You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
204 lines
6.9 KiB
204 lines
6.9 KiB
/* |
|
* This file is free software: you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License as published by the |
|
* Free Software Foundation, either version 3 of the License, or |
|
* (at your option) any later version. |
|
* |
|
* This file is distributed in the hope that it will be useful, but |
|
* WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
|
* See the GNU General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public License along |
|
* with this program. If not, see <http://www.gnu.org/licenses/>. |
|
* |
|
* Code by Andy Piper |
|
*/ |
|
|
|
#include <AP_HAL/AP_HAL.h> |
|
|
|
#include "AP_HAL_SITL.h" |
|
#include <AP_Math/AP_Math.h> |
|
#include <GCS_MAVLink/GCS.h> |
|
#include "DSP.h" |
|
#include <cmath> |
|
#include <assert.h> |
|
|
|
using namespace HALSITL; |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
// The algorithms originally came from betaflight but are now substantially modified based on theory and experiment. |
|
// https://holometer.fnal.gov/GH_FFT.pdf "Spectrum and spectral density estimation by the Discrete Fourier transform (DFT), |
|
// including a comprehensive list of window functions and some new flat-top windows." - Heinzel et. al is a great reference |
|
// for understanding the underlying theory although we do not use spectral density here since time resolution is equally |
|
// important as frequency resolution. Referred to as [Heinz] throughout the code. |
|
|
|
// initialize the FFT state machine |
|
AP_HAL::DSP::FFTWindowState* DSP::fft_init(uint16_t window_size, uint16_t sample_rate, uint8_t harmonics) |
|
{ |
|
DSP::FFTWindowStateSITL* fft = new DSP::FFTWindowStateSITL(window_size, sample_rate, harmonics); |
|
if (fft == nullptr || fft->_hanning_window == nullptr || fft->_rfft_data == nullptr || fft->_freq_bins == nullptr || fft->_derivative_freq_bins == nullptr) { |
|
delete fft; |
|
return nullptr; |
|
} |
|
return fft; |
|
} |
|
|
|
// start an FFT analysis |
|
void DSP::fft_start(AP_HAL::DSP::FFTWindowState* state, FloatBuffer& samples, uint16_t advance) |
|
{ |
|
step_hanning((FFTWindowStateSITL*)state, samples, advance); |
|
} |
|
|
|
// perform remaining steps of an FFT analysis |
|
uint16_t DSP::fft_analyse(AP_HAL::DSP::FFTWindowState* state, uint16_t start_bin, uint16_t end_bin, float noise_att_cutoff) |
|
{ |
|
FFTWindowStateSITL* fft = (FFTWindowStateSITL*)state; |
|
step_fft(fft); |
|
step_cmplx_mag(fft, start_bin, end_bin, noise_att_cutoff); |
|
return step_calc_frequencies(fft, start_bin, end_bin); |
|
} |
|
|
|
// create an instance of the FFT state machine |
|
DSP::FFTWindowStateSITL::FFTWindowStateSITL(uint16_t window_size, uint16_t sample_rate, uint8_t harmonics) |
|
: AP_HAL::DSP::FFTWindowState::FFTWindowState(window_size, sample_rate, harmonics) |
|
{ |
|
if (_freq_bins == nullptr || _hanning_window == nullptr || _rfft_data == nullptr || _derivative_freq_bins == nullptr) { |
|
GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "Failed to allocate window for DSP"); |
|
return; |
|
} |
|
|
|
buf = new complexf[window_size]; |
|
} |
|
|
|
DSP::FFTWindowStateSITL::~FFTWindowStateSITL() |
|
{ |
|
delete[] buf; |
|
} |
|
|
|
// step 1: filter the incoming samples through a Hanning window |
|
void DSP::step_hanning(FFTWindowStateSITL* fft, FloatBuffer& samples, uint16_t advance) |
|
{ |
|
// 5us |
|
// apply hanning window to gyro samples and store result in _freq_bins |
|
// hanning starts and ends with 0, could be skipped for minor speed improvement |
|
uint32_t read_window = samples.peek(&fft->_freq_bins[0], fft->_window_size); |
|
if (read_window != fft->_window_size) { |
|
return; |
|
} |
|
samples.advance(advance); |
|
mult_f32(&fft->_freq_bins[0], &fft->_hanning_window[0], &fft->_freq_bins[0], fft->_window_size); |
|
} |
|
|
|
// step 2: performm an in-place FFT on the windowed data |
|
void DSP::step_fft(FFTWindowStateSITL* fft) |
|
{ |
|
for (uint16_t i = 0; i < fft->_window_size; i++) { |
|
fft->buf[i] = complexf(fft->_freq_bins[i], 0); |
|
} |
|
|
|
calculate_fft(fft->buf, fft->_window_size); |
|
|
|
for (uint16_t i = 0; i < fft->_bin_count; i++) { |
|
fft->_freq_bins[i] = std::norm(fft->buf[i]); |
|
} |
|
|
|
// components at the nyquist frequency are real only |
|
for (uint16_t i = 0, j = 0; i <= fft->_bin_count; i++, j += 2) { |
|
fft->_rfft_data[j] = fft->buf[i].real(); |
|
fft->_rfft_data[j+1] = fft->buf[i].imag(); |
|
} |
|
} |
|
|
|
void DSP::mult_f32(const float* v1, const float* v2, float* vout, uint16_t len) |
|
{ |
|
for (uint16_t i = 0; i < len; i++) { |
|
vout[i] = v1[i] * v2[i]; |
|
} |
|
} |
|
|
|
void DSP::vector_max_float(const float* vin, uint16_t len, float* maxValue, uint16_t* maxIndex) const |
|
{ |
|
*maxValue = vin[0]; |
|
*maxIndex = 0; |
|
for (uint16_t i = 1; i < len; i++) { |
|
if (vin[i] > *maxValue) { |
|
*maxValue = vin[i]; |
|
*maxIndex = i; |
|
} |
|
} |
|
} |
|
|
|
void DSP::vector_scale_float(const float* vin, float scale, float* vout, uint16_t len) const |
|
{ |
|
for (uint16_t i = 0; i < len; i++) { |
|
vout[i] = vin[i] * scale; |
|
} |
|
} |
|
|
|
float DSP::vector_mean_float(const float* vin, uint16_t len) const |
|
{ |
|
float mean_value = 0.0f; |
|
for (uint16_t i = 0; i < len; i++) { |
|
mean_value += vin[i]; |
|
} |
|
mean_value /= len; |
|
return mean_value; |
|
} |
|
|
|
// simple integer log2 |
|
static uint16_t fft_log2(uint16_t n) |
|
{ |
|
uint16_t k = n, i = 0; |
|
while (k) { |
|
k >>= 1; |
|
i++; |
|
} |
|
return i - 1; |
|
} |
|
|
|
// calculate the in-place FFT of the input using the Cooley–Tukey algorithm |
|
// this is a translation of Ron Nicholson's version in http://www.nicholson.com/dsp.fft1.html |
|
void DSP::calculate_fft(complexf *samples, uint16_t fftlen) |
|
{ |
|
uint16_t m = fft_log2(fftlen); |
|
// shuffle data using bit reversed addressing *** |
|
for (uint16_t k = 0; k < fftlen; k++) { |
|
// generate a bit reversed address for samples[k] *** |
|
uint16_t ki = k, kr = 0; |
|
for (uint16_t i=1; i<=m; i++) { |
|
kr <<= 1; // left shift result kr by 1 bit |
|
if (ki % 2 == 1) { |
|
kr++; |
|
} |
|
ki >>= 1; // right shift temp ki by 1 bit |
|
} |
|
// swap data samples[k] to bit reversed address samples[kr] |
|
if (kr > k) { |
|
complexf t = samples[kr]; |
|
samples[kr] = samples[k]; |
|
samples[k] = t; |
|
} |
|
} |
|
|
|
// do fft butterflys in place |
|
uint16_t istep = 2; |
|
while (istep <= fftlen) {// layers 2,4,8,16, ... ,n |
|
uint16_t is2 = istep / 2; |
|
uint16_t astep = fftlen / istep; |
|
for (uint16_t km = 0; km < is2; km++) { // outer row loop |
|
uint16_t a = km * astep; // twiddle angle index |
|
complexf w(sinf(2 * M_PI * (a+(fftlen/4)) / fftlen), sinf(2 * M_PI * a / fftlen)); |
|
for (uint16_t ki = 0; ki <= (fftlen - istep); ki += istep) { // inner column loop |
|
uint16_t i = km + ki; |
|
uint16_t j = is2 + i; |
|
complexf t = w * samples[j]; |
|
complexf q = samples[i]; |
|
samples[j] = q - t; |
|
samples[i] = q + t; |
|
} |
|
} |
|
istep <<= 1; |
|
} |
|
}
|
|
|