You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
162 lines
5.4 KiB
162 lines
5.4 KiB
#include "AP_Compass_SITL.h" |
|
|
|
#if AP_SIM_COMPASS_ENABLED |
|
|
|
#include <AP_HAL/AP_HAL.h> |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
AP_Compass_SITL::AP_Compass_SITL() |
|
: _sitl(AP::sitl()) |
|
{ |
|
if (_sitl != nullptr) { |
|
for (uint8_t i=0; i<MAX_CONNECTED_MAGS; i++) { |
|
uint32_t dev_id = _sitl->mag_devid[i]; |
|
if (dev_id == 0) { |
|
continue; |
|
} |
|
uint8_t instance; |
|
if (!register_compass(dev_id, instance)) { |
|
continue; |
|
} else if (_num_compass<MAX_SITL_COMPASSES) { |
|
_compass_instance[_num_compass] = instance; |
|
set_dev_id(_compass_instance[_num_compass], dev_id); |
|
|
|
// save so the compass always comes up configured in SITL |
|
save_dev_id(_compass_instance[_num_compass]); |
|
set_rotation(instance, ROTATION_NONE); |
|
_num_compass++; |
|
} |
|
} |
|
|
|
// Scroll through the registered compasses, and set the offsets |
|
for (uint8_t i=0; i<_num_compass; i++) { |
|
if (_compass.get_offsets(i).is_zero()) { |
|
_compass.set_offsets(i, _sitl->mag_ofs[i]); |
|
} |
|
} |
|
|
|
// we want to simulate a calibrated compass by default, so set |
|
// scale to 1 |
|
AP_Param::set_default_by_name("COMPASS_SCALE", 1); |
|
AP_Param::set_default_by_name("COMPASS_SCALE2", 1); |
|
AP_Param::set_default_by_name("COMPASS_SCALE3", 1); |
|
|
|
// make first compass external |
|
set_external(_compass_instance[0], true); |
|
|
|
hal.scheduler->register_timer_process(FUNCTOR_BIND(this, &AP_Compass_SITL::_timer, void)); |
|
} |
|
} |
|
|
|
|
|
/* |
|
create correction matrix for diagnonals and off-diagonals |
|
*/ |
|
void AP_Compass_SITL::_setup_eliptical_correcion(uint8_t i) |
|
{ |
|
Vector3f diag = _sitl->mag_diag[i].get(); |
|
if (diag.is_zero()) { |
|
diag = {1,1,1}; |
|
} |
|
const Vector3f &diagonals = diag; |
|
const Vector3f &offdiagonals = _sitl->mag_offdiag[i]; |
|
|
|
if (diagonals == _last_dia && offdiagonals == _last_odi) { |
|
return; |
|
} |
|
|
|
_eliptical_corr = Matrix3f(diagonals.x, offdiagonals.x, offdiagonals.y, |
|
offdiagonals.x, diagonals.y, offdiagonals.z, |
|
offdiagonals.y, offdiagonals.z, diagonals.z); |
|
if (!_eliptical_corr.invert()) { |
|
_eliptical_corr.identity(); |
|
} |
|
_last_dia = diag; |
|
_last_odi = offdiagonals; |
|
} |
|
|
|
void AP_Compass_SITL::_timer() |
|
{ |
|
// TODO: Refactor delay buffer with AP_Baro_SITL. |
|
|
|
// Sampled at 100Hz |
|
uint32_t now = AP_HAL::millis(); |
|
if ((now - _last_sample_time) < 10) { |
|
return; |
|
} |
|
_last_sample_time = now; |
|
|
|
// calculate sensor noise and add to 'truth' field in body frame |
|
// units are milli-Gauss |
|
Vector3f noise = rand_vec3f() * _sitl->mag_noise; |
|
Vector3f new_mag_data = _sitl->state.bodyMagField + noise; |
|
|
|
// add delay |
|
uint32_t best_time_delta = 1000; // initialise large time representing buffer entry closest to current time - delay. |
|
uint8_t best_index = 0; // initialise number representing the index of the entry in buffer closest to delay. |
|
|
|
// storing data from sensor to buffer |
|
if (now - last_store_time >= 10) { // store data every 10 ms. |
|
last_store_time = now; |
|
if (store_index > buffer_length-1) { // reset buffer index if index greater than size of buffer |
|
store_index = 0; |
|
} |
|
buffer[store_index].data = new_mag_data; // add data to current index |
|
buffer[store_index].time = last_store_time; // add time to current index |
|
store_index = store_index + 1; // increment index |
|
} |
|
|
|
// return delayed measurement |
|
uint32_t delayed_time = now - _sitl->mag_delay; // get time corresponding to delay |
|
// find data corresponding to delayed time in buffer |
|
for (uint8_t i=0; i<=buffer_length-1; i++) { |
|
// find difference between delayed time and time stamp in buffer |
|
uint32_t time_delta = abs((int32_t)(delayed_time - buffer[i].time)); |
|
// if this difference is smaller than last delta, store this time |
|
if (time_delta < best_time_delta) { |
|
best_index= i; |
|
best_time_delta = time_delta; |
|
} |
|
} |
|
if (best_time_delta < 1000) { // only output stored state if < 1 sec retrieval error |
|
new_mag_data = buffer[best_index].data; |
|
} |
|
|
|
for (uint8_t i=0; i<_num_compass; i++) { |
|
_setup_eliptical_correcion(i); |
|
Vector3f f = (_eliptical_corr * new_mag_data) - _sitl->mag_ofs[i].get(); |
|
// rotate compass |
|
f.rotate_inverse((enum Rotation)_sitl->mag_orient[i].get()); |
|
// and add in AHRS_ORIENTATION setting if not an external compass |
|
if (get_board_orientation() == ROTATION_CUSTOM) { |
|
f = _sitl->ahrs_rotation * f; |
|
} else { |
|
f.rotate(get_board_orientation()); |
|
} |
|
// scale the compass to simulate sensor scale factor errors |
|
f *= _sitl->mag_scaling[i]; |
|
|
|
switch (_sitl->mag_fail[i]) { |
|
case 0: |
|
accumulate_sample(f, _compass_instance[i], 10); |
|
_last_data[i] = f; |
|
break; |
|
case 1: |
|
// no data |
|
break; |
|
case 2: |
|
// frozen compass |
|
accumulate_sample(_last_data[i], _compass_instance[i], 10); |
|
break; |
|
} |
|
} |
|
} |
|
|
|
void AP_Compass_SITL::read() |
|
{ |
|
for (uint8_t i=0; i<_num_compass; i++) { |
|
drain_accumulated_samples(_compass_instance[i], nullptr); |
|
} |
|
} |
|
#endif // AP_SIM_COMPASS_ENABLED
|
|
|