You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
277 lines
8.0 KiB
277 lines
8.0 KiB
|
|
void |
|
init_pids() |
|
{ |
|
// create limits to how much dampening we'll allow |
|
// this creates symmetry with the P gain value preventing oscillations |
|
|
|
max_stabilize_dampener = g.pid_stabilize_roll.kP() * 2500; // = 0.6 * 2500 = 1500 or 15° |
|
max_yaw_dampener = g.pid_yaw.kP() * 6000; // = .5 * 6000 = 3000 |
|
} |
|
|
|
|
|
void |
|
control_nav_mixer() |
|
{ |
|
// control +- 45° is mixed with the navigation request by the Autopilot |
|
// output is in degrees = target pitch and roll of copter |
|
g.rc_1.servo_out = g.rc_1.control_mix(nav_roll); |
|
g.rc_2.servo_out = g.rc_2.control_mix(nav_pitch); |
|
} |
|
|
|
void |
|
fbw_nav_mixer() |
|
{ |
|
// control +- 45° is mixed with the navigation request by the Autopilot |
|
// output is in degrees = target pitch and roll of copter |
|
g.rc_1.servo_out = nav_roll; |
|
g.rc_2.servo_out = nav_pitch; |
|
} |
|
|
|
void |
|
output_stabilize_roll() |
|
{ |
|
float error, rate; |
|
int dampener; |
|
|
|
error = g.rc_1.servo_out - dcm.roll_sensor; |
|
|
|
// limit the error we're feeding to the PID |
|
error = constrain(error, -2500, 2500); |
|
|
|
// write out angles back to servo out - this will be converted to PWM by RC_Channel |
|
g.rc_1.servo_out = g.pid_stabilize_roll.get_pid(error, delta_ms_fast_loop, 1.0); |
|
|
|
// We adjust the output by the rate of rotation: |
|
// Rate control through bias corrected gyro rates |
|
// omega is the raw gyro reading |
|
|
|
// Limit dampening to be equal to propotional term for symmetry |
|
rate = degrees(omega.x) * 100.0; // 6rad = 34377 |
|
dampener = (rate * g.stabilize_dampener); // 34377 * .175 = 6000 |
|
g.rc_1.servo_out -= constrain(dampener, -max_stabilize_dampener, max_stabilize_dampener); // limit to 1500 based on kP |
|
} |
|
|
|
void |
|
output_stabilize_pitch() |
|
{ |
|
float error, rate; |
|
int dampener; |
|
|
|
error = g.rc_2.servo_out - dcm.pitch_sensor; |
|
|
|
// limit the error we're feeding to the PID |
|
error = constrain(error, -2500, 2500); |
|
|
|
// write out angles back to servo out - this will be converted to PWM by RC_Channel |
|
g.rc_2.servo_out = g.pid_stabilize_pitch.get_pid(error, delta_ms_fast_loop, 1.0); |
|
|
|
// We adjust the output by the rate of rotation: |
|
// Rate control through bias corrected gyro rates |
|
// omega is the raw gyro reading |
|
|
|
// Limit dampening to be equal to propotional term for symmetry |
|
rate = degrees(omega.y) * 100.0; // 6rad = 34377 |
|
dampener = (rate * g.stabilize_dampener); // 34377 * .175 = 6000 |
|
g.rc_2.servo_out -= constrain(dampener, -max_stabilize_dampener, max_stabilize_dampener); // limit to 1500 based on kP |
|
} |
|
|
|
void |
|
clear_yaw_control() |
|
{ |
|
//Serial.print("Clear "); |
|
rate_yaw_flag = false; // exit rate_yaw_flag |
|
nav_yaw = dcm.yaw_sensor; // save our Yaw |
|
yaw_error = 0; |
|
} |
|
|
|
void |
|
output_yaw_with_hold(boolean hold) |
|
{ |
|
//digitalWrite(B_LED_PIN, LOW); |
|
if(hold){ |
|
// look to see if we have exited rate control properly - ie stopped turning |
|
if(rate_yaw_flag){ |
|
// we are still in motion from rate control |
|
if(fabs(omega.z) < .5){ |
|
clear_yaw_control(); |
|
hold = true; // just to be explicit |
|
//Serial.print("C"); |
|
|
|
}else{ |
|
|
|
//digitalWrite(B_LED_PIN, HIGH); |
|
|
|
// return to rate control until we slow down. |
|
hold = false; |
|
//Serial.print("D"); |
|
} |
|
} |
|
|
|
}else{ |
|
// rate control |
|
|
|
// this indicates we are under rate control, when we enter Yaw Hold and |
|
// return to 0° per second, we exit rate control and hold the current Yaw |
|
rate_yaw_flag = true; |
|
yaw_error = 0; |
|
} |
|
|
|
if(hold){ |
|
//Serial.println("H"); |
|
// try and hold the current nav_yaw setting |
|
yaw_error = nav_yaw - dcm.yaw_sensor; // +- 60° |
|
yaw_error = wrap_180(yaw_error); |
|
|
|
// limit the error we're feeding to the PID |
|
yaw_error = constrain(yaw_error, -6000, 6000); // limit error to 60 degees |
|
|
|
// Apply PID and save the new angle back to RC_Channel |
|
g.rc_4.servo_out = g.pid_yaw.get_pid(yaw_error, delta_ms_fast_loop, 1.0); // .5 * 6000 = 3000 |
|
|
|
// We adjust the output by the rate of rotation |
|
long rate = degrees(omega.z) * 100.0; // 3rad = 17188 , 6rad = 34377 |
|
int dampener = ((float)rate * g.hold_yaw_dampener); // 18000 * .17 = 3000 |
|
|
|
// Limit dampening to be equal to propotional term for symmetry |
|
g.rc_4.servo_out -= constrain(dampener, -max_yaw_dampener, max_yaw_dampener); // -3000 |
|
|
|
}else{ |
|
|
|
//Serial.println("R"); |
|
// rate control |
|
long rate = degrees(omega.z) * 100; // 3rad = 17188 , 6rad = 34377 |
|
rate = constrain(rate, -36000, 36000); // limit to something fun! |
|
|
|
//if(abs(rate) < 1000 ) //experiment to limit yaw reversing |
|
// rate = 0; |
|
|
|
long error = ((long)g.rc_4.control_in * 6) - rate; // control is += 6000 * 6 = 36000 |
|
// -error = CCW, +error = CW |
|
|
|
if(g.rc_4.control_in == 0) |
|
g.rc_4.servo_out = g.pid_acro_rate_yaw.get_pid(error, delta_ms_fast_loop, 3.0);// kP .07 * 36000 = 2520 |
|
else |
|
g.rc_4.servo_out = g.pid_acro_rate_yaw.get_pid(error, delta_ms_fast_loop, 1.0);// kP .07 * 36000 = 2520 |
|
|
|
g.rc_4.servo_out = constrain(g.rc_4.servo_out, -2400, 2400); // limit to 24° |
|
} |
|
} |
|
|
|
// slight left rudder give right roll. |
|
|
|
void |
|
output_rate_roll() |
|
{ |
|
// rate control |
|
long rate = degrees(omega.x) * 100; // 3rad = 17188 , 6rad = 34377 |
|
rate = constrain(rate, -36000, 36000); // limit to something fun! |
|
long error = ((long)g.rc_1.control_in * 8) - rate; // control is += 4500 * 8 = 36000 |
|
|
|
g.rc_1.servo_out = g.pid_acro_rate_roll.get_pid(error, delta_ms_fast_loop, 1.0); // .075 * 36000 = 2700 |
|
g.rc_1.servo_out = constrain(g.rc_1.servo_out, -2400, 2400); // limit to 2400 |
|
} |
|
|
|
void |
|
output_rate_pitch() |
|
{ |
|
// rate control |
|
long rate = degrees(omega.y) * 100; // 3rad = 17188 , 6rad = 34377 |
|
rate = constrain(rate, -36000, 36000); // limit to something fun! |
|
long error = ((long)g.rc_2.control_in * 8) - rate; // control is += 4500 * 8 = 36000 |
|
|
|
g.rc_2.servo_out = g.pid_acro_rate_pitch.get_pid(error, delta_ms_fast_loop, 1.0); // .075 * 36000 = 2700 |
|
g.rc_2.servo_out = constrain(g.rc_2.servo_out, -2400, 2400); // limit to 2400 |
|
} |
|
|
|
// Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc. |
|
// Keeps outdated data out of our calculations |
|
void |
|
reset_I(void) |
|
{ |
|
g.pid_nav_lat.reset_I(); |
|
g.pid_nav_lon.reset_I(); |
|
g.pid_baro_throttle.reset_I(); |
|
g.pid_sonar_throttle.reset_I(); |
|
} |
|
|
|
|
|
|
|
|
|
/************************************************************* |
|
throttle control |
|
****************************************************************/ |
|
|
|
// user input: |
|
// ----------- |
|
void output_manual_throttle() |
|
{ |
|
g.rc_3.servo_out = (float)g.rc_3.control_in * angle_boost(); |
|
} |
|
|
|
// Autopilot |
|
// --------- |
|
void output_auto_throttle() |
|
{ |
|
g.rc_3.servo_out = (float)nav_throttle * angle_boost(); |
|
// make sure we never send a 0 throttle that will cut the motors |
|
g.rc_3.servo_out = max(g.rc_3.servo_out, 1); |
|
} |
|
|
|
void calc_nav_throttle() |
|
{ |
|
// limit error |
|
long error = constrain(altitude_error, -400, 400); |
|
float scaler = 1.0; |
|
|
|
if(error < 0){ |
|
scaler = (altitude_sensor == BARO) ? .5 : .9; |
|
} |
|
|
|
if(altitude_sensor == BARO){ |
|
nav_throttle = g.pid_baro_throttle.get_pid(error, delta_ms_fast_loop, scaler); |
|
nav_throttle = g.throttle_cruise + constrain(nav_throttle, -30, 80); |
|
}else{ |
|
nav_throttle = g.pid_sonar_throttle.get_pid(error, delta_ms_fast_loop, scaler); |
|
nav_throttle = g.throttle_cruise + constrain(nav_throttle, -60, 100); |
|
} |
|
|
|
nav_throttle = (nav_throttle + nav_throttle_old) >> 1; |
|
nav_throttle_old = nav_throttle; |
|
|
|
//Serial.printf("nav_thr %d, scaler %2.2f ", nav_throttle, scaler); |
|
} |
|
|
|
float angle_boost() |
|
{ |
|
float temp = cos_pitch_x * cos_roll_x; |
|
temp = 2.0 - constrain(temp, .7, 1.0); |
|
return temp; |
|
} |
|
|
|
|
|
/************************************************************* |
|
yaw control |
|
****************************************************************/ |
|
|
|
void output_manual_yaw() |
|
{ |
|
if(g.rc_3.control_in == 0){ |
|
clear_yaw_control(); |
|
}else{ |
|
// Yaw control |
|
if(g.rc_4.control_in == 0){ |
|
output_yaw_with_hold(true); // hold yaw |
|
}else{ |
|
output_yaw_with_hold(false); // rate control yaw |
|
} |
|
} |
|
} |
|
|
|
void auto_yaw() |
|
{ |
|
if(next_WP.options & WP_OPT_YAW){ |
|
nav_yaw = target_bearing; |
|
} |
|
output_yaw_with_hold(true); // hold yaw |
|
}
|
|
|