You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
215 lines
6.4 KiB
215 lines
6.4 KiB
/// @file AC_PID_2D.cpp |
|
/// @brief Generic PID algorithm |
|
|
|
#include <AP_Math/AP_Math.h> |
|
#include "AC_PID_2D.h" |
|
|
|
#define AC_PID_2D_FILT_E_HZ_DEFAULT 20.0f // default input filter frequency |
|
#define AC_PID_2D_FILT_D_HZ_DEFAULT 10.0f // default input filter frequency |
|
#define AC_PID_2D_FILT_D_HZ_MIN 0.005f // minimum input filter frequency |
|
|
|
const AP_Param::GroupInfo AC_PID_2D::var_info[] = { |
|
// @Param: P |
|
// @DisplayName: PID Proportional Gain |
|
// @Description: P Gain which produces an output value that is proportional to the current error value |
|
AP_GROUPINFO("P", 0, AC_PID_2D, _kp, 0), |
|
|
|
// @Param: I |
|
// @DisplayName: PID Integral Gain |
|
// @Description: I Gain which produces an output that is proportional to both the magnitude and the duration of the error |
|
AP_GROUPINFO("I", 1, AC_PID_2D, _ki, 0), |
|
|
|
// @Param: IMAX |
|
// @DisplayName: PID Integral Maximum |
|
// @Description: The maximum/minimum value that the I term can output |
|
AP_GROUPINFO("IMAX", 2, AC_PID_2D, _kimax, 0), |
|
|
|
// @Param: FLTE |
|
// @DisplayName: PID Input filter frequency in Hz |
|
// @Description: Input filter frequency in Hz |
|
// @Units: Hz |
|
AP_GROUPINFO("FLTE", 3, AC_PID_2D, _filt_E_hz, AC_PID_2D_FILT_E_HZ_DEFAULT), |
|
|
|
// @Param: D |
|
// @DisplayName: PID Derivative Gain |
|
// @Description: D Gain which produces an output that is proportional to the rate of change of the error |
|
AP_GROUPINFO("D", 4, AC_PID_2D, _kd, 0), |
|
|
|
// @Param: FLTD |
|
// @DisplayName: D term filter frequency in Hz |
|
// @Description: D term filter frequency in Hz |
|
// @Units: Hz |
|
AP_GROUPINFO("FLTD", 5, AC_PID_2D, _filt_D_hz, AC_PID_2D_FILT_D_HZ_DEFAULT), |
|
|
|
// @Param: FF |
|
// @DisplayName: PID Feed Forward Gain |
|
// @Description: FF Gain which produces an output that is proportional to the magnitude of the target |
|
AP_GROUPINFO("FF", 6, AC_PID_2D, _kff, 0), |
|
|
|
AP_GROUPEND |
|
}; |
|
|
|
// Constructor |
|
AC_PID_2D::AC_PID_2D(float initial_kP, float initial_kI, float initial_kD, float initial_kFF, float initial_imax, float initial_filt_E_hz, float initial_filt_D_hz, float dt) : |
|
_dt(dt) |
|
{ |
|
// load parameter values from eeprom |
|
AP_Param::setup_object_defaults(this, var_info); |
|
|
|
_kp.set_and_default(initial_kP); |
|
_ki.set_and_default(initial_kI); |
|
_kd.set_and_default(initial_kD); |
|
_kff.set_and_default(initial_kFF); |
|
_kimax.set_and_default(initial_imax); |
|
_filt_E_hz.set_and_default(initial_filt_E_hz); |
|
_filt_D_hz.set_and_default(initial_filt_D_hz); |
|
|
|
// reset input filter to first value received |
|
_reset_filter = true; |
|
} |
|
|
|
// update_all - set target and measured inputs to PID controller and calculate outputs |
|
// target and error are filtered |
|
// the derivative is then calculated and filtered |
|
// the integral is then updated if it does not increase in the direction of the limit vector |
|
Vector2f AC_PID_2D::update_all(const Vector2f &target, const Vector2f &measurement, const Vector2f &limit) |
|
{ |
|
// don't process inf or NaN |
|
if (target.is_nan() || target.is_inf() || |
|
measurement.is_nan() || measurement.is_inf()) { |
|
return Vector2f{}; |
|
} |
|
|
|
_target = target; |
|
|
|
// reset input filter to value received |
|
if (_reset_filter) { |
|
_reset_filter = false; |
|
_error = _target - measurement; |
|
_derivative.zero(); |
|
} else { |
|
Vector2f error_last{_error}; |
|
_error += ((_target - measurement) - _error) * get_filt_E_alpha(); |
|
|
|
// calculate and filter derivative |
|
if (_dt > 0.0f) { |
|
const Vector2f derivative{(_error - error_last) / _dt}; |
|
_derivative += (derivative - _derivative) * get_filt_D_alpha(); |
|
} |
|
} |
|
|
|
// update I term |
|
update_i(limit); |
|
|
|
_pid_info_x.target = _target.x; |
|
_pid_info_x.actual = measurement.x; |
|
_pid_info_x.error = _error.x; |
|
_pid_info_x.P = _error.x * _kp; |
|
_pid_info_x.I = _integrator.x; |
|
_pid_info_x.D = _derivative.x * _kd; |
|
_pid_info_x.FF = _target.x * _kff; |
|
|
|
_pid_info_y.target = _target.y; |
|
_pid_info_y.actual = measurement.y; |
|
_pid_info_y.error = _error.y; |
|
_pid_info_y.P = _error.y * _kp; |
|
_pid_info_y.I = _integrator.y; |
|
_pid_info_y.D = _derivative.y * _kd; |
|
_pid_info_y.FF = _target.y * _kff; |
|
|
|
return _error * _kp + _integrator + _derivative * _kd + _target * _kff; |
|
} |
|
|
|
Vector2f AC_PID_2D::update_all(const Vector3f &target, const Vector3f &measurement, const Vector3f &limit) |
|
{ |
|
return update_all(Vector2f{target.x, target.y}, Vector2f{measurement.x, measurement.y}, Vector2f{limit.x, limit.y}); |
|
} |
|
|
|
// update_i - update the integral |
|
// If the limit is set the integral is only allowed to reduce in the direction of the limit |
|
void AC_PID_2D::update_i(const Vector2f &limit) |
|
{ |
|
_pid_info_x.limit = false; |
|
_pid_info_y.limit = false; |
|
|
|
Vector2f delta_integrator = (_error * _ki) * _dt; |
|
float integrator_length = _integrator.length(); |
|
_integrator += delta_integrator; |
|
// do not let integrator increase in length if delta_integrator is in the direction of limit |
|
if (is_positive(delta_integrator * limit) && _integrator.limit_length(integrator_length)) { |
|
_pid_info_x.limit = true; |
|
_pid_info_y.limit = true; |
|
} |
|
|
|
_integrator.limit_length(_kimax); |
|
} |
|
|
|
Vector2f AC_PID_2D::get_p() const |
|
{ |
|
return _error * _kp; |
|
} |
|
|
|
const Vector2f& AC_PID_2D::get_i() const |
|
{ |
|
return _integrator; |
|
} |
|
|
|
Vector2f AC_PID_2D::get_d() const |
|
{ |
|
return _derivative * _kd; |
|
} |
|
|
|
Vector2f AC_PID_2D::get_ff() |
|
{ |
|
_pid_info_x.FF = _target.x * _kff; |
|
_pid_info_y.FF = _target.y * _kff; |
|
return _target * _kff; |
|
} |
|
|
|
void AC_PID_2D::reset_I() |
|
{ |
|
_integrator.zero(); |
|
_pid_info_x.I = 0.0; |
|
_pid_info_y.I = 0.0; |
|
} |
|
|
|
// save_gains - save gains to eeprom |
|
void AC_PID_2D::save_gains() |
|
{ |
|
_kp.save(); |
|
_ki.save(); |
|
_kd.save(); |
|
_kff.save(); |
|
_kimax.save(); |
|
_filt_E_hz.save(); |
|
_filt_D_hz.save(); |
|
} |
|
|
|
// get the target filter alpha |
|
float AC_PID_2D::get_filt_E_alpha() const |
|
{ |
|
return calc_lowpass_alpha_dt(_dt, _filt_E_hz); |
|
} |
|
|
|
// get the derivative filter alpha |
|
float AC_PID_2D::get_filt_D_alpha() const |
|
{ |
|
return calc_lowpass_alpha_dt(_dt, _filt_D_hz); |
|
} |
|
|
|
void AC_PID_2D::set_integrator(const Vector2f& target, const Vector2f& measurement, const Vector2f& i) |
|
{ |
|
set_integrator(target - measurement, i); |
|
} |
|
|
|
void AC_PID_2D::set_integrator(const Vector2f& error, const Vector2f& i) |
|
{ |
|
set_integrator(i - error * _kp); |
|
} |
|
|
|
void AC_PID_2D::set_integrator(const Vector2f& i) |
|
{ |
|
_integrator = i; |
|
_integrator.limit_length(_kimax); |
|
} |
|
|
|
|