You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
218 lines
7.9 KiB
218 lines
7.9 KiB
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
// Code by Jon Challinger |
|
// Modified by Paul Riseborough |
|
// |
|
|
|
#include <AP_HAL/AP_HAL.h> |
|
#include "AP_RollController.h" |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
const AP_Param::GroupInfo AP_RollController::var_info[] = { |
|
// @Param: TCONST |
|
// @DisplayName: Roll Time Constant |
|
// @Description: Time constant in seconds from demanded to achieved roll angle. Most models respond well to 0.5. May be reduced for faster responses, but setting lower than a model can achieve will not help. |
|
// @Range: 0.4 1.0 |
|
// @Units: s |
|
// @Increment: 0.1 |
|
// @User: Advanced |
|
AP_GROUPINFO("TCONST", 0, AP_RollController, gains.tau, 0.5f), |
|
|
|
// @Param: P |
|
// @DisplayName: Proportional Gain |
|
// @Description: Proportional gain from roll angle demands to ailerons. Higher values allow more servo response but can cause oscillations. Automatically set and adjusted by AUTOTUNE mode. |
|
// @Range: 0.1 4.0 |
|
// @Increment: 0.1 |
|
// @User: User |
|
AP_GROUPINFO("P", 1, AP_RollController, gains.P, 1.0f), |
|
|
|
// @Param: D |
|
// @DisplayName: Damping Gain |
|
// @Description: Damping gain from roll acceleration to ailerons. Higher values reduce rolling in turbulence, but can cause oscillations. Automatically set and adjusted by AUTOTUNE mode. |
|
// @Range: 0 0.2 |
|
// @Increment: 0.01 |
|
// @User: User |
|
AP_GROUPINFO("D", 2, AP_RollController, gains.D, 0.08f), |
|
|
|
// @Param: I |
|
// @DisplayName: Integrator Gain |
|
// @Description: Integrator gain from long-term roll angle offsets to ailerons. Higher values "trim" out offsets faster but can cause oscillations. Automatically set and adjusted by AUTOTUNE mode. |
|
// @Range: 0 1.0 |
|
// @Increment: 0.05 |
|
// @User: User |
|
AP_GROUPINFO("I", 3, AP_RollController, gains.I, 0.3f), |
|
|
|
// @Param: RMAX |
|
// @DisplayName: Maximum Roll Rate |
|
// @Description: Maximum roll rate that the roll controller demands (degrees/sec) in ACRO mode. |
|
// @Range: 0 180 |
|
// @Units: deg/s |
|
// @Increment: 1 |
|
// @User: Advanced |
|
AP_GROUPINFO("RMAX", 4, AP_RollController, gains.rmax, 0), |
|
|
|
// @Param: IMAX |
|
// @DisplayName: Integrator limit |
|
// @Description: Limit of roll integrator gain in centi-degrees of servo travel. Servos are assumed to have +/- 4500 centi-degrees of travel, so a value of 3000 allows trim of up to 2/3 of servo travel range. |
|
// @Range: 0 4500 |
|
// @Increment: 1 |
|
// @User: Advanced |
|
AP_GROUPINFO("IMAX", 5, AP_RollController, gains.imax, 3000), |
|
|
|
// @Param: FF |
|
// @DisplayName: Feed forward Gain |
|
// @Description: Gain from demanded rate to aileron output. |
|
// @Range: 0.1 4.0 |
|
// @Increment: 0.1 |
|
// @User: User |
|
AP_GROUPINFO("FF", 6, AP_RollController, gains.FF, 0.0f), |
|
|
|
AP_GROUPEND |
|
}; |
|
|
|
|
|
/* |
|
internal rate controller, called by attitude and rate controller |
|
public functions |
|
*/ |
|
int32_t AP_RollController::_get_rate_out(float desired_rate, float scaler, bool disable_integrator) |
|
{ |
|
uint32_t tnow = AP_HAL::millis(); |
|
uint32_t dt = tnow - _last_t; |
|
if (_last_t == 0 || dt > 1000) { |
|
dt = 0; |
|
} |
|
_last_t = tnow; |
|
|
|
// Calculate equivalent gains so that values for K_P and K_I can be taken across from the old PID law |
|
// No conversion is required for K_D |
|
float ki_rate = gains.I * gains.tau; |
|
float eas2tas = _ahrs.get_EAS2TAS(); |
|
float kp_ff = MAX((gains.P - gains.I * gains.tau) * gains.tau - gains.D , 0) / eas2tas; |
|
float k_ff = gains.FF / eas2tas; |
|
float delta_time = (float)dt * 0.001f; |
|
// Get body rate vector (radians/sec) |
|
float omega_x = _ahrs.get_gyro().x; |
|
|
|
// Calculate the roll rate error (deg/sec) and apply gain scaler |
|
float achieved_rate = ToDeg(omega_x); |
|
float rate_error = (desired_rate - achieved_rate) * scaler; |
|
|
|
// Get an airspeed estimate - default to zero if none available |
|
float aspeed; |
|
if (!_ahrs.airspeed_estimate(&aspeed)) { |
|
aspeed = 0.0f; |
|
} |
|
|
|
// Multiply roll rate error by _ki_rate, apply scaler and integrate |
|
// Scaler is applied before integrator so that integrator state relates directly to aileron deflection |
|
// This means aileron trim offset doesn't change as the value of scaler changes with airspeed |
|
// Don't integrate if in stabilise mode as the integrator will wind up against the pilots inputs |
|
if (!disable_integrator && ki_rate > 0) { |
|
//only integrate if gain and time step are positive and airspeed above min value. |
|
if (dt > 0 && aspeed > float(aparm.airspeed_min)) { |
|
float integrator_delta = rate_error * ki_rate * delta_time * scaler; |
|
// prevent the integrator from increasing if surface defln demand is above the upper limit |
|
if (_last_out < -45) { |
|
integrator_delta = MAX(integrator_delta , 0); |
|
} else if (_last_out > 45) { |
|
// prevent the integrator from decreasing if surface defln demand is below the lower limit |
|
integrator_delta = MIN(integrator_delta, 0); |
|
} |
|
_pid_info.I += integrator_delta; |
|
} |
|
} else { |
|
_pid_info.I = 0; |
|
} |
|
|
|
// Scale the integration limit |
|
float intLimScaled = gains.imax * 0.01f; |
|
|
|
// Constrain the integrator state |
|
_pid_info.I = constrain_float(_pid_info.I, -intLimScaled, intLimScaled); |
|
|
|
// Calculate the demanded control surface deflection |
|
// Note the scaler is applied again. We want a 1/speed scaler applied to the feed-forward |
|
// path, but want a 1/speed^2 scaler applied to the rate error path. |
|
// This is because acceleration scales with speed^2, but rate scales with speed. |
|
_pid_info.D = rate_error * gains.D * scaler; |
|
_pid_info.P = desired_rate * kp_ff * scaler; |
|
_pid_info.FF = desired_rate * k_ff * scaler; |
|
_pid_info.target = desired_rate; |
|
_pid_info.actual = achieved_rate; |
|
|
|
_last_out = _pid_info.FF + _pid_info.P + _pid_info.D; |
|
|
|
if (autotune.running && aspeed > aparm.airspeed_min) { |
|
// let autotune have a go at the values |
|
// Note that we don't pass the integrator component so we get |
|
// a better idea of how much the base PD controller |
|
// contributed |
|
autotune.update(desired_rate, achieved_rate, _last_out); |
|
} |
|
|
|
_last_out += _pid_info.I; |
|
|
|
// Convert to centi-degrees and constrain |
|
return constrain_float(_last_out * 100, -4500, 4500); |
|
} |
|
|
|
|
|
/* |
|
Function returns an equivalent elevator deflection in centi-degrees in the range from -4500 to 4500 |
|
A positive demand is up |
|
Inputs are: |
|
1) desired roll rate in degrees/sec |
|
2) control gain scaler = scaling_speed / aspeed |
|
*/ |
|
int32_t AP_RollController::get_rate_out(float desired_rate, float scaler) |
|
{ |
|
return _get_rate_out(desired_rate, scaler, false); |
|
} |
|
|
|
/* |
|
Function returns an equivalent aileron deflection in centi-degrees in the range from -4500 to 4500 |
|
A positive demand is up |
|
Inputs are: |
|
1) demanded bank angle in centi-degrees |
|
2) control gain scaler = scaling_speed / aspeed |
|
3) boolean which is true when stabilise mode is active |
|
4) minimum FBW airspeed (metres/sec) |
|
*/ |
|
int32_t AP_RollController::get_servo_out(int32_t angle_err, float scaler, bool disable_integrator) |
|
{ |
|
if (gains.tau < 0.1f) { |
|
gains.tau.set(0.1f); |
|
} |
|
|
|
// Calculate the desired roll rate (deg/sec) from the angle error |
|
float desired_rate = angle_err * 0.01f / gains.tau; |
|
|
|
// Limit the demanded roll rate |
|
if (gains.rmax && desired_rate < -gains.rmax) { |
|
desired_rate = - gains.rmax; |
|
} else if (gains.rmax && desired_rate > gains.rmax) { |
|
desired_rate = gains.rmax; |
|
} |
|
|
|
return _get_rate_out(desired_rate, scaler, disable_integrator); |
|
} |
|
|
|
void AP_RollController::reset_I() |
|
{ |
|
_pid_info.I = 0; |
|
}
|
|
|