You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
663 lines
20 KiB
663 lines
20 KiB
#include "Copter.h" |
|
#include <AP_BLHeli/AP_BLHeli.h> |
|
|
|
/***************************************************************************** |
|
* The init_ardupilot function processes everything we need for an in - air restart |
|
* We will determine later if we are actually on the ground and process a |
|
* ground start in that case. |
|
* |
|
*****************************************************************************/ |
|
|
|
static void mavlink_delay_cb_static() |
|
{ |
|
copter.mavlink_delay_cb(); |
|
} |
|
|
|
|
|
static void failsafe_check_static() |
|
{ |
|
copter.failsafe_check(); |
|
} |
|
|
|
void Copter::init_ardupilot() |
|
{ |
|
// initialise serial port |
|
serial_manager.init_console(); |
|
|
|
hal.console->printf("\n\nInit %s" |
|
"\n\nFree RAM: %u\n", |
|
AP::fwversion().fw_string, |
|
(unsigned)hal.util->available_memory()); |
|
|
|
// |
|
// Report firmware version code expect on console (check of actual EEPROM format version is done in load_parameters function) |
|
// |
|
report_version(); |
|
|
|
// load parameters from EEPROM |
|
load_parameters(); |
|
|
|
// time per loop - this gets updated in the main loop() based on |
|
// actual loop rate |
|
G_Dt = 1.0 / scheduler.get_loop_rate_hz(); |
|
|
|
#if STATS_ENABLED == ENABLED |
|
// initialise stats module |
|
g2.stats.init(); |
|
#endif |
|
|
|
// identify ourselves correctly with the ground station |
|
mavlink_system.sysid = g.sysid_this_mav; |
|
|
|
// initialise serial ports |
|
serial_manager.init(); |
|
|
|
// setup first port early to allow BoardConfig to report errors |
|
gcs().setup_console(); |
|
|
|
// Register mavlink_delay_cb, which will run anytime you have |
|
// more than 5ms remaining in your call to hal.scheduler->delay |
|
hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5); |
|
|
|
BoardConfig.init(); |
|
#if HAL_WITH_UAVCAN |
|
BoardConfig_CAN.init(); |
|
#endif |
|
|
|
// init cargo gripper |
|
#if GRIPPER_ENABLED == ENABLED |
|
g2.gripper.init(); |
|
#endif |
|
|
|
#if AC_FENCE == ENABLED |
|
fence.init(); |
|
#endif |
|
|
|
// init winch and wheel encoder |
|
winch_init(); |
|
|
|
// initialise notify system |
|
notify.init(); |
|
notify_flight_mode(); |
|
|
|
// initialise battery monitor |
|
battery.init(); |
|
|
|
// Init RSSI |
|
rssi.init(); |
|
|
|
barometer.init(); |
|
|
|
// setup telem slots with serial ports |
|
gcs().setup_uarts(); |
|
|
|
#if OSD_ENABLED == ENABLED |
|
osd.init(); |
|
#endif |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
log_init(); |
|
#endif |
|
|
|
// update motor interlock state |
|
update_using_interlock(); |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
// trad heli specific initialisation |
|
heli_init(); |
|
#endif |
|
#if FRAME_CONFIG == HELI_FRAME |
|
input_manager.set_loop_rate(scheduler.get_loop_rate_hz()); |
|
#endif |
|
|
|
init_rc_in(); // sets up rc channels from radio |
|
|
|
// allocate the motors class |
|
allocate_motors(); |
|
|
|
// initialise rc channels including setting mode |
|
rc().init(); |
|
|
|
// sets up motors and output to escs |
|
init_rc_out(); |
|
|
|
// check if we should enter esc calibration mode |
|
esc_calibration_startup_check(); |
|
|
|
// motors initialised so parameters can be sent |
|
ap.initialised_params = true; |
|
|
|
relay.init(); |
|
|
|
/* |
|
* setup the 'main loop is dead' check. Note that this relies on |
|
* the RC library being initialised. |
|
*/ |
|
hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000); |
|
|
|
// Do GPS init |
|
gps.set_log_gps_bit(MASK_LOG_GPS); |
|
gps.init(serial_manager); |
|
|
|
AP::compass().set_log_bit(MASK_LOG_COMPASS); |
|
AP::compass().init(); |
|
|
|
#if OPTFLOW == ENABLED |
|
// make optflow available to AHRS |
|
ahrs.set_optflow(&optflow); |
|
#endif |
|
|
|
// init Location class |
|
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN |
|
Location::set_terrain(&terrain); |
|
wp_nav->set_terrain(&terrain); |
|
#endif |
|
|
|
#if AC_OAPATHPLANNER_ENABLED == ENABLED |
|
g2.oa.init(); |
|
#endif |
|
|
|
attitude_control->parameter_sanity_check(); |
|
pos_control->set_dt(scheduler.get_loop_period_s()); |
|
|
|
// init the optical flow sensor |
|
init_optflow(); |
|
|
|
#if MOUNT == ENABLED |
|
// initialise camera mount |
|
camera_mount.init(); |
|
#endif |
|
|
|
#if PRECISION_LANDING == ENABLED |
|
// initialise precision landing |
|
init_precland(); |
|
#endif |
|
|
|
// initialise landing gear position |
|
landinggear.init(); |
|
|
|
#ifdef USERHOOK_INIT |
|
USERHOOK_INIT |
|
#endif |
|
|
|
#if HIL_MODE != HIL_MODE_DISABLED |
|
while (barometer.get_last_update() == 0) { |
|
// the barometer begins updating when we get the first |
|
// HIL_STATE message |
|
gcs().send_text(MAV_SEVERITY_WARNING, "Waiting for first HIL_STATE message"); |
|
delay(1000); |
|
} |
|
|
|
// set INS to HIL mode |
|
ins.set_hil_mode(); |
|
#endif |
|
|
|
// read Baro pressure at ground |
|
//----------------------------- |
|
barometer.set_log_baro_bit(MASK_LOG_IMU); |
|
barometer.calibrate(); |
|
|
|
// initialise rangefinder |
|
init_rangefinder(); |
|
|
|
// init proximity sensor |
|
init_proximity(); |
|
|
|
#if BEACON_ENABLED == ENABLED |
|
// init beacons used for non-gps position estimation |
|
g2.beacon.init(); |
|
#endif |
|
|
|
// init visual odometry |
|
init_visual_odom(); |
|
|
|
#if RPM_ENABLED == ENABLED |
|
// initialise AP_RPM library |
|
rpm_sensor.init(); |
|
#endif |
|
|
|
#if MODE_AUTO_ENABLED == ENABLED |
|
// initialise mission library |
|
mode_auto.mission.init(); |
|
#endif |
|
|
|
#if MODE_SMARTRTL_ENABLED == ENABLED |
|
// initialize SmartRTL |
|
g2.smart_rtl.init(); |
|
#endif |
|
|
|
// initialise AP_Logger library |
|
logger.setVehicle_Startup_Writer(FUNCTOR_BIND(&copter, &Copter::Log_Write_Vehicle_Startup_Messages, void)); |
|
|
|
startup_INS_ground(); |
|
|
|
#ifdef ENABLE_SCRIPTING |
|
g2.scripting.init(); |
|
#endif // ENABLE_SCRIPTING |
|
|
|
// set landed flags |
|
set_land_complete(true); |
|
set_land_complete_maybe(true); |
|
|
|
// we don't want writes to the serial port to cause us to pause |
|
// mid-flight, so set the serial ports non-blocking once we are |
|
// ready to fly |
|
serial_manager.set_blocking_writes_all(false); |
|
|
|
// enable CPU failsafe |
|
failsafe_enable(); |
|
|
|
ins.set_log_raw_bit(MASK_LOG_IMU_RAW); |
|
|
|
// enable output to motors |
|
if (arming.rc_calibration_checks(true)) { |
|
enable_motor_output(); |
|
} |
|
|
|
// disable safety if requested |
|
BoardConfig.init_safety(); |
|
|
|
vehicle_setup(); |
|
|
|
hal.console->printf("\nReady to FLY "); |
|
|
|
// flag that initialisation has completed |
|
ap.initialised = true; |
|
|
|
#if AP_PARAM_KEY_DUMP |
|
AP_Param::show_all(hal.console, true); |
|
#endif |
|
} |
|
|
|
|
|
//****************************************************************************** |
|
//This function does all the calibrations, etc. that we need during a ground start |
|
//****************************************************************************** |
|
void Copter::startup_INS_ground() |
|
{ |
|
// initialise ahrs (may push imu calibration into the mpu6000 if using that device). |
|
ahrs.init(); |
|
ahrs.set_vehicle_class(AHRS_VEHICLE_COPTER); |
|
|
|
// Warm up and calibrate gyro offsets |
|
ins.init(scheduler.get_loop_rate_hz()); |
|
|
|
// reset ahrs including gyro bias |
|
ahrs.reset(); |
|
} |
|
|
|
// update the harmonic notch filter center frequency dynamically |
|
void Copter::update_dynamic_notch() |
|
{ |
|
const float ref_freq = ins.get_gyro_harmonic_notch_center_freq_hz(); |
|
const float ref = ins.get_gyro_harmonic_notch_reference(); |
|
|
|
if (is_zero(ref)) { |
|
ins.update_harmonic_notch_freq_hz(ref_freq); |
|
return; |
|
} |
|
|
|
switch (ins.get_gyro_harmonic_notch_tracking_mode()) { |
|
case HarmonicNotch_UpdateThrottle: // throttle based tracking |
|
// set the harmonic notch filter frequency approximately scaled on motor rpm implied by throttle |
|
ins.update_harmonic_notch_freq_hz(ref_freq * MAX(1.0f, sqrtf(motors->get_throttle_out() / ref))); |
|
break; |
|
|
|
#if RPM_ENABLED == ENABLED |
|
case HarmonicNotch_UpdateRPM: // rpm sensor based tracking |
|
if (rpm_sensor.healthy(0)) { |
|
// set the harmonic notch filter frequency from the main rotor rpm |
|
ins.update_harmonic_notch_freq_hz(MAX(ref_freq, rpm_sensor.get_rpm(0) * ref / 60.0f)); |
|
} else { |
|
ins.update_harmonic_notch_freq_hz(ref_freq); |
|
} |
|
break; |
|
#endif |
|
#ifdef HAVE_AP_BLHELI_SUPPORT |
|
case HarmonicNotch_UpdateBLHeli: // BLHeli based tracking |
|
ins.update_harmonic_notch_freq_hz(MAX(ref_freq, AP_BLHeli::get_singleton()->get_average_motor_frequency_hz() * ref)); |
|
break; |
|
#endif |
|
case HarmonicNotch_Fixed: // static |
|
default: |
|
ins.update_harmonic_notch_freq_hz(ref_freq); |
|
break; |
|
} |
|
} |
|
|
|
// position_ok - returns true if the horizontal absolute position is ok and home position is set |
|
bool Copter::position_ok() const |
|
{ |
|
// return false if ekf failsafe has triggered |
|
if (failsafe.ekf) { |
|
return false; |
|
} |
|
|
|
// check ekf position estimate |
|
return (ekf_position_ok() || optflow_position_ok()); |
|
} |
|
|
|
// ekf_position_ok - returns true if the ekf claims it's horizontal absolute position estimate is ok and home position is set |
|
bool Copter::ekf_position_ok() const |
|
{ |
|
if (!ahrs.have_inertial_nav()) { |
|
// do not allow navigation with dcm position |
|
return false; |
|
} |
|
|
|
// with EKF use filter status and ekf check |
|
nav_filter_status filt_status = inertial_nav.get_filter_status(); |
|
|
|
// if disarmed we accept a predicted horizontal position |
|
if (!motors->armed()) { |
|
return ((filt_status.flags.horiz_pos_abs || filt_status.flags.pred_horiz_pos_abs)); |
|
} else { |
|
// once armed we require a good absolute position and EKF must not be in const_pos_mode |
|
return (filt_status.flags.horiz_pos_abs && !filt_status.flags.const_pos_mode); |
|
} |
|
} |
|
|
|
// optflow_position_ok - returns true if optical flow based position estimate is ok |
|
bool Copter::optflow_position_ok() const |
|
{ |
|
#if OPTFLOW != ENABLED && VISUAL_ODOMETRY_ENABLED != ENABLED |
|
return false; |
|
#else |
|
// return immediately if EKF not used |
|
if (!ahrs.have_inertial_nav()) { |
|
return false; |
|
} |
|
|
|
// return immediately if neither optflow nor visual odometry is enabled |
|
bool enabled = false; |
|
#if OPTFLOW == ENABLED |
|
if (optflow.enabled()) { |
|
enabled = true; |
|
} |
|
#endif |
|
#if VISUAL_ODOMETRY_ENABLED == ENABLED |
|
if (g2.visual_odom.enabled()) { |
|
enabled = true; |
|
} |
|
#endif |
|
if (!enabled) { |
|
return false; |
|
} |
|
|
|
// get filter status from EKF |
|
nav_filter_status filt_status = inertial_nav.get_filter_status(); |
|
|
|
// if disarmed we accept a predicted horizontal relative position |
|
if (!motors->armed()) { |
|
return (filt_status.flags.pred_horiz_pos_rel); |
|
} else { |
|
return (filt_status.flags.horiz_pos_rel && !filt_status.flags.const_pos_mode); |
|
} |
|
#endif |
|
} |
|
|
|
// update_auto_armed - update status of auto_armed flag |
|
void Copter::update_auto_armed() |
|
{ |
|
// disarm checks |
|
if(ap.auto_armed){ |
|
// if motors are disarmed, auto_armed should also be false |
|
if(!motors->armed()) { |
|
set_auto_armed(false); |
|
return; |
|
} |
|
// if in stabilize or acro flight mode and throttle is zero, auto-armed should become false |
|
if(flightmode->has_manual_throttle() && ap.throttle_zero && !failsafe.radio) { |
|
set_auto_armed(false); |
|
} |
|
// if helicopters are on the ground, and the motor is switched off, auto-armed should be false |
|
// so that rotor runup is checked again before attempting to take-off |
|
if(ap.land_complete && motors->get_spool_state() != AP_Motors::SpoolState::THROTTLE_UNLIMITED && ap.using_interlock) { |
|
set_auto_armed(false); |
|
} |
|
}else{ |
|
// arm checks |
|
|
|
// for tradheli if motors are armed and throttle is above zero and the motor is started, auto_armed should be true |
|
if(motors->armed() && ap.using_interlock) { |
|
if(!ap.throttle_zero && motors->get_spool_state() == AP_Motors::SpoolState::THROTTLE_UNLIMITED) { |
|
set_auto_armed(true); |
|
} |
|
// if motors are armed and throttle is above zero auto_armed should be true |
|
// if motors are armed and we are in throw mode, then auto_armed should be true |
|
} else if (motors->armed() && !ap.using_interlock) { |
|
if(!ap.throttle_zero || control_mode == Mode::Number::THROW) { |
|
set_auto_armed(true); |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* |
|
should we log a message type now? |
|
*/ |
|
bool Copter::should_log(uint32_t mask) |
|
{ |
|
#if LOGGING_ENABLED == ENABLED |
|
ap.logging_started = logger.logging_started(); |
|
return logger.should_log(mask); |
|
#else |
|
return false; |
|
#endif |
|
} |
|
|
|
// return MAV_TYPE corresponding to frame class |
|
MAV_TYPE Copter::get_frame_mav_type() |
|
{ |
|
switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) { |
|
case AP_Motors::MOTOR_FRAME_QUAD: |
|
case AP_Motors::MOTOR_FRAME_UNDEFINED: |
|
return MAV_TYPE_QUADROTOR; |
|
case AP_Motors::MOTOR_FRAME_HEXA: |
|
case AP_Motors::MOTOR_FRAME_Y6: |
|
return MAV_TYPE_HEXAROTOR; |
|
case AP_Motors::MOTOR_FRAME_OCTA: |
|
case AP_Motors::MOTOR_FRAME_OCTAQUAD: |
|
return MAV_TYPE_OCTOROTOR; |
|
case AP_Motors::MOTOR_FRAME_HELI: |
|
case AP_Motors::MOTOR_FRAME_HELI_DUAL: |
|
case AP_Motors::MOTOR_FRAME_HELI_QUAD: |
|
return MAV_TYPE_HELICOPTER; |
|
case AP_Motors::MOTOR_FRAME_TRI: |
|
return MAV_TYPE_TRICOPTER; |
|
case AP_Motors::MOTOR_FRAME_SINGLE: |
|
case AP_Motors::MOTOR_FRAME_COAX: |
|
case AP_Motors::MOTOR_FRAME_TAILSITTER: |
|
return MAV_TYPE_COAXIAL; |
|
case AP_Motors::MOTOR_FRAME_DODECAHEXA: |
|
return MAV_TYPE_DODECAROTOR; |
|
} |
|
// unknown frame so return generic |
|
return MAV_TYPE_GENERIC; |
|
} |
|
|
|
// return string corresponding to frame_class |
|
const char* Copter::get_frame_string() |
|
{ |
|
switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) { |
|
case AP_Motors::MOTOR_FRAME_QUAD: |
|
return "QUAD"; |
|
case AP_Motors::MOTOR_FRAME_HEXA: |
|
return "HEXA"; |
|
case AP_Motors::MOTOR_FRAME_Y6: |
|
return "Y6"; |
|
case AP_Motors::MOTOR_FRAME_OCTA: |
|
return "OCTA"; |
|
case AP_Motors::MOTOR_FRAME_OCTAQUAD: |
|
return "OCTA_QUAD"; |
|
case AP_Motors::MOTOR_FRAME_HELI: |
|
return "HELI"; |
|
case AP_Motors::MOTOR_FRAME_HELI_DUAL: |
|
return "HELI_DUAL"; |
|
case AP_Motors::MOTOR_FRAME_HELI_QUAD: |
|
return "HELI_QUAD"; |
|
case AP_Motors::MOTOR_FRAME_TRI: |
|
return "TRI"; |
|
case AP_Motors::MOTOR_FRAME_SINGLE: |
|
return "SINGLE"; |
|
case AP_Motors::MOTOR_FRAME_COAX: |
|
return "COAX"; |
|
case AP_Motors::MOTOR_FRAME_TAILSITTER: |
|
return "TAILSITTER"; |
|
case AP_Motors::MOTOR_FRAME_DODECAHEXA: |
|
return "DODECA_HEXA"; |
|
case AP_Motors::MOTOR_FRAME_UNDEFINED: |
|
default: |
|
return "UNKNOWN"; |
|
} |
|
} |
|
|
|
/* |
|
allocate the motors class |
|
*/ |
|
void Copter::allocate_motors(void) |
|
{ |
|
switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) { |
|
#if FRAME_CONFIG != HELI_FRAME |
|
case AP_Motors::MOTOR_FRAME_QUAD: |
|
case AP_Motors::MOTOR_FRAME_HEXA: |
|
case AP_Motors::MOTOR_FRAME_Y6: |
|
case AP_Motors::MOTOR_FRAME_OCTA: |
|
case AP_Motors::MOTOR_FRAME_OCTAQUAD: |
|
case AP_Motors::MOTOR_FRAME_DODECAHEXA: |
|
default: |
|
motors = new AP_MotorsMatrix(copter.scheduler.get_loop_rate_hz()); |
|
motors_var_info = AP_MotorsMatrix::var_info; |
|
break; |
|
case AP_Motors::MOTOR_FRAME_TRI: |
|
motors = new AP_MotorsTri(copter.scheduler.get_loop_rate_hz()); |
|
motors_var_info = AP_MotorsTri::var_info; |
|
AP_Param::set_frame_type_flags(AP_PARAM_FRAME_TRICOPTER); |
|
break; |
|
case AP_Motors::MOTOR_FRAME_SINGLE: |
|
motors = new AP_MotorsSingle(copter.scheduler.get_loop_rate_hz()); |
|
motors_var_info = AP_MotorsSingle::var_info; |
|
break; |
|
case AP_Motors::MOTOR_FRAME_COAX: |
|
motors = new AP_MotorsCoax(copter.scheduler.get_loop_rate_hz()); |
|
motors_var_info = AP_MotorsCoax::var_info; |
|
break; |
|
case AP_Motors::MOTOR_FRAME_TAILSITTER: |
|
motors = new AP_MotorsTailsitter(copter.scheduler.get_loop_rate_hz()); |
|
motors_var_info = AP_MotorsTailsitter::var_info; |
|
break; |
|
#else // FRAME_CONFIG == HELI_FRAME |
|
case AP_Motors::MOTOR_FRAME_HELI_DUAL: |
|
motors = new AP_MotorsHeli_Dual(copter.scheduler.get_loop_rate_hz()); |
|
motors_var_info = AP_MotorsHeli_Dual::var_info; |
|
AP_Param::set_frame_type_flags(AP_PARAM_FRAME_HELI); |
|
break; |
|
|
|
case AP_Motors::MOTOR_FRAME_HELI_QUAD: |
|
motors = new AP_MotorsHeli_Quad(copter.scheduler.get_loop_rate_hz()); |
|
motors_var_info = AP_MotorsHeli_Quad::var_info; |
|
AP_Param::set_frame_type_flags(AP_PARAM_FRAME_HELI); |
|
break; |
|
|
|
case AP_Motors::MOTOR_FRAME_HELI: |
|
default: |
|
motors = new AP_MotorsHeli_Single(copter.scheduler.get_loop_rate_hz()); |
|
motors_var_info = AP_MotorsHeli_Single::var_info; |
|
AP_Param::set_frame_type_flags(AP_PARAM_FRAME_HELI); |
|
break; |
|
#endif |
|
} |
|
if (motors == nullptr) { |
|
AP_HAL::panic("Unable to allocate FRAME_CLASS=%u", (unsigned)g2.frame_class.get()); |
|
} |
|
AP_Param::load_object_from_eeprom(motors, motors_var_info); |
|
|
|
ahrs_view = ahrs.create_view(ROTATION_NONE); |
|
if (ahrs_view == nullptr) { |
|
AP_HAL::panic("Unable to allocate AP_AHRS_View"); |
|
} |
|
|
|
const struct AP_Param::GroupInfo *ac_var_info; |
|
|
|
#if FRAME_CONFIG != HELI_FRAME |
|
attitude_control = new AC_AttitudeControl_Multi(*ahrs_view, aparm, *motors, scheduler.get_loop_period_s()); |
|
ac_var_info = AC_AttitudeControl_Multi::var_info; |
|
#else |
|
attitude_control = new AC_AttitudeControl_Heli(*ahrs_view, aparm, *motors, scheduler.get_loop_period_s()); |
|
ac_var_info = AC_AttitudeControl_Heli::var_info; |
|
#endif |
|
if (attitude_control == nullptr) { |
|
AP_HAL::panic("Unable to allocate AttitudeControl"); |
|
} |
|
AP_Param::load_object_from_eeprom(attitude_control, ac_var_info); |
|
|
|
pos_control = new AC_PosControl(*ahrs_view, inertial_nav, *motors, *attitude_control); |
|
if (pos_control == nullptr) { |
|
AP_HAL::panic("Unable to allocate PosControl"); |
|
} |
|
AP_Param::load_object_from_eeprom(pos_control, pos_control->var_info); |
|
|
|
#if AC_OAPATHPLANNER_ENABLED == ENABLED |
|
wp_nav = new AC_WPNav_OA(inertial_nav, *ahrs_view, *pos_control, *attitude_control); |
|
#else |
|
wp_nav = new AC_WPNav(inertial_nav, *ahrs_view, *pos_control, *attitude_control); |
|
#endif |
|
if (wp_nav == nullptr) { |
|
AP_HAL::panic("Unable to allocate WPNav"); |
|
} |
|
AP_Param::load_object_from_eeprom(wp_nav, wp_nav->var_info); |
|
|
|
loiter_nav = new AC_Loiter(inertial_nav, *ahrs_view, *pos_control, *attitude_control); |
|
if (loiter_nav == nullptr) { |
|
AP_HAL::panic("Unable to allocate LoiterNav"); |
|
} |
|
AP_Param::load_object_from_eeprom(loiter_nav, loiter_nav->var_info); |
|
|
|
#if MODE_CIRCLE_ENABLED == ENABLED |
|
circle_nav = new AC_Circle(inertial_nav, *ahrs_view, *pos_control); |
|
if (circle_nav == nullptr) { |
|
AP_HAL::panic("Unable to allocate CircleNav"); |
|
} |
|
AP_Param::load_object_from_eeprom(circle_nav, circle_nav->var_info); |
|
#endif |
|
|
|
// reload lines from the defaults file that may now be accessible |
|
AP_Param::reload_defaults_file(true); |
|
|
|
// now setup some frame-class specific defaults |
|
switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) { |
|
case AP_Motors::MOTOR_FRAME_Y6: |
|
attitude_control->get_rate_roll_pid().kP().set_default(0.1); |
|
attitude_control->get_rate_roll_pid().kD().set_default(0.006); |
|
attitude_control->get_rate_pitch_pid().kP().set_default(0.1); |
|
attitude_control->get_rate_pitch_pid().kD().set_default(0.006); |
|
attitude_control->get_rate_yaw_pid().kP().set_default(0.15); |
|
attitude_control->get_rate_yaw_pid().kI().set_default(0.015); |
|
break; |
|
case AP_Motors::MOTOR_FRAME_TRI: |
|
attitude_control->get_rate_yaw_pid().filt_D_hz().set_default(100); |
|
break; |
|
default: |
|
break; |
|
} |
|
|
|
// brushed 16kHz defaults to 16kHz pulses |
|
if (motors->get_pwm_type() == AP_Motors::PWM_TYPE_BRUSHED) { |
|
g.rc_speed.set_default(16000); |
|
} |
|
|
|
// upgrade parameters. This must be done after allocating the objects |
|
convert_pid_parameters(); |
|
#if FRAME_CONFIG == HELI_FRAME |
|
convert_tradheli_parameters(); |
|
#endif |
|
} |
|
|
|
bool Copter::is_tradheli() const |
|
{ |
|
#if FRAME_CONFIG == HELI_FRAME |
|
return true; |
|
#else |
|
return false; |
|
#endif |
|
}
|
|
|