You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
561 lines
21 KiB
561 lines
21 KiB
#include "AP_Frsky_SPort_Passthrough.h" |
|
|
|
#include <AP_AHRS/AP_AHRS.h> |
|
#include <AP_BattMonitor/AP_BattMonitor.h> |
|
#include <AP_GPS/AP_GPS.h> |
|
#include <AP_HAL/utility/RingBuffer.h> |
|
#include <AP_InertialSensor/AP_InertialSensor.h> |
|
#include <AP_Notify/AP_Notify.h> |
|
#include <AP_RangeFinder/AP_RangeFinder.h> |
|
#include <GCS_MAVLink/GCS.h> |
|
|
|
/* |
|
for FrSky SPort Passthrough |
|
*/ |
|
// data bits preparation |
|
// for parameter data |
|
#define PARAM_ID_OFFSET 24 |
|
#define PARAM_VALUE_LIMIT 0xFFFFFF |
|
// for gps status data |
|
#define GPS_SATS_LIMIT 0xF |
|
#define GPS_STATUS_LIMIT 0x3 |
|
#define GPS_STATUS_OFFSET 4 |
|
#define GPS_HDOP_OFFSET 6 |
|
#define GPS_ADVSTATUS_OFFSET 14 |
|
#define GPS_ALTMSL_OFFSET 22 |
|
// for battery data |
|
#define BATT_VOLTAGE_LIMIT 0x1FF |
|
#define BATT_CURRENT_OFFSET 9 |
|
#define BATT_TOTALMAH_LIMIT 0x7FFF |
|
#define BATT_TOTALMAH_OFFSET 17 |
|
// for autopilot status data |
|
#define AP_CONTROL_MODE_LIMIT 0x1F |
|
#define AP_SIMPLE_OFFSET 5 |
|
#define AP_SSIMPLE_OFFSET 6 |
|
#define AP_FLYING_OFFSET 7 |
|
#define AP_ARMED_OFFSET 8 |
|
#define AP_BATT_FS_OFFSET 9 |
|
#define AP_EKF_FS_OFFSET 10 |
|
#define AP_IMU_TEMP_MIN 19.0f |
|
#define AP_IMU_TEMP_MAX 82.0f |
|
#define AP_IMU_TEMP_OFFSET 26 |
|
// for home position related data |
|
#define HOME_ALT_OFFSET 12 |
|
#define HOME_BEARING_LIMIT 0x7F |
|
#define HOME_BEARING_OFFSET 25 |
|
// for velocity and yaw data |
|
#define VELANDYAW_XYVEL_OFFSET 9 |
|
#define VELANDYAW_YAW_LIMIT 0x7FF |
|
#define VELANDYAW_YAW_OFFSET 17 |
|
// for attitude (roll, pitch) and range data |
|
#define ATTIANDRNG_ROLL_LIMIT 0x7FF |
|
#define ATTIANDRNG_PITCH_LIMIT 0x3FF |
|
#define ATTIANDRNG_PITCH_OFFSET 11 |
|
#define ATTIANDRNG_RNGFND_OFFSET 21 |
|
|
|
bool AP_Frsky_SPort_Passthrough::init() |
|
{ |
|
if (!AP_RCTelemetry::init()) { |
|
return false; |
|
} |
|
return AP_Frsky_SPort::init(); |
|
} |
|
|
|
bool AP_Frsky_SPort_Passthrough::init_serial_port() |
|
{ |
|
if (_use_external_data) { |
|
return true; |
|
} |
|
return AP_Frsky_SPort::init_serial_port(); |
|
} |
|
|
|
void AP_Frsky_SPort_Passthrough::send_sport_frame(uint8_t frame, uint16_t appid, uint32_t data) |
|
{ |
|
if (_use_external_data) { |
|
external_data.frame = frame; |
|
external_data.appid = appid; |
|
external_data.data = data; |
|
external_data.pending = true; |
|
return; |
|
} |
|
|
|
return AP_Frsky_SPort::send_sport_frame(frame, appid, data); |
|
} |
|
|
|
/* |
|
setup ready for passthrough telem |
|
*/ |
|
void AP_Frsky_SPort_Passthrough::setup_wfq_scheduler(void) |
|
{ |
|
// initialize packet weights for the WFQ scheduler |
|
// priority[i] = 1/_scheduler.packet_weight[i] |
|
// rate[i] = LinkRate * ( priority[i] / (sum(priority[1-n])) ) |
|
set_scheduler_entry(TEXT, 35, 28); // 0x5000 status text (dynamic) |
|
set_scheduler_entry(ATTITUDE, 50, 38); // 0x5006 Attitude and range (dynamic) |
|
set_scheduler_entry(GPS_LAT, 550, 280); // 0x800 GPS lat |
|
set_scheduler_entry(GPS_LON, 550, 280); // 0x800 GPS lon |
|
set_scheduler_entry(VEL_YAW, 400, 250); // 0x5005 Vel and Yaw |
|
set_scheduler_entry(AP_STATUS, 700, 500); // 0x5001 AP status |
|
set_scheduler_entry(GPS_STATUS, 700, 500); // 0x5002 GPS status |
|
set_scheduler_entry(HOME, 400, 500); // 0x5004 Home |
|
set_scheduler_entry(BATT_2, 1300, 500); // 0x5008 Battery 2 status |
|
set_scheduler_entry(BATT_1, 1300, 500); // 0x5008 Battery 1 status |
|
set_scheduler_entry(PARAM, 1700, 1000); // 0x5007 parameters |
|
} |
|
|
|
void AP_Frsky_SPort_Passthrough::adjust_packet_weight(bool queue_empty) |
|
{ |
|
if (!queue_empty) { |
|
_scheduler.packet_weight[TEXT] = 45; // messages |
|
_scheduler.packet_weight[ATTITUDE] = 80; // attitude |
|
} else { |
|
_scheduler.packet_weight[TEXT] = 5000; // messages |
|
_scheduler.packet_weight[ATTITUDE] = 45; // attitude |
|
} |
|
} |
|
|
|
// WFQ scheduler |
|
bool AP_Frsky_SPort_Passthrough::is_packet_ready(uint8_t idx, bool queue_empty) |
|
{ |
|
bool packet_ready = false; |
|
switch (idx) { |
|
case TEXT: |
|
packet_ready = !queue_empty; |
|
break; |
|
case AP_STATUS: |
|
packet_ready = gcs().vehicle_initialised(); |
|
break; |
|
case BATT_2: |
|
packet_ready = AP::battery().num_instances() > 1; |
|
break; |
|
default: |
|
packet_ready = true; |
|
break; |
|
} |
|
|
|
return packet_ready; |
|
} |
|
|
|
/* |
|
* WFQ scheduler |
|
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers) |
|
*/ |
|
void AP_Frsky_SPort_Passthrough::process_packet(uint8_t idx) |
|
{ |
|
// send packet |
|
switch (idx) { |
|
case TEXT: // 0x5000 status text |
|
if (get_next_msg_chunk()) { |
|
send_sport_frame(SPORT_DATA_FRAME, DIY_FIRST_ID, _msg_chunk.chunk); |
|
} |
|
break; |
|
case ATTITUDE: // 0x5006 Attitude and range |
|
send_sport_frame(SPORT_DATA_FRAME, DIY_FIRST_ID+6, calc_attiandrng()); |
|
break; |
|
case GPS_LAT: // 0x800 GPS lat |
|
// sample both lat and lon at the same time |
|
send_sport_frame(SPORT_DATA_FRAME, GPS_LONG_LATI_FIRST_ID, calc_gps_latlng(&_passthrough.send_latitude)); // gps latitude or longitude |
|
_passthrough.gps_lng_sample = calc_gps_latlng(&_passthrough.send_latitude); |
|
// force the scheduler to select GPS lon as packet that's been waiting the most |
|
// this guarantees that gps coords are sent at max |
|
// _scheduler.avg_polling_period*number_of_downlink_sensors time separation |
|
_scheduler.packet_timer[GPS_LON] = _scheduler.packet_timer[GPS_LAT] - 10000; |
|
break; |
|
case GPS_LON: // 0x800 GPS lon |
|
send_sport_frame(SPORT_DATA_FRAME, GPS_LONG_LATI_FIRST_ID, _passthrough.gps_lng_sample); // gps longitude |
|
break; |
|
case VEL_YAW: // 0x5005 Vel and Yaw |
|
send_sport_frame(SPORT_DATA_FRAME, DIY_FIRST_ID+5, calc_velandyaw()); |
|
break; |
|
case AP_STATUS: // 0x5001 AP status |
|
send_sport_frame(SPORT_DATA_FRAME, DIY_FIRST_ID+1, calc_ap_status()); |
|
break; |
|
case GPS_STATUS: // 0x5002 GPS Status |
|
send_sport_frame(SPORT_DATA_FRAME, DIY_FIRST_ID+2, calc_gps_status()); |
|
break; |
|
case HOME: // 0x5004 Home |
|
send_sport_frame(SPORT_DATA_FRAME, DIY_FIRST_ID+4, calc_home()); |
|
break; |
|
case BATT_2: // 0x5008 Battery 2 status |
|
send_sport_frame(SPORT_DATA_FRAME, DIY_FIRST_ID+8, calc_batt(1)); |
|
break; |
|
case BATT_1: // 0x5003 Battery 1 status |
|
send_sport_frame(SPORT_DATA_FRAME, DIY_FIRST_ID+3, calc_batt(0)); |
|
break; |
|
case PARAM: // 0x5007 parameters |
|
send_sport_frame(SPORT_DATA_FRAME, DIY_FIRST_ID+7, calc_param()); |
|
break; |
|
} |
|
} |
|
|
|
/* |
|
* send telemetry data |
|
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers) |
|
*/ |
|
void AP_Frsky_SPort_Passthrough::send(void) |
|
{ |
|
int16_t numc; |
|
numc = _port->available(); |
|
|
|
// check if available is negative |
|
if (numc < 0) { |
|
return; |
|
} |
|
|
|
// this is the constant for hub data frame |
|
if (_port->txspace() < 19) { |
|
return; |
|
} |
|
// keep only the last two bytes of the data found in the serial buffer, as we shouldn't respond to old poll requests |
|
uint8_t prev_byte = 0; |
|
for (int16_t i = 0; i < numc; i++) { |
|
prev_byte = _passthrough.new_byte; |
|
_passthrough.new_byte = _port->read(); |
|
} |
|
if (prev_byte == FRAME_HEAD) { |
|
if (_passthrough.new_byte == SENSOR_ID_27) { // byte 0x7E is the header of each poll request |
|
run_wfq_scheduler(); |
|
} |
|
} |
|
} |
|
|
|
/* |
|
* grabs one "chunk" (4 bytes) of the queued message to be transmitted |
|
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers) |
|
*/ |
|
bool AP_Frsky_SPort_Passthrough::get_next_msg_chunk(void) |
|
{ |
|
if (!_statustext.available) { |
|
WITH_SEMAPHORE(_statustext.sem); |
|
if (!_statustext.queue.pop(_statustext.next)) { |
|
return false; |
|
} |
|
_statustext.available = true; |
|
} |
|
|
|
if (_msg_chunk.repeats == 0) { // if it's the first time get_next_msg_chunk is called for a given chunk |
|
uint8_t character = 0; |
|
_msg_chunk.chunk = 0; // clear the 4 bytes of the chunk buffer |
|
|
|
for (int i = 3; i > -1 && _msg_chunk.char_index < sizeof(_statustext.next.text); i--) { |
|
character = _statustext.next.text[_msg_chunk.char_index++]; |
|
|
|
if (!character) { |
|
break; |
|
} |
|
|
|
_msg_chunk.chunk |= character << i * 8; |
|
} |
|
|
|
if (!character || (_msg_chunk.char_index == sizeof(_statustext.next.text))) { // we've reached the end of the message (string terminated by '\0' or last character of the string has been processed) |
|
_msg_chunk.char_index = 0; // reset index to get ready to process the next message |
|
// add severity which is sent as the MSB of the last three bytes of the last chunk (bits 24, 16, and 8) since a character is on 7 bits |
|
_msg_chunk.chunk |= (_statustext.next.severity & 0x4)<<21; |
|
_msg_chunk.chunk |= (_statustext.next.severity & 0x2)<<14; |
|
_msg_chunk.chunk |= (_statustext.next.severity & 0x1)<<7; |
|
} |
|
} |
|
|
|
// repeat each message chunk 3 times to ensure transmission |
|
// on slow links reduce the number of duplicate chunks |
|
uint8_t extra_chunks = 2; |
|
|
|
if (_scheduler.avg_packet_rate < 20) { |
|
// with 3 or more extra frsky sensors on the bus |
|
// send messages only once |
|
extra_chunks = 0; |
|
} else if (_scheduler.avg_packet_rate < 30) { |
|
// with 1 or 2 extra frsky sensors on the bus |
|
// send messages twice |
|
extra_chunks = 1; |
|
} |
|
|
|
if (_msg_chunk.repeats++ > extra_chunks ) { |
|
_msg_chunk.repeats = 0; |
|
if (_msg_chunk.char_index == 0) { |
|
// we're ready for the next message |
|
_statustext.available = false; |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
/* |
|
* prepare parameter data |
|
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers) |
|
*/ |
|
uint32_t AP_Frsky_SPort_Passthrough::calc_param(void) |
|
{ |
|
const AP_BattMonitor &_battery = AP::battery(); |
|
|
|
uint32_t param = 0; |
|
uint8_t last_param = AP::battery().num_instances() > 1 ? BATT_CAPACITY_2 : BATT_CAPACITY_1; |
|
|
|
// cycle through paramIDs |
|
if (_paramID >= last_param) { |
|
_paramID = 0; |
|
} |
|
|
|
_paramID++; |
|
switch (_paramID) { |
|
case FRAME_TYPE: |
|
param = gcs().frame_type(); // see MAV_TYPE in Mavlink definition file common.h |
|
break; |
|
case BATT_FS_VOLTAGE: // was used to send the battery failsafe voltage, lend slot to next param |
|
case BATT_FS_CAPACITY: // was used to send the battery failsafe capacity in mAh, lend slot to next param |
|
case BATT_CAPACITY_1: |
|
_paramID = 4; |
|
param = (uint32_t)roundf(_battery.pack_capacity_mah(0)); // battery pack capacity in mAh |
|
break; |
|
case BATT_CAPACITY_2: |
|
param = (uint32_t)roundf(_battery.pack_capacity_mah(1)); // battery pack capacity in mAh |
|
break; |
|
} |
|
//Reserve first 8 bits for param ID, use other 24 bits to store parameter value |
|
param = (_paramID << PARAM_ID_OFFSET) | (param & PARAM_VALUE_LIMIT); |
|
|
|
return param; |
|
} |
|
|
|
/* |
|
* prepare gps status data |
|
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers) |
|
*/ |
|
uint32_t AP_Frsky_SPort_Passthrough::calc_gps_status(void) |
|
{ |
|
const AP_GPS &gps = AP::gps(); |
|
|
|
uint32_t gps_status; |
|
|
|
// number of GPS satellites visible (limit to 15 (0xF) since the value is stored on 4 bits) |
|
gps_status = (gps.num_sats() < GPS_SATS_LIMIT) ? gps.num_sats() : GPS_SATS_LIMIT; |
|
// GPS receiver status (limit to 0-3 (0x3) since the value is stored on 2 bits: NO_GPS = 0, NO_FIX = 1, GPS_OK_FIX_2D = 2, GPS_OK_FIX_3D or GPS_OK_FIX_3D_DGPS or GPS_OK_FIX_3D_RTK_FLOAT or GPS_OK_FIX_3D_RTK_FIXED = 3) |
|
gps_status |= ((gps.status() < GPS_STATUS_LIMIT) ? gps.status() : GPS_STATUS_LIMIT)<<GPS_STATUS_OFFSET; |
|
// GPS horizontal dilution of precision in dm |
|
gps_status |= prep_number(roundf(gps.get_hdop() * 0.1f),2,1)<<GPS_HDOP_OFFSET; |
|
// GPS receiver advanced status (0: no advanced fix, 1: GPS_OK_FIX_3D_DGPS, 2: GPS_OK_FIX_3D_RTK_FLOAT, 3: GPS_OK_FIX_3D_RTK_FIXED) |
|
gps_status |= ((gps.status() > GPS_STATUS_LIMIT) ? gps.status()-GPS_STATUS_LIMIT : 0)<<GPS_ADVSTATUS_OFFSET; |
|
// Altitude MSL in dm |
|
const Location &loc = gps.location(); |
|
gps_status |= prep_number(roundf(loc.alt * 0.1f),2,2)<<GPS_ALTMSL_OFFSET; |
|
return gps_status; |
|
} |
|
|
|
/* |
|
* prepare battery data |
|
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers) |
|
*/ |
|
uint32_t AP_Frsky_SPort_Passthrough::calc_batt(uint8_t instance) |
|
{ |
|
const AP_BattMonitor &_battery = AP::battery(); |
|
|
|
uint32_t batt; |
|
float current, consumed_mah; |
|
if (!_battery.current_amps(current, instance)) { |
|
current = 0; |
|
} |
|
if (!_battery.consumed_mah(consumed_mah, instance)) { |
|
consumed_mah = 0; |
|
} |
|
|
|
// battery voltage in decivolts, can have up to a 12S battery (4.25Vx12S = 51.0V) |
|
batt = (((uint16_t)roundf(_battery.voltage(instance) * 10.0f)) & BATT_VOLTAGE_LIMIT); |
|
// battery current draw in deciamps |
|
batt |= prep_number(roundf(current * 10.0f), 2, 1)<<BATT_CURRENT_OFFSET; |
|
// battery current drawn since power on in mAh (limit to 32767 (0x7FFF) since value is stored on 15 bits) |
|
batt |= ((consumed_mah < BATT_TOTALMAH_LIMIT) ? ((uint16_t)roundf(consumed_mah) & BATT_TOTALMAH_LIMIT) : BATT_TOTALMAH_LIMIT)<<BATT_TOTALMAH_OFFSET; |
|
return batt; |
|
} |
|
|
|
/* |
|
* prepare various autopilot status data |
|
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers) |
|
*/ |
|
uint32_t AP_Frsky_SPort_Passthrough::calc_ap_status(void) |
|
{ |
|
uint32_t ap_status; |
|
|
|
// IMU temperature: offset -19, 0 means temp =< 19°, 63 means temp => 82° |
|
uint8_t imu_temp = (uint8_t) roundf(constrain_float(AP::ins().get_temperature(0), AP_IMU_TEMP_MIN, AP_IMU_TEMP_MAX) - AP_IMU_TEMP_MIN); |
|
|
|
// control/flight mode number (limit to 31 (0x1F) since the value is stored on 5 bits) |
|
ap_status = (uint8_t)((gcs().custom_mode()+1) & AP_CONTROL_MODE_LIMIT); |
|
// simple/super simple modes flags |
|
ap_status |= (uint8_t)(gcs().simple_input_active())<<AP_SIMPLE_OFFSET; |
|
ap_status |= (uint8_t)(gcs().supersimple_input_active())<<AP_SSIMPLE_OFFSET; |
|
// is_flying flag |
|
ap_status |= (uint8_t)(AP_Notify::flags.flying) << AP_FLYING_OFFSET; |
|
// armed flag |
|
ap_status |= (uint8_t)(AP_Notify::flags.armed)<<AP_ARMED_OFFSET; |
|
// battery failsafe flag |
|
ap_status |= (uint8_t)(AP_Notify::flags.failsafe_battery)<<AP_BATT_FS_OFFSET; |
|
// bad ekf flag |
|
ap_status |= (uint8_t)(AP_Notify::flags.ekf_bad)<<AP_EKF_FS_OFFSET; |
|
// IMU temperature |
|
ap_status |= imu_temp << AP_IMU_TEMP_OFFSET; |
|
//hal.console->printf("flying=%d\n",AP_Notify::flags.flying); |
|
//hal.console->printf("ap_status=%08X\n",ap_status); |
|
return ap_status; |
|
} |
|
|
|
/* |
|
* prepare home position related data |
|
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers) |
|
*/ |
|
uint32_t AP_Frsky_SPort_Passthrough::calc_home(void) |
|
{ |
|
uint32_t home = 0; |
|
Location loc; |
|
Location home_loc; |
|
bool get_position; |
|
float _relative_home_altitude = 0; |
|
|
|
{ |
|
AP_AHRS &_ahrs = AP::ahrs(); |
|
WITH_SEMAPHORE(_ahrs.get_semaphore()); |
|
get_position = _ahrs.get_position(loc); |
|
home_loc = _ahrs.get_home(); |
|
} |
|
|
|
if (get_position) { |
|
// check home_loc is valid |
|
if (home_loc.lat != 0 || home_loc.lng != 0) { |
|
// distance between vehicle and home_loc in meters |
|
home = prep_number(roundf(home_loc.get_distance(loc)), 3, 2); |
|
// angle from front of vehicle to the direction of home_loc in 3 degree increments (just in case, limit to 127 (0x7F) since the value is stored on 7 bits) |
|
home |= (((uint8_t)roundf(loc.get_bearing_to(home_loc) * 0.00333f)) & HOME_BEARING_LIMIT)<<HOME_BEARING_OFFSET; |
|
} |
|
// altitude between vehicle and home_loc |
|
_relative_home_altitude = loc.alt; |
|
if (!loc.relative_alt) { |
|
// loc.alt has home altitude added, remove it |
|
_relative_home_altitude -= home_loc.alt; |
|
} |
|
} |
|
// altitude above home in decimeters |
|
home |= prep_number(roundf(_relative_home_altitude * 0.1f), 3, 2)<<HOME_ALT_OFFSET; |
|
return home; |
|
} |
|
|
|
/* |
|
* prepare velocity and yaw data |
|
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers) |
|
*/ |
|
uint32_t AP_Frsky_SPort_Passthrough::calc_velandyaw(void) |
|
{ |
|
float vspd = get_vspeed_ms(); |
|
// vertical velocity in dm/s |
|
uint32_t velandyaw = prep_number(roundf(vspd * 10), 2, 1); |
|
AP_AHRS &_ahrs = AP::ahrs(); |
|
WITH_SEMAPHORE(_ahrs.get_semaphore()); |
|
// horizontal velocity in dm/s (use airspeed if available and enabled - even if not used - otherwise use groundspeed) |
|
const AP_Airspeed *aspeed = _ahrs.get_airspeed(); |
|
if (aspeed && aspeed->enabled()) { |
|
velandyaw |= prep_number(roundf(aspeed->get_airspeed() * 10), 2, 1)<<VELANDYAW_XYVEL_OFFSET; |
|
} else { // otherwise send groundspeed estimate from ahrs |
|
velandyaw |= prep_number(roundf(_ahrs.groundspeed() * 10), 2, 1)<<VELANDYAW_XYVEL_OFFSET; |
|
} |
|
// yaw from [0;36000] centidegrees to .2 degree increments [0;1800] (just in case, limit to 2047 (0x7FF) since the value is stored on 11 bits) |
|
velandyaw |= ((uint16_t)roundf(_ahrs.yaw_sensor * 0.05f) & VELANDYAW_YAW_LIMIT)<<VELANDYAW_YAW_OFFSET; |
|
return velandyaw; |
|
} |
|
|
|
/* |
|
* prepare attitude (roll, pitch) and range data |
|
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers) |
|
*/ |
|
uint32_t AP_Frsky_SPort_Passthrough::calc_attiandrng(void) |
|
{ |
|
const RangeFinder *_rng = RangeFinder::get_singleton(); |
|
|
|
uint32_t attiandrng; |
|
AP_AHRS &_ahrs = AP::ahrs(); |
|
// roll from [-18000;18000] centidegrees to unsigned .2 degree increments [0;1800] (just in case, limit to 2047 (0x7FF) since the value is stored on 11 bits) |
|
attiandrng = ((uint16_t)roundf((_ahrs.roll_sensor + 18000) * 0.05f) & ATTIANDRNG_ROLL_LIMIT); |
|
// pitch from [-9000;9000] centidegrees to unsigned .2 degree increments [0;900] (just in case, limit to 1023 (0x3FF) since the value is stored on 10 bits) |
|
attiandrng |= ((uint16_t)roundf((_ahrs.pitch_sensor + 9000) * 0.05f) & ATTIANDRNG_PITCH_LIMIT)<<ATTIANDRNG_PITCH_OFFSET; |
|
// rangefinder measurement in cm |
|
attiandrng |= prep_number(_rng ? _rng->distance_cm_orient(ROTATION_PITCH_270) : 0, 3, 1)<<ATTIANDRNG_RNGFND_OFFSET; |
|
return attiandrng; |
|
} |
|
|
|
/* |
|
fetch Sport data for an external transport, such as FPort |
|
*/ |
|
bool AP_Frsky_SPort_Passthrough::get_telem_data(uint8_t &frame, uint16_t &appid, uint32_t &data) |
|
{ |
|
run_wfq_scheduler(); |
|
if (!external_data.pending) { |
|
return false; |
|
} |
|
frame = external_data.frame; |
|
appid = external_data.appid; |
|
data = external_data.data; |
|
external_data.pending = false; |
|
return true; |
|
} |
|
|
|
/* |
|
* prepare value for transmission through FrSky link |
|
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers) |
|
*/ |
|
uint16_t AP_Frsky_SPort_Passthrough::prep_number(int32_t number, uint8_t digits, uint8_t power) |
|
{ |
|
uint16_t res = 0; |
|
uint32_t abs_number = abs(number); |
|
|
|
if ((digits == 2) && (power == 1)) { // number encoded on 8 bits: 7 bits for digits + 1 for 10^power |
|
if (abs_number < 100) { |
|
res = abs_number<<1; |
|
} else if (abs_number < 1270) { |
|
res = ((uint8_t)roundf(abs_number * 0.1f)<<1)|0x1; |
|
} else { // transmit max possible value (0x7F x 10^1 = 1270) |
|
res = 0xFF; |
|
} |
|
if (number < 0) { // if number is negative, add sign bit in front |
|
res |= 0x1<<8; |
|
} |
|
} else if ((digits == 2) && (power == 2)) { // number encoded on 9 bits: 7 bits for digits + 2 for 10^power |
|
if (abs_number < 100) { |
|
res = abs_number<<2; |
|
} else if (abs_number < 1000) { |
|
res = ((uint8_t)roundf(abs_number * 0.1f)<<2)|0x1; |
|
} else if (abs_number < 10000) { |
|
res = ((uint8_t)roundf(abs_number * 0.01f)<<2)|0x2; |
|
} else if (abs_number < 127000) { |
|
res = ((uint8_t)roundf(abs_number * 0.001f)<<2)|0x3; |
|
} else { // transmit max possible value (0x7F x 10^3 = 127000) |
|
res = 0x1FF; |
|
} |
|
if (number < 0) { // if number is negative, add sign bit in front |
|
res |= 0x1<<9; |
|
} |
|
} else if ((digits == 3) && (power == 1)) { // number encoded on 11 bits: 10 bits for digits + 1 for 10^power |
|
if (abs_number < 1000) { |
|
res = abs_number<<1; |
|
} else if (abs_number < 10240) { |
|
res = ((uint16_t)roundf(abs_number * 0.1f)<<1)|0x1; |
|
} else { // transmit max possible value (0x3FF x 10^1 = 10240) |
|
res = 0x7FF; |
|
} |
|
if (number < 0) { // if number is negative, add sign bit in front |
|
res |= 0x1<<11; |
|
} |
|
} else if ((digits == 3) && (power == 2)) { // number encoded on 12 bits: 10 bits for digits + 2 for 10^power |
|
if (abs_number < 1000) { |
|
res = abs_number<<2; |
|
} else if (abs_number < 10000) { |
|
res = ((uint16_t)roundf(abs_number * 0.1f)<<2)|0x1; |
|
} else if (abs_number < 100000) { |
|
res = ((uint16_t)roundf(abs_number * 0.01f)<<2)|0x2; |
|
} else if (abs_number < 1024000) { |
|
res = ((uint16_t)roundf(abs_number * 0.001f)<<2)|0x3; |
|
} else { // transmit max possible value (0x3FF x 10^3 = 127000) |
|
res = 0xFFF; |
|
} |
|
if (number < 0) { // if number is negative, add sign bit in front |
|
res |= 0x1<<12; |
|
} |
|
} |
|
return res; |
|
}
|
|
|