You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
212 lines
8.8 KiB
212 lines
8.8 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
#include "AP_Gimbal.h" |
|
|
|
#if AP_AHRS_NAVEKF_AVAILABLE |
|
|
|
#include <stdio.h> |
|
#include <AP_Common/AP_Common.h> |
|
#include <GCS_MAVLink/GCS.h> |
|
#include <AP_NavEKF/AP_SmallEKF.h> |
|
#include <AP_Math/AP_Math.h> |
|
|
|
void AP_Gimbal::receive_feedback(mavlink_channel_t chan, mavlink_message_t *msg) |
|
{ |
|
decode_feedback(msg); |
|
update_state(); |
|
if (_ekf.getStatus() && !isCopterFlipped() && !is_zero(_gimbalParams.K_gimbalRate)){ |
|
send_control(chan); |
|
} |
|
|
|
Quaternion quatEst;_ekf.getQuat(quatEst);Vector3f eulerEst;quatEst.to_euler(eulerEst.x, eulerEst.y, eulerEst.z); |
|
//::printf("est=%1.1f %1.1f %1.1f %d\t", eulerEst.x,eulerEst.y,eulerEst.z,_ekf.getStatus()); |
|
//::printf("joint_angles=(%+1.2f %+1.2f %+1.2f)\t", _measurement.joint_angles.x,_measurement.joint_angles.y,_measurement.joint_angles.z); |
|
//::printf("delta_ang=(%+1.3f %+1.3f %+1.3f)\t",_measurement.delta_angles.x,_measurement.delta_angles.y,_measurement.delta_angles.z); |
|
//::printf("delta_vel=(%+1.3f %+1.3f %+1.3f)\t",_measurement.delta_velocity.x,_measurement.delta_velocity.y,_measurement.delta_velocity.z); |
|
//::printf("rate=(%+1.3f %+1.3f %+1.3f)\t",gimbalRateDemVec.x,gimbalRateDemVec.y,gimbalRateDemVec.z); |
|
//::printf("target=(%+1.3f %+1.3f %+1.3f)\t",_angle_ef_target_rad.x,_angle_ef_target_rad.y,_angle_ef_target_rad.z); |
|
//::printf("\n"); |
|
} |
|
|
|
void AP_Gimbal::decode_feedback(mavlink_message_t *msg) |
|
{ |
|
mavlink_msg_gimbal_report_decode(msg, &_report_msg); |
|
|
|
_measurement.delta_time = _report_msg.delta_time; |
|
_measurement.delta_angles.x = _report_msg.delta_angle_x; |
|
_measurement.delta_angles.y = _report_msg.delta_angle_y; |
|
_measurement.delta_angles.z = _report_msg.delta_angle_z; |
|
_measurement.delta_velocity.x = _report_msg.delta_velocity_x, |
|
_measurement.delta_velocity.y = _report_msg.delta_velocity_y; |
|
_measurement.delta_velocity.z = _report_msg.delta_velocity_z; |
|
_measurement.joint_angles.x = _report_msg.joint_roll; |
|
_measurement.joint_angles.y = _report_msg.joint_el; |
|
_measurement.joint_angles.z = _report_msg.joint_az; |
|
|
|
//apply joint angle compensation |
|
_measurement.joint_angles -= _gimbalParams.joint_angles_offsets; |
|
_measurement.delta_velocity -= _gimbalParams.delta_velocity_offsets; |
|
_measurement.delta_angles -= _gimbalParams.delta_angles_offsets; |
|
} |
|
|
|
/* |
|
send a gimbal report to the GCS for display purposes |
|
*/ |
|
void AP_Gimbal::send_report(mavlink_channel_t chan) const |
|
{ |
|
mavlink_msg_gimbal_report_send(chan, |
|
0, 0, // send as broadcast |
|
_report_msg.delta_time, |
|
_report_msg.delta_angle_x, |
|
_report_msg.delta_angle_y, |
|
_report_msg.delta_angle_z, |
|
_report_msg.delta_velocity_x, |
|
_report_msg.delta_velocity_y, |
|
_report_msg.delta_velocity_z, |
|
_report_msg.joint_roll, |
|
_report_msg.joint_el, |
|
_report_msg.joint_az); |
|
} |
|
|
|
void AP_Gimbal::update_state() |
|
{ |
|
// Run the gimbal attitude and gyro bias estimator |
|
_ekf.RunEKF(_measurement.delta_time, _measurement.delta_angles, _measurement.delta_velocity, _measurement.joint_angles); |
|
|
|
// get the gimbal quaternion estimate |
|
Quaternion quatEst; |
|
_ekf.getQuat(quatEst); |
|
|
|
// Add the control rate vectors |
|
gimbalRateDemVec.zero(); |
|
gimbalRateDemVec += getGimbalRateDemVecYaw(quatEst); |
|
gimbalRateDemVec += getGimbalRateDemVecTilt(quatEst); |
|
gimbalRateDemVec += getGimbalRateDemVecForward(quatEst); |
|
gimbalRateDemVec += getGimbalRateDemVecGyroBias(); |
|
} |
|
|
|
Vector3f AP_Gimbal::getGimbalRateDemVecYaw(const Quaternion &quatEst) |
|
{ |
|
// Define rotation from vehicle to gimbal using a 312 rotation sequence |
|
Matrix3f Tvg; |
|
float cosPhi = cosf(_measurement.joint_angles.x); |
|
float cosTheta = cosf(_measurement.joint_angles.y); |
|
float sinPhi = sinf(_measurement.joint_angles.x); |
|
float sinTheta = sinf(_measurement.joint_angles.y); |
|
float sinPsi = sinf(_measurement.joint_angles.z); |
|
float cosPsi = cosf(_measurement.joint_angles.z); |
|
Tvg[0][0] = cosTheta*cosPsi-sinPsi*sinPhi*sinTheta; |
|
Tvg[1][0] = -sinPsi*cosPhi; |
|
Tvg[2][0] = cosPsi*sinTheta+cosTheta*sinPsi*sinPhi; |
|
Tvg[0][1] = cosTheta*sinPsi+cosPsi*sinPhi*sinTheta; |
|
Tvg[1][1] = cosPsi*cosPhi; |
|
Tvg[2][1] = sinPsi*sinTheta-cosTheta*cosPsi*sinPhi; |
|
Tvg[0][2] = -sinTheta*cosPhi; |
|
Tvg[1][2] = sinPhi; |
|
Tvg[2][2] = cosTheta*cosPhi; |
|
|
|
// multiply the yaw joint angle by a gain to calculate a demanded vehicle frame relative rate vector required to keep the yaw joint centred |
|
Vector3f gimbalRateDemVecYaw; |
|
gimbalRateDemVecYaw.z = - _gimbalParams.K_gimbalRate * _measurement.joint_angles.z; |
|
|
|
// Get filtered vehicle turn rate in earth frame |
|
vehicleYawRateFilt = (1.0f - yawRateFiltPole * _measurement.delta_time) * vehicleYawRateFilt + yawRateFiltPole * _measurement.delta_time * _ahrs.get_yaw_rate_earth(); |
|
Vector3f vehicle_rate_ef(0,0,vehicleYawRateFilt); |
|
|
|
// calculate the maximum steady state rate error corresponding to the maximum permitted yaw angle error |
|
float maxRate = _gimbalParams.K_gimbalRate * yawErrorLimit; |
|
float vehicle_rate_mag_ef = vehicle_rate_ef.length(); |
|
float excess_rate_correction = fabsf(vehicle_rate_mag_ef) - maxRate; |
|
if (vehicle_rate_mag_ef > maxRate) { |
|
if (vehicle_rate_ef.z>0.0f){ |
|
gimbalRateDemVecYaw += _ahrs.get_dcm_matrix().transposed()*Vector3f(0,0,excess_rate_correction); |
|
} else { |
|
gimbalRateDemVecYaw -= _ahrs.get_dcm_matrix().transposed()*Vector3f(0,0,excess_rate_correction); |
|
} |
|
} |
|
|
|
// rotate into gimbal frame to calculate the gimbal rate vector required to keep the yaw gimbal centred |
|
gimbalRateDemVecYaw = Tvg * gimbalRateDemVecYaw; |
|
return gimbalRateDemVecYaw; |
|
} |
|
|
|
Vector3f AP_Gimbal::getGimbalRateDemVecTilt(const Quaternion &quatEst) |
|
{ |
|
// Calculate the gimbal 321 Euler angle estimates relative to earth frame |
|
Vector3f eulerEst = quatEst.to_vector312(); |
|
|
|
// Calculate a demanded quaternion using the demanded roll and pitch and estimated yaw (yaw is slaved to the vehicle) |
|
Quaternion quatDem; |
|
quatDem.from_vector312( _angle_ef_target_rad.x, |
|
_angle_ef_target_rad.y, |
|
eulerEst.z); |
|
|
|
//divide the demanded quaternion by the estimated to get the error |
|
Quaternion quatErr = quatDem / quatEst; |
|
|
|
// Convert to a delta rotation using a small angle approximation |
|
quatErr.normalize(); |
|
Vector3f deltaAngErr; |
|
float scaler; |
|
if (quatErr[0] >= 0.0f) { |
|
scaler = 2.0f; |
|
} else { |
|
scaler = -2.0f; |
|
} |
|
deltaAngErr.x = scaler * quatErr[1]; |
|
deltaAngErr.y = scaler * quatErr[2]; |
|
deltaAngErr.z = scaler * quatErr[3]; |
|
|
|
// multiply the angle error vector by a gain to calculate a demanded gimbal rate required to control tilt |
|
Vector3f gimbalRateDemVecTilt = deltaAngErr * _gimbalParams.K_gimbalRate; |
|
return gimbalRateDemVecTilt; |
|
} |
|
|
|
Vector3f AP_Gimbal::getGimbalRateDemVecForward(const Quaternion &quatEst) |
|
{ |
|
// quaternion demanded at the previous time step |
|
static float lastDem; |
|
|
|
// calculate the delta rotation from the last to the current demand where the demand does not incorporate the copters yaw rotation |
|
float delta = _angle_ef_target_rad.y - lastDem; |
|
lastDem = _angle_ef_target_rad.y; |
|
|
|
Vector3f gimbalRateDemVecForward; |
|
gimbalRateDemVecForward.y = delta / _measurement.delta_time; |
|
return gimbalRateDemVecForward; |
|
} |
|
|
|
Vector3f AP_Gimbal::getGimbalRateDemVecGyroBias() |
|
{ |
|
Vector3f gyroBias; |
|
_ekf.getGyroBias(gyroBias); |
|
return gyroBias; |
|
} |
|
|
|
void AP_Gimbal::send_control(mavlink_channel_t chan) |
|
{ |
|
mavlink_msg_gimbal_control_send(chan, mavlink_system.sysid, _compid, |
|
gimbalRateDemVec.x, gimbalRateDemVec.y, gimbalRateDemVec.z); |
|
} |
|
|
|
void AP_Gimbal::update_target(Vector3f newTarget) |
|
{ |
|
// Low-pass filter |
|
_angle_ef_target_rad.y = _angle_ef_target_rad.y + 0.02f*(newTarget.y - _angle_ef_target_rad.y); |
|
// Update tilt |
|
_angle_ef_target_rad.y = constrain_float(_angle_ef_target_rad.y,radians(-90),radians(0)); |
|
} |
|
|
|
Vector3f AP_Gimbal::getGimbalEstimateEF() |
|
{ |
|
Quaternion quatEst; |
|
_ekf.getQuat(quatEst); |
|
return quatEst.to_vector312(); |
|
} |
|
|
|
bool AP_Gimbal::isCopterFlipped() |
|
{ |
|
return (_ahrs.cos_roll()*_ahrs.cos_pitch() < 0.5f); |
|
} |
|
|
|
#endif // AP_AHRS_NAVEKF_AVAILABLE
|
|
|