsIndex<=5; obsIndex++) { |
|
if (fuseData[obsIndex]) { |
|
stateIndex = 3 + obsIndex; |
|
// calculate the measurement innovation, using states from a different time coordinate if fusing height data |
|
// adjust scaling on GPS measurement noise variances if not enough satellites |
|
if (obsIndex <= 2) |
|
{ |
|
innovVelPos[obsIndex] = stateStruct.velocity[obsIndex] - observation[obsIndex]; |
|
R_OBS[obsIndex] *= sq(gpsNoiseScaler); |
|
} |
|
else if (obsIndex == 3 || obsIndex == 4) { |
|
innovVelPos[obsIndex] = stateStruct.position[obsIndex-3] - observation[obsIndex]; |
|
R_OBS[obsIndex] *= sq(gpsNoiseScaler); |
|
} else { |
|
innovVelPos[obsIndex] = stateStruct.position[obsIndex-3] - observation[obsIndex]; |
|
if (obsIndex == 5) { |
|
const float gndMaxBaroErr = 4.0f; |
|
const float gndBaroInnovFloor = -0.5f; |
|
|
|
if(getTouchdownExpected()) { |
|
// when a touchdown is expected, floor the barometer innovation at gndBaroInnovFloor |
|
// constrain the correction between 0 and gndBaroInnovFloor+gndMaxBaroErr |
|
// this function looks like this: |
|
// |/ |
|
//---------|--------- |
|
// ____/| |
|
// / | |
|
// / | |
|
innovVelPos[5] += constrain_float(-innovVelPos[5]+gndBaroInnovFloor, 0.0f, gndBaroInnovFloor+gndMaxBaroErr); |
|
} |
|
} |
|
} |
|
|
|
// calculate the Kalman gain and calculate innovation variances |
|
varInnovVelPos[obsIndex] = P[stateIndex][stateIndex] + R_OBS[obsIndex]; |
|
SK = 1.0f/varInnovVelPos[obsIndex]; |
|
for (uint8_t i= 0; i<=15; i++) { |
|
Kfusion[i] = P[i][stateIndex]*SK; |
|
} |
|
|
|
// inhibit magnetic field state estimation by setting Kalman gains to zero |
|
if (!inhibitMagStates) { |
|
for (uint8_t i = 16; i<=21; i++) { |
|
Kfusion[i] = P[i][stateIndex]*SK; |
|
} |
|
} else { |
|
for (uint8_t i = 16; i<=21; i++) { |
|
Kfusion[i] = 0.0f; |
|
} |
|
} |
|
|
|
// inhibit wind state estimation by setting Kalman gains to zero |
|
if (!inhibitWindStates) { |
|
Kfusion[22] = P[22][stateIndex]*SK; |
|
Kfusion[23] = P[23][stateIndex]*SK; |
|
} else { |
|
Kfusion[22] = 0.0f; |
|
Kfusion[23] = 0.0f; |
|
} |
|
|
|
// zero the attitude error state - by definition it is assumed to be zero before each observaton fusion |
|
stateStruct.angErr.zero(); |
|
|
|
// calculate state corrections and re-normalise the quaternions for states predicted using the blended IMU data |
|
// Don't apply corrections to Z bias state as this has been done already as part of the single IMU calculations |
|
for (uint8_t i = 0; i<=stateIndexLim; i++) { |
|
statesArray[i] = statesArray[i] - Kfusion[i] * innovVelPos[obsIndex]; |
|
} |
|
|
|
// the first 3 states represent the angular misalignment vector. This is |
|
// is used to correct the estimated quaternion |
|
stateStruct.quat.rotate(stateStruct.angErr); |
|
|
|
// sum the attitude error from velocity and position fusion only |
|
// used as a metric for convergence monitoring |
|
if (obsIndex != 5) { |
|
tiltErrVec += stateStruct.angErr; |
|
} |
|
|
|
// update the covariance - take advantage of direct observation of a single state at index = stateIndex to reduce computations |
|
// this is a numerically optimised implementation of standard equation P = (I - K*H)*P; |
|
for (uint8_t i= 0; i<=stateIndexLim; i++) { |
|
for (uint8_t j= 0; j<=stateIndexLim; j++) |
|
{ |
|
KHP[i][j] = Kfusion[i] * P[stateIndex][j]; |
|
} |
|
} |
|
for (uint8_t i= 0; i<=stateIndexLim; i++) { |
|
for (uint8_t j= 0; j<=stateIndexLim; j++) { |
|
P[i][j] = P[i][j] - KHP[i][j]; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
// force the covariance matrix to be symmetrical and limit the variances to prevent ill-condiioning. |
|
ForceSymmetry(); |
|
ConstrainVariances(); |
|
|
|
// stop performance timer |
|
hal.util->perf_end(_perf_FuseVelPosNED); |
|
} |
|
|
|
/******************************************************** |
|
* MISC FUNCTIONS * |
|
********************************************************/ |
|
|
|
#endif // HAL_CPU_CLASS
|
|
|