You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
400 lines
11 KiB
400 lines
11 KiB
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
// Copyright 2010 Michael Smith, all rights reserved. |
|
|
|
// Derived closely from: |
|
/**************************************** |
|
* 3D Vector Classes |
|
* By Bill Perone (billperone@yahoo.com) |
|
* Original: 9-16-2002 |
|
* Revised: 19-11-2003 |
|
* 11-12-2003 |
|
* 18-12-2003 |
|
* 06-06-2004 |
|
* |
|
* Copyright 2003, This code is provided "as is" and you can use it freely as long as |
|
* credit is given to Bill Perone in the application it is used in |
|
* |
|
* Notes: |
|
* if a*b = 0 then a & b are orthogonal |
|
* a%b = -b%a |
|
* a*(b%c) = (a%b)*c |
|
* a%b = a(cast to matrix)*b |
|
* (a%b).length() = area of parallelogram formed by a & b |
|
* (a%b).length() = a.length()*b.length() * sin(angle between a & b) |
|
* (a%b).length() = 0 if angle between a & b = 0 or a.length() = 0 or b.length() = 0 |
|
* a * (b%c) = volume of parallelpiped formed by a, b, c |
|
* vector triple product: a%(b%c) = b*(a*c) - c*(a*b) |
|
* scalar triple product: a*(b%c) = c*(a%b) = b*(c%a) |
|
* vector quadruple product: (a%b)*(c%d) = (a*c)*(b*d) - (a*d)*(b*c) |
|
* if a is unit vector along b then a%b = -b%a = -b(cast to matrix)*a = 0 |
|
* vectors a1...an are linearly dependent if there exists a vector of scalars (b) where a1*b1 + ... + an*bn = 0 |
|
* or if the matrix (A) * b = 0 |
|
* |
|
****************************************/ |
|
#pragma once |
|
|
|
#ifndef MATH_CHECK_INDEXES |
|
#define MATH_CHECK_INDEXES 0 |
|
#endif |
|
|
|
#include <cmath> |
|
#include <float.h> |
|
#include <string.h> |
|
#if MATH_CHECK_INDEXES |
|
#include <assert.h> |
|
#endif |
|
|
|
#include "rotations.h" |
|
|
|
#include "ftype.h" |
|
|
|
template <typename T> |
|
class Matrix3; |
|
|
|
template <typename T> |
|
class Vector2; |
|
|
|
template <typename T> |
|
class Vector3 |
|
{ |
|
|
|
public: |
|
T x, y, z; |
|
|
|
// trivial ctor |
|
constexpr Vector3<T>() |
|
: x(0) |
|
, y(0) |
|
, z(0) {} |
|
|
|
// setting ctor |
|
constexpr Vector3<T>(const T x0, const T y0, const T z0) |
|
: x(x0) |
|
, y(y0) |
|
, z(z0) {} |
|
|
|
//Create a Vector3 from a Vector2 with z |
|
constexpr Vector3<T>(const Vector2<T> &v0, const T z0) |
|
: x(v0.x) |
|
, y(v0.y) |
|
, z(z0) {} |
|
|
|
// test for equality |
|
bool operator ==(const Vector3<T> &v) const; |
|
|
|
// test for inequality |
|
bool operator !=(const Vector3<T> &v) const; |
|
|
|
// negation |
|
Vector3<T> operator -(void) const; |
|
|
|
// addition |
|
Vector3<T> operator +(const Vector3<T> &v) const; |
|
|
|
// subtraction |
|
Vector3<T> operator -(const Vector3<T> &v) const; |
|
|
|
// uniform scaling |
|
Vector3<T> operator *(const T num) const; |
|
|
|
// uniform scaling |
|
Vector3<T> operator /(const T num) const; |
|
|
|
// addition |
|
Vector3<T> &operator +=(const Vector3<T> &v); |
|
|
|
// subtraction |
|
Vector3<T> &operator -=(const Vector3<T> &v); |
|
|
|
// uniform scaling |
|
Vector3<T> &operator *=(const T num); |
|
|
|
// uniform scaling |
|
Vector3<T> &operator /=(const T num); |
|
|
|
// non-uniform scaling |
|
Vector3<T> &operator *=(const Vector3<T> &v) { |
|
x *= v.x; y *= v.y; z *= v.z; |
|
return *this; |
|
} |
|
|
|
// allow a vector3 to be used as an array, 0 indexed |
|
T & operator[](uint8_t i) { |
|
T *_v = &x; |
|
#if MATH_CHECK_INDEXES |
|
assert(i >= 0 && i < 3); |
|
#endif |
|
return _v[i]; |
|
} |
|
|
|
const T & operator[](uint8_t i) const { |
|
const T *_v = &x; |
|
#if MATH_CHECK_INDEXES |
|
assert(i >= 0 && i < 3); |
|
#endif |
|
return _v[i]; |
|
} |
|
|
|
// dot product |
|
T operator *(const Vector3<T> &v) const; |
|
|
|
// dot product for Lua |
|
T dot(const Vector3<T> &v) const { |
|
return *this * v; |
|
} |
|
|
|
// multiply a row vector by a matrix, to give a row vector |
|
Vector3<T> operator *(const Matrix3<T> &m) const; |
|
|
|
// multiply a column vector by a row vector, returning a 3x3 matrix |
|
Matrix3<T> mul_rowcol(const Vector3<T> &v) const; |
|
|
|
// cross product |
|
Vector3<T> operator %(const Vector3<T> &v) const; |
|
|
|
// cross product for Lua |
|
Vector3<T> cross(const Vector3<T> &v) const { |
|
return *this % v; |
|
} |
|
|
|
// scale a vector3 |
|
Vector3<T> scale(const T v) const { |
|
return *this * v; |
|
} |
|
|
|
// computes the angle between this vector and another vector |
|
T angle(const Vector3<T> &v2) const; |
|
|
|
// check if any elements are NAN |
|
bool is_nan(void) const WARN_IF_UNUSED; |
|
|
|
// check if any elements are infinity |
|
bool is_inf(void) const WARN_IF_UNUSED; |
|
|
|
// check if all elements are zero |
|
bool is_zero(void) const WARN_IF_UNUSED { |
|
return (fabsf(x) < FLT_EPSILON) && |
|
(fabsf(y) < FLT_EPSILON) && |
|
(fabsf(z) < FLT_EPSILON); |
|
} |
|
|
|
|
|
// rotate by a standard rotation |
|
void rotate(enum Rotation rotation); |
|
void rotate_inverse(enum Rotation rotation); |
|
|
|
// rotate vector by angle in radians in xy plane leaving z untouched |
|
void rotate_xy(T rotation_rad); |
|
|
|
// return xy components of a vector3 as a vector2. |
|
// this returns a reference to the original vector3 xy data |
|
const Vector2<T> &xy() const { |
|
return *(const Vector2<T> *)this; |
|
} |
|
Vector2<T> &xy() { |
|
return *(Vector2<T> *)this; |
|
} |
|
|
|
// gets the length of this vector squared |
|
T length_squared() const |
|
{ |
|
return (T)(*this * *this); |
|
} |
|
|
|
// gets the length of this vector |
|
T length(void) const; |
|
|
|
// limit xy component vector to a given length. returns true if vector was limited |
|
bool limit_length_xy(T max_length); |
|
|
|
// normalizes this vector |
|
void normalize() |
|
{ |
|
*this /= length(); |
|
} |
|
|
|
// zero the vector |
|
void zero() |
|
{ |
|
x = y = z = 0; |
|
} |
|
|
|
// returns the normalized version of this vector |
|
Vector3<T> normalized() const |
|
{ |
|
return *this/length(); |
|
} |
|
|
|
// reflects this vector about n |
|
void reflect(const Vector3<T> &n) |
|
{ |
|
Vector3<T> orig(*this); |
|
project(n); |
|
*this = *this*2 - orig; |
|
} |
|
|
|
// projects this vector onto v |
|
void project(const Vector3<T> &v) |
|
{ |
|
*this= v * (*this * v)/(v*v); |
|
} |
|
|
|
// returns this vector projected onto v |
|
Vector3<T> projected(const Vector3<T> &v) const |
|
{ |
|
return v * (*this * v)/(v*v); |
|
} |
|
|
|
// distance from the tip of this vector to another vector squared (so as to avoid the sqrt calculation) |
|
T distance_squared(const Vector3<T> &v) const { |
|
const T dist_x = x-v.x; |
|
const T dist_y = y-v.y; |
|
const T dist_z = z-v.z; |
|
return (dist_x*dist_x + dist_y*dist_y + dist_z*dist_z); |
|
} |
|
|
|
// distance from the tip of this vector to a line segment specified by two vectors |
|
T distance_to_segment(const Vector3<T> &seg_start, const Vector3<T> &seg_end) const; |
|
|
|
// extrapolate position given bearing and pitch (in degrees) and distance |
|
void offset_bearing(T bearing, T pitch, T distance); |
|
|
|
/* |
|
conversion to/from double |
|
*/ |
|
Vector3<float> tofloat() const { |
|
return Vector3<float>{float(x),float(y),float(z)}; |
|
} |
|
Vector3<double> todouble() const { |
|
return Vector3<double>{x,y,z}; |
|
} |
|
|
|
// given a position p1 and a velocity v1 produce a vector |
|
// perpendicular to v1 maximising distance from p1. If p1 is the |
|
// zero vector the return from the function will always be the |
|
// zero vector - that should be checked for. |
|
static Vector3<T> perpendicular(const Vector3<T> &p1, const Vector3<T> &v1) |
|
{ |
|
const T d = p1 * v1; |
|
if (fabsf(d) < FLT_EPSILON) { |
|
return p1; |
|
} |
|
const Vector3<T> parallel = (v1 * d) / v1.length_squared(); |
|
Vector3<T> perpendicular = p1 - parallel; |
|
|
|
return perpendicular; |
|
} |
|
|
|
// Shortest distance between point(p) to a point contained in the line segment defined by w1,w2 |
|
static T closest_distance_between_line_and_point(const Vector3<T> &w1, const Vector3<T> &w2, const Vector3<T> &p); |
|
|
|
// Point in the line segment defined by w1,w2 which is closest to point(p) |
|
static Vector3<T> point_on_line_closest_to_other_point(const Vector3<T> &w1, const Vector3<T> &w2, const Vector3<T> &p); |
|
|
|
// This implementation is borrowed from: http://geomalgorithms.com/a07-_distance.html |
|
// INPUT: 4 points corresponding to start and end of two line segments |
|
|
|
// OUTPUT: closest point on segment 2, from segment 1, gets passed on reference as "closest_point" |
|
static void segment_to_segment_closest_point(const Vector3<T>& seg1_start, const Vector3<T>& seg1_end, const Vector3<T>& seg2_start, const Vector3<T>& seg2_end, Vector3<T>& closest_point); |
|
|
|
// Returns true if the passed 3D segment passes through a plane defined by plane normal, and a point on the plane |
|
static bool segment_plane_intersect(const Vector3<T>& seg_start, const Vector3<T>& seg_end, const Vector3<T>& plane_normal, const Vector3<T>& plane_point); |
|
}; |
|
|
|
// The creation of temporary vector objects as return types creates a significant overhead in certain hot |
|
// code paths. This allows callers to select the inline versions where profiling shows a significant benefit |
|
#if defined(AP_INLINE_VECTOR_OPS) && !defined(HAL_DEBUG_BUILD) |
|
|
|
// vector cross product |
|
template <typename T> |
|
inline Vector3<T> Vector3<T>::operator %(const Vector3<T> &v) const |
|
{ |
|
return Vector3<T>(y*v.z - z*v.y, z*v.x - x*v.z, x*v.y - y*v.x); |
|
} |
|
|
|
// dot product |
|
template <typename T> |
|
inline T Vector3<T>::operator *(const Vector3<T> &v) const |
|
{ |
|
return x*v.x + y*v.y + z*v.z; |
|
} |
|
|
|
template <typename T> |
|
inline Vector3<T> &Vector3<T>::operator *=(const T num) |
|
{ |
|
x*=num; y*=num; z*=num; |
|
return *this; |
|
} |
|
|
|
template <typename T> |
|
inline Vector3<T> &Vector3<T>::operator /=(const T num) |
|
{ |
|
x /= num; y /= num; z /= num; |
|
return *this; |
|
} |
|
|
|
template <typename T> |
|
inline Vector3<T> &Vector3<T>::operator -=(const Vector3<T> &v) |
|
{ |
|
x -= v.x; y -= v.y; z -= v.z; |
|
return *this; |
|
} |
|
|
|
template <typename T> |
|
inline Vector3<T> &Vector3<T>::operator +=(const Vector3<T> &v) |
|
{ |
|
x+=v.x; y+=v.y; z+=v.z; |
|
return *this; |
|
} |
|
|
|
template <typename T> |
|
inline Vector3<T> Vector3<T>::operator /(const T num) const |
|
{ |
|
return Vector3<T>(x/num, y/num, z/num); |
|
} |
|
|
|
template <typename T> |
|
inline Vector3<T> Vector3<T>::operator *(const T num) const |
|
{ |
|
return Vector3<T>(x*num, y*num, z*num); |
|
} |
|
|
|
template <typename T> |
|
inline Vector3<T> Vector3<T>::operator -(const Vector3<T> &v) const |
|
{ |
|
return Vector3<T>(x-v.x, y-v.y, z-v.z); |
|
} |
|
|
|
template <typename T> |
|
inline Vector3<T> Vector3<T>::operator +(const Vector3<T> &v) const |
|
{ |
|
return Vector3<T>(x+v.x, y+v.y, z+v.z); |
|
} |
|
|
|
template <typename T> |
|
inline Vector3<T> Vector3<T>::operator -(void) const |
|
{ |
|
return Vector3<T>(-x,-y,-z); |
|
} |
|
#endif |
|
|
|
typedef Vector3<int16_t> Vector3i; |
|
typedef Vector3<uint16_t> Vector3ui; |
|
typedef Vector3<int32_t> Vector3l; |
|
typedef Vector3<uint32_t> Vector3ul; |
|
typedef Vector3<float> Vector3f; |
|
typedef Vector3<double> Vector3d;
|
|
|