You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
550 lines
19 KiB
550 lines
19 KiB
#include <AP_HAL/AP_HAL.h> |
|
#include <AP_AHRS/AP_AHRS.h> |
|
#include "SoloGimbal.h" |
|
|
|
#if HAL_SOLO_GIMBAL_ENABLED |
|
|
|
#include <stdio.h> |
|
#include <GCS_MAVLink/GCS.h> |
|
#include <AP_Logger/AP_Logger.h> |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
bool SoloGimbal::present() |
|
{ |
|
if (_state != GIMBAL_STATE_NOT_PRESENT && AP_HAL::millis()-_last_report_msg_ms > 3000) { |
|
// gimbal went away |
|
_state = GIMBAL_STATE_NOT_PRESENT; |
|
return false; |
|
} |
|
|
|
return _state != GIMBAL_STATE_NOT_PRESENT; |
|
} |
|
|
|
bool SoloGimbal::aligned() |
|
{ |
|
return present() && _state == GIMBAL_STATE_PRESENT_RUNNING; |
|
} |
|
|
|
gimbal_mode_t SoloGimbal::get_mode() |
|
{ |
|
const auto &_ahrs = AP::ahrs(); |
|
|
|
if ((_gimbalParams.initialized() && is_zero(_gimbalParams.get_K_rate())) || (_ahrs.get_rotation_body_to_ned().c.z < 0 && !(_lockedToBody || _calibrator.running()))) { |
|
return GIMBAL_MODE_IDLE; |
|
} else if (!_ekf.getStatus()) { |
|
return GIMBAL_MODE_POS_HOLD; |
|
} else if (_calibrator.running() || _lockedToBody) { |
|
return GIMBAL_MODE_POS_HOLD_FF; |
|
} else { |
|
return GIMBAL_MODE_STABILIZE; |
|
} |
|
} |
|
|
|
void SoloGimbal::receive_feedback(mavlink_channel_t chan, const mavlink_message_t &msg) |
|
{ |
|
mavlink_gimbal_report_t report_msg; |
|
mavlink_msg_gimbal_report_decode(&msg, &report_msg); |
|
uint32_t tnow_ms = AP_HAL::millis(); |
|
_last_report_msg_ms = tnow_ms; |
|
|
|
_gimbalParams.set_channel(chan); |
|
|
|
if (report_msg.target_system != 1) { |
|
_state = GIMBAL_STATE_NOT_PRESENT; |
|
} else { |
|
GCS_MAVLINK::set_channel_private(chan); |
|
} |
|
|
|
switch(_state) { |
|
case GIMBAL_STATE_NOT_PRESENT: |
|
// gimbal was just connected or we just rebooted, transition to PRESENT_INITIALIZING |
|
_gimbalParams.reset(); |
|
_gimbalParams.set_param(GMB_PARAM_GMB_SYSID, 1); |
|
_state = GIMBAL_STATE_PRESENT_INITIALIZING; |
|
break; |
|
|
|
case GIMBAL_STATE_PRESENT_INITIALIZING: |
|
_gimbalParams.update(); |
|
if (_gimbalParams.initialized()) { |
|
// parameters done initializing, finalize initialization and transition to aligning |
|
extract_feedback(report_msg); |
|
_ang_vel_mag_filt = 20; |
|
_filtered_joint_angles = _measurement.joint_angles; |
|
_vehicle_to_gimbal_quat_filt.from_vector312(_filtered_joint_angles.x,_filtered_joint_angles.y,_filtered_joint_angles.z); |
|
_ekf.reset(); |
|
_state = GIMBAL_STATE_PRESENT_ALIGNING; |
|
} |
|
break; |
|
|
|
case GIMBAL_STATE_PRESENT_ALIGNING: |
|
_gimbalParams.update(); |
|
extract_feedback(report_msg); |
|
update_estimators(); |
|
if (_ekf.getStatus()) { |
|
// EKF done aligning, transition to running |
|
_state = GIMBAL_STATE_PRESENT_RUNNING; |
|
} |
|
break; |
|
|
|
case GIMBAL_STATE_PRESENT_RUNNING: |
|
_gimbalParams.update(); |
|
extract_feedback(report_msg); |
|
update_estimators(); |
|
break; |
|
} |
|
|
|
send_controls(chan); |
|
} |
|
|
|
void SoloGimbal::send_controls(mavlink_channel_t chan) |
|
{ |
|
if (_state == GIMBAL_STATE_PRESENT_RUNNING) { |
|
// get the gimbal quaternion estimate |
|
Quaternion quatEst; |
|
_ekf.getQuat(quatEst); |
|
|
|
// run rate controller |
|
_ang_vel_dem_rads.zero(); |
|
switch(get_mode()) { |
|
case GIMBAL_MODE_POS_HOLD_FF: { |
|
_ang_vel_dem_rads += get_ang_vel_dem_body_lock(); |
|
_ang_vel_dem_rads += get_ang_vel_dem_gyro_bias(); |
|
float _ang_vel_dem_radsLen = _ang_vel_dem_rads.length(); |
|
if (_ang_vel_dem_radsLen > radians(400)) { |
|
_ang_vel_dem_rads *= radians(400)/_ang_vel_dem_radsLen; |
|
} |
|
if (HAVE_PAYLOAD_SPACE(chan, GIMBAL_CONTROL)) { |
|
mavlink_msg_gimbal_control_send(chan, mavlink_system.sysid, _compid, |
|
_ang_vel_dem_rads.x, _ang_vel_dem_rads.y, _ang_vel_dem_rads.z); |
|
} |
|
break; |
|
} |
|
case GIMBAL_MODE_STABILIZE: { |
|
_ang_vel_dem_rads += get_ang_vel_dem_yaw(quatEst); |
|
_ang_vel_dem_rads += get_ang_vel_dem_roll_tilt(quatEst); |
|
_ang_vel_dem_rads += get_ang_vel_dem_feedforward(quatEst); |
|
_ang_vel_dem_rads += get_ang_vel_dem_gyro_bias(); |
|
float ang_vel_dem_norm = _ang_vel_dem_rads.length(); |
|
if (ang_vel_dem_norm > radians(400)) { |
|
_ang_vel_dem_rads *= radians(400)/ang_vel_dem_norm; |
|
} |
|
if (HAVE_PAYLOAD_SPACE(chan, GIMBAL_CONTROL)) { |
|
mavlink_msg_gimbal_control_send(chan, mavlink_system.sysid, _compid, |
|
_ang_vel_dem_rads.x, _ang_vel_dem_rads.y, _ang_vel_dem_rads.z); |
|
} |
|
break; |
|
} |
|
default: |
|
case GIMBAL_MODE_IDLE: |
|
case GIMBAL_MODE_POS_HOLD: |
|
break; |
|
} |
|
} |
|
|
|
// set GMB_POS_HOLD |
|
if (get_mode() == GIMBAL_MODE_POS_HOLD) { |
|
_gimbalParams.set_param(GMB_PARAM_GMB_POS_HOLD, 1); |
|
} else { |
|
_gimbalParams.set_param(GMB_PARAM_GMB_POS_HOLD, 0); |
|
} |
|
|
|
// set GMB_MAX_TORQUE |
|
float max_torque; |
|
_gimbalParams.get_param(GMB_PARAM_GMB_MAX_TORQUE, max_torque, 0); |
|
if (!is_equal(max_torque,_max_torque) && !is_zero(max_torque)) { |
|
_max_torque = max_torque; |
|
} |
|
|
|
if (!hal.util->get_soft_armed() || joints_near_limits()) { |
|
_gimbalParams.set_param(GMB_PARAM_GMB_MAX_TORQUE, _max_torque); |
|
} else { |
|
_gimbalParams.set_param(GMB_PARAM_GMB_MAX_TORQUE, 0); |
|
} |
|
} |
|
|
|
void SoloGimbal::extract_feedback(const mavlink_gimbal_report_t& report_msg) |
|
{ |
|
_measurement.delta_time = report_msg.delta_time; |
|
_measurement.delta_angles.x = report_msg.delta_angle_x; |
|
_measurement.delta_angles.y = report_msg.delta_angle_y; |
|
_measurement.delta_angles.z = report_msg.delta_angle_z; |
|
_measurement.delta_velocity.x = report_msg.delta_velocity_x, |
|
_measurement.delta_velocity.y = report_msg.delta_velocity_y; |
|
_measurement.delta_velocity.z = report_msg.delta_velocity_z; |
|
_measurement.joint_angles.x = report_msg.joint_roll; |
|
_measurement.joint_angles.y = report_msg.joint_el; |
|
_measurement.joint_angles.z = report_msg.joint_az; |
|
|
|
if (_calibrator.get_status() == ACCEL_CAL_COLLECTING_SAMPLE) { |
|
_calibrator.new_sample(_measurement.delta_velocity,_measurement.delta_time); |
|
} |
|
|
|
_measurement.delta_angles -= _gimbalParams.get_gyro_bias() * _measurement.delta_time; |
|
_measurement.joint_angles -= _gimbalParams.get_joint_bias(); |
|
_measurement.delta_velocity -= _gimbalParams.get_accel_bias() * _measurement.delta_time; |
|
Vector3f accel_gain = _gimbalParams.get_accel_gain(); |
|
_measurement.delta_velocity.x *= (is_zero(accel_gain.x) ? 1.0f : accel_gain.x); |
|
_measurement.delta_velocity.y *= (is_zero(accel_gain.y) ? 1.0f : accel_gain.y); |
|
_measurement.delta_velocity.z *= (is_zero(accel_gain.z) ? 1.0f : accel_gain.z); |
|
|
|
// update _ang_vel_mag_filt, used for accel sample readiness |
|
Vector3f ang_vel = _measurement.delta_angles / _measurement.delta_time; |
|
Vector3f ekf_gyro_bias; |
|
_ekf.getGyroBias(ekf_gyro_bias); |
|
ang_vel -= ekf_gyro_bias; |
|
float alpha = constrain_float(_measurement.delta_time/(_measurement.delta_time+0.5f),0.0f,1.0f); |
|
_ang_vel_mag_filt += (ang_vel.length()-_ang_vel_mag_filt)*alpha; |
|
_ang_vel_mag_filt = MIN(_ang_vel_mag_filt,20.0f); |
|
|
|
// get complementary filter inputs |
|
_vehicle_to_gimbal_quat.from_vector312(_measurement.joint_angles.x,_measurement.joint_angles.y,_measurement.joint_angles.z); |
|
|
|
// update log deltas |
|
_log_dt += _measurement.delta_time; |
|
_log_del_ang += _measurement.delta_angles; |
|
_log_del_vel += _measurement.delta_velocity; |
|
} |
|
|
|
void SoloGimbal::update_estimators() |
|
{ |
|
if (_state == GIMBAL_STATE_NOT_PRESENT || _state == GIMBAL_STATE_PRESENT_INITIALIZING) { |
|
return; |
|
} |
|
|
|
// Run the gimbal attitude and gyro bias estimator |
|
_ekf.RunEKF(_measurement.delta_time, _measurement.delta_angles, _measurement.delta_velocity, _measurement.joint_angles); |
|
update_joint_angle_est(); |
|
} |
|
|
|
void SoloGimbal::readVehicleDeltaAngle(uint8_t ins_index, Vector3f &dAng) { |
|
const AP_InertialSensor &ins = AP::ins(); |
|
|
|
if (ins_index < ins.get_gyro_count()) { |
|
float dAng_dt; |
|
if (!ins.get_delta_angle(ins_index,dAng, dAng_dt)) { |
|
dAng = ins.get_gyro(ins_index) / ins.get_loop_rate_hz(); |
|
} |
|
} |
|
} |
|
|
|
void SoloGimbal::update_fast() { |
|
const AP_InertialSensor &ins = AP::ins(); |
|
|
|
#if INS_MAX_INSTANCES > 1 |
|
if (ins.use_gyro(0) && ins.use_gyro(1)) { |
|
// dual gyro mode - average first two gyros |
|
Vector3f dAng; |
|
readVehicleDeltaAngle(0, dAng); |
|
_vehicle_delta_angles += dAng*0.5f; |
|
readVehicleDeltaAngle(1, dAng); |
|
_vehicle_delta_angles += dAng*0.5f; |
|
} else |
|
#endif |
|
{ |
|
// single gyro mode - one of the first two gyros are unhealthy or don't exist |
|
// just read primary gyro |
|
Vector3f dAng; |
|
readVehicleDeltaAngle(ins.get_primary_gyro(), dAng); |
|
_vehicle_delta_angles += dAng; |
|
} |
|
} |
|
|
|
void SoloGimbal::update_joint_angle_est() |
|
{ |
|
static const float tc = 1.0f; |
|
float dt = _measurement.delta_time; |
|
float alpha = constrain_float(dt/(dt+tc),0.0f,1.0f); |
|
|
|
Matrix3f Tvg; // vehicle frame to gimbal frame |
|
_vehicle_to_gimbal_quat.inverse().rotation_matrix(Tvg); |
|
|
|
Vector3f delta_angle_bias; |
|
_ekf.getGyroBias(delta_angle_bias); |
|
delta_angle_bias *= dt; |
|
|
|
Vector3f joint_del_ang; |
|
gimbal_ang_vel_to_joint_rates((_measurement.delta_angles-delta_angle_bias) - Tvg*_vehicle_delta_angles, joint_del_ang); |
|
|
|
_filtered_joint_angles += joint_del_ang; |
|
_filtered_joint_angles += (_measurement.joint_angles-_filtered_joint_angles)*alpha; |
|
|
|
_vehicle_to_gimbal_quat_filt.from_vector312(_filtered_joint_angles.x,_filtered_joint_angles.y,_filtered_joint_angles.z); |
|
|
|
_vehicle_delta_angles.zero(); |
|
} |
|
|
|
Vector3f SoloGimbal::get_ang_vel_dem_yaw(const Quaternion &quatEst) |
|
{ |
|
static const float tc = 0.1f; |
|
static const float yawErrorLimit = radians(5.7f); |
|
float dt = _measurement.delta_time; |
|
float alpha = dt/(dt+tc); |
|
|
|
const auto &_ahrs = AP::ahrs(); |
|
Matrix3f Tve = _ahrs.get_rotation_body_to_ned(); |
|
Matrix3f Teg; |
|
quatEst.inverse().rotation_matrix(Teg); |
|
|
|
|
|
//_vehicle_yaw_rate_ef_filt = _ahrs.get_yaw_rate_earth(); |
|
|
|
// filter the vehicle yaw rate to remove noise |
|
_vehicle_yaw_rate_ef_filt += (_ahrs.get_yaw_rate_earth() - _vehicle_yaw_rate_ef_filt) * alpha; |
|
|
|
float yaw_rate_ff = 0; |
|
|
|
// calculate an earth-frame yaw rate feed-forward that prevents gimbal from exceeding the maximum yaw error |
|
if (_vehicle_yaw_rate_ef_filt > _gimbalParams.get_K_rate()*yawErrorLimit) { |
|
yaw_rate_ff = _vehicle_yaw_rate_ef_filt-_gimbalParams.get_K_rate()*yawErrorLimit; |
|
} else if (_vehicle_yaw_rate_ef_filt < -_gimbalParams.get_K_rate()*yawErrorLimit) { |
|
yaw_rate_ff = _vehicle_yaw_rate_ef_filt+_gimbalParams.get_K_rate()*yawErrorLimit; |
|
} |
|
|
|
// filter the feed-forward to remove noise |
|
//_yaw_rate_ff_ef_filt += (yaw_rate_ff - _yaw_rate_ff_ef_filt) * alpha; |
|
|
|
Vector3f gimbalRateDemVecYaw; |
|
gimbalRateDemVecYaw.z = yaw_rate_ff - _gimbalParams.get_K_rate() * _filtered_joint_angles.z / constrain_float(Tve.c.z,0.5f,1.0f); |
|
gimbalRateDemVecYaw.z /= constrain_float(Tve.c.z,0.5f,1.0f); |
|
|
|
// rotate the rate demand into gimbal frame |
|
gimbalRateDemVecYaw = Teg * gimbalRateDemVecYaw; |
|
|
|
return gimbalRateDemVecYaw; |
|
} |
|
|
|
Vector3f SoloGimbal::get_ang_vel_dem_roll_tilt(const Quaternion &quatEst) |
|
{ |
|
// Calculate the gimbal 321 Euler angle estimates relative to earth frame |
|
Vector3f eulerEst = quatEst.to_vector312(); |
|
|
|
// Calculate a demanded quaternion using the demanded roll and pitch and estimated yaw (yaw is slaved to the vehicle) |
|
Quaternion quatDem; |
|
quatDem.from_vector312( _att_target_euler_rad.x, |
|
_att_target_euler_rad.y, |
|
eulerEst.z); |
|
|
|
//divide the demanded quaternion by the estimated to get the error |
|
Quaternion quatErr = quatDem / quatEst; |
|
|
|
// Convert to a delta rotation |
|
quatErr.normalize(); |
|
Vector3f deltaAngErr; |
|
quatErr.to_axis_angle(deltaAngErr); |
|
|
|
// multiply the angle error vector by a gain to calculate a demanded gimbal rate required to control tilt |
|
Vector3f gimbalRateDemVecTilt = deltaAngErr * _gimbalParams.get_K_rate(); |
|
return gimbalRateDemVecTilt; |
|
} |
|
|
|
Vector3f SoloGimbal::get_ang_vel_dem_feedforward(const Quaternion &quatEst) const |
|
{ |
|
// quaternion demanded at the previous time step |
|
static float lastDemY; |
|
|
|
// calculate the delta rotation from the last to the current demand where the demand does not incorporate the copters yaw rotation |
|
float deltaY = _att_target_euler_rad.y - lastDemY; |
|
lastDemY = _att_target_euler_rad.y; |
|
|
|
// quaternion demanded at the previous time step |
|
static float lastDemX; |
|
|
|
// calculate the delta rotation from the last to the current demand where the demand does not incorporate the copters yaw rotation |
|
float deltaX = _att_target_euler_rad.x - lastDemX; |
|
lastDemX = _att_target_euler_rad.x; |
|
|
|
Vector3f gimbalRateDemVecForward; |
|
gimbalRateDemVecForward.x = deltaX / _measurement.delta_time; |
|
gimbalRateDemVecForward.y = deltaY / _measurement.delta_time; |
|
return gimbalRateDemVecForward; |
|
} |
|
|
|
Vector3f SoloGimbal::get_ang_vel_dem_gyro_bias() |
|
{ |
|
Vector3f gyroBias; |
|
_ekf.getGyroBias(gyroBias); |
|
return gyroBias + _gimbalParams.get_gyro_bias(); |
|
} |
|
|
|
Vector3f SoloGimbal::get_ang_vel_dem_body_lock() |
|
{ |
|
// Define rotation from vehicle to gimbal using a 312 rotation sequence |
|
Matrix3f Tvg; |
|
_vehicle_to_gimbal_quat_filt.inverse().rotation_matrix(Tvg); |
|
|
|
// multiply the joint angles by a gain to calculate a rate vector required to keep the joints centred |
|
Vector3f gimbalRateDemVecBodyLock; |
|
gimbalRateDemVecBodyLock = _filtered_joint_angles * -_gimbalParams.get_K_rate(); |
|
|
|
joint_rates_to_gimbal_ang_vel(gimbalRateDemVecBodyLock, gimbalRateDemVecBodyLock); |
|
|
|
// Add a feedforward term from vehicle gyros |
|
const auto &_ahrs = AP::ahrs(); |
|
gimbalRateDemVecBodyLock += Tvg * _ahrs.get_gyro(); |
|
|
|
return gimbalRateDemVecBodyLock; |
|
} |
|
|
|
void SoloGimbal::update_target(const Vector3f &newTarget) |
|
{ |
|
// Low-pass filter |
|
_att_target_euler_rad.y = _att_target_euler_rad.y + 0.02f*(newTarget.y - _att_target_euler_rad.y); |
|
// Update tilt |
|
_att_target_euler_rad.y = constrain_float(_att_target_euler_rad.y,radians(-90),radians(0)); |
|
|
|
// For roll angle |
|
// Low-pass filter |
|
_att_target_euler_rad.x = _att_target_euler_rad.x + 0.02f*(newTarget.x - _att_target_euler_rad.x); |
|
// Update roll |
|
_att_target_euler_rad.x = constrain_float(_att_target_euler_rad.x,radians(-30),radians(30)); |
|
} |
|
|
|
void SoloGimbal::write_logs() |
|
{ |
|
AP_Logger &logger = AP::logger(); |
|
|
|
const uint64_t tstamp = AP_HAL::micros64(); |
|
|
|
// @LoggerMessage: GMB1 |
|
// @Vehicles: Copter |
|
// @Description: Solo Gimbal measurements |
|
// @Field: TimeUS: Time since system startup |
|
// @Field: dt: sum of time across measurements in this packet |
|
// @Field: dax: delta-angle sum, x-axis |
|
// @Field: day: delta-angle sum, y-axis |
|
// @Field: daz: delta-angle sum, z-axis |
|
// @Field: dvx: delta-velocity sum, x-axis |
|
// @Field: dvy: delta-velocity sum, y-axis |
|
// @Field: dvz: delta-velocity sum, z-axis |
|
// @Field: jx: joint angle, x |
|
// @Field: jy: joint angle, y |
|
// @Field: jz: joint angle, z |
|
logger.Write( |
|
"GMB1", |
|
"TimeUS,dt,dax,day,daz,dvx,dvy,dvz,jx,jy,jz", |
|
"ssrrrEEELLL", |
|
"FC000000000", |
|
"Qffffffffff", |
|
tstamp, |
|
_log_dt, |
|
_log_del_ang.x, |
|
_log_del_ang.y, |
|
_log_del_ang.z, |
|
_log_del_vel.x, |
|
_log_del_vel.y, |
|
_log_del_vel.z, |
|
_measurement.joint_angles.x, |
|
_measurement.joint_angles.y, |
|
_measurement.joint_angles.z |
|
); |
|
|
|
Quaternion quatEst; |
|
_ekf.getQuat(quatEst); |
|
Vector3f eulerEst; |
|
quatEst.to_euler(eulerEst.x, eulerEst.y, eulerEst.z); |
|
|
|
// @LoggerMessage: GMB2 |
|
// @Vehicles: Copter |
|
// @Description: Solo Gimbal estimation and demands |
|
// @Field: TimeUS: Time since system startup |
|
// @Field: es: Solo Gimbal EKF status bits |
|
// @Field: ex: Solo Gimbal EKF estimate of gimbal angle, x-axis |
|
// @Field: ey: Solo Gimbal EKF estimate of gimbal angle, y-axis |
|
// @Field: ez: Solo Gimbal EKF estimate of gimbal angle, y-axis |
|
// @Field: rx: Angular velocity demand around x-axis |
|
// @Field: ry: Angular velocity demand around y-axis |
|
// @Field: rz: Angular velocity demand around z-axis |
|
// @Field: tx: Angular position target around x-axis |
|
// @Field: ty: Angular position target around y-axis |
|
// @Field: tz: Angular position target around z-axis |
|
logger.Write( |
|
"GMB2", |
|
"TimeUS,es,ex,ey,ez,rx,ry,rz,tx,ty,tz", |
|
"s-rrrEEELLL", |
|
"F-000000000", |
|
"QBfffffffff", |
|
tstamp, |
|
(uint8_t) _ekf.getStatus(), |
|
eulerEst.x, |
|
eulerEst.y, |
|
eulerEst.z, |
|
_ang_vel_dem_rads.x, |
|
_ang_vel_dem_rads.y, |
|
_ang_vel_dem_rads.z, |
|
_att_target_euler_rad.x, |
|
_att_target_euler_rad.y, |
|
_att_target_euler_rad.z |
|
); |
|
|
|
_log_dt = 0; |
|
_log_del_ang.zero(); |
|
_log_del_vel.zero(); |
|
} |
|
|
|
bool SoloGimbal::joints_near_limits() const |
|
{ |
|
return fabsf(_measurement.joint_angles.x) > radians(40) || _measurement.joint_angles.y > radians(45) || _measurement.joint_angles.y < -radians(135); |
|
} |
|
|
|
AccelCalibrator* SoloGimbal::_acal_get_calibrator(uint8_t instance) |
|
{ |
|
if(instance==0 && (present() || _calibrator.get_status() == ACCEL_CAL_SUCCESS)) { |
|
return &_calibrator; |
|
} else { |
|
return nullptr; |
|
} |
|
} |
|
|
|
bool SoloGimbal::_acal_get_ready_to_sample() |
|
{ |
|
return _ang_vel_mag_filt < radians(10); |
|
} |
|
|
|
bool SoloGimbal::_acal_get_saving() |
|
{ |
|
return _gimbalParams.flashing(); |
|
} |
|
|
|
void SoloGimbal::_acal_save_calibrations() |
|
{ |
|
if (_calibrator.get_status() != ACCEL_CAL_SUCCESS) { |
|
return; |
|
} |
|
Vector3f bias; |
|
Vector3f gain; |
|
_calibrator.get_calibration(bias,gain); |
|
_gimbalParams.set_accel_bias(bias); |
|
_gimbalParams.set_accel_gain(gain); |
|
_gimbalParams.flash(); |
|
} |
|
|
|
void SoloGimbal::gimbal_ang_vel_to_joint_rates(const Vector3f& ang_vel, Vector3f& joint_rates) const |
|
{ |
|
float sin_theta = sinf(_measurement.joint_angles.y); |
|
float cos_theta = cosf(_measurement.joint_angles.y); |
|
|
|
float sin_phi = sinf(_measurement.joint_angles.x); |
|
float cos_phi = cosf(_measurement.joint_angles.x); |
|
float sec_phi = 1.0f/cos_phi; |
|
float tan_phi = sin_phi/cos_phi; |
|
|
|
joint_rates.x = ang_vel.x*cos_theta+ang_vel.z*sin_theta; |
|
joint_rates.y = ang_vel.x*sin_theta*tan_phi-ang_vel.z*cos_theta*tan_phi+ang_vel.y; |
|
joint_rates.z = sec_phi*(ang_vel.z*cos_theta-ang_vel.x*sin_theta); |
|
} |
|
|
|
void SoloGimbal::joint_rates_to_gimbal_ang_vel(const Vector3f& joint_rates, Vector3f& ang_vel) const |
|
{ |
|
float sin_theta = sinf(_measurement.joint_angles.y); |
|
float cos_theta = cosf(_measurement.joint_angles.y); |
|
|
|
float sin_phi = sinf(_measurement.joint_angles.x); |
|
float cos_phi = cosf(_measurement.joint_angles.x); |
|
|
|
ang_vel.x = cos_theta*joint_rates.x-sin_theta*cos_phi*joint_rates.z; |
|
ang_vel.y = joint_rates.y + sin_phi*joint_rates.z; |
|
ang_vel.z = sin_theta*joint_rates.x+cos_theta*cos_phi*joint_rates.z; |
|
} |
|
|
|
#endif // HAL_SOLO_GIMBAL_ENABLED
|
|
|