You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
933 lines
32 KiB
933 lines
32 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
#include "Copter.h" |
|
|
|
#define ARM_DELAY 20 // called at 10hz so 2 seconds |
|
#define DISARM_DELAY 20 // called at 10hz so 2 seconds |
|
#define AUTO_TRIM_DELAY 100 // called at 10hz so 10 seconds |
|
#define AUTO_DISARMING_DELAY_LONG 15 // called at 1hz so 15 seconds |
|
#define AUTO_DISARMING_DELAY_SHORT 5 // called at 1hz so 5 seconds |
|
#define LOST_VEHICLE_DELAY 10 // called at 10hz so 1 second |
|
|
|
static uint8_t auto_disarming_counter; |
|
|
|
// arm_motors_check - checks for pilot input to arm or disarm the copter |
|
// called at 10hz |
|
void Copter::arm_motors_check() |
|
{ |
|
static int16_t arming_counter; |
|
|
|
// ensure throttle is down |
|
if (channel_throttle->control_in > 0) { |
|
arming_counter = 0; |
|
return; |
|
} |
|
|
|
int16_t tmp = channel_yaw->control_in; |
|
|
|
// full right |
|
if (tmp > 4000) { |
|
|
|
// increase the arming counter to a maximum of 1 beyond the auto trim counter |
|
if( arming_counter <= AUTO_TRIM_DELAY ) { |
|
arming_counter++; |
|
} |
|
|
|
// arm the motors and configure for flight |
|
if (arming_counter == ARM_DELAY && !motors.armed()) { |
|
// reset arming counter if arming fail |
|
if (!init_arm_motors(false)) { |
|
arming_counter = 0; |
|
} |
|
} |
|
|
|
// arm the motors and configure for flight |
|
if (arming_counter == AUTO_TRIM_DELAY && motors.armed() && control_mode == STABILIZE) { |
|
auto_trim_counter = 250; |
|
// ensure auto-disarm doesn't trigger immediately |
|
auto_disarming_counter = 0; |
|
} |
|
|
|
// full left |
|
}else if (tmp < -4000) { |
|
if (!mode_has_manual_throttle(control_mode) && !ap.land_complete) { |
|
arming_counter = 0; |
|
return; |
|
} |
|
|
|
// increase the counter to a maximum of 1 beyond the disarm delay |
|
if( arming_counter <= DISARM_DELAY ) { |
|
arming_counter++; |
|
} |
|
|
|
// disarm the motors |
|
if (arming_counter == DISARM_DELAY && motors.armed()) { |
|
init_disarm_motors(); |
|
} |
|
|
|
// Yaw is centered so reset arming counter |
|
}else{ |
|
arming_counter = 0; |
|
} |
|
} |
|
|
|
// auto_disarm_check - disarms the copter if it has been sitting on the ground in manual mode with throttle low for at least 15 seconds |
|
// called at 1hz |
|
void Copter::auto_disarm_check() |
|
{ |
|
|
|
uint8_t disarm_delay; |
|
|
|
// exit immediately if we are already disarmed or throttle output is not zero, |
|
if (!motors.armed() || !ap.throttle_zero) { |
|
auto_disarming_counter = 0; |
|
return; |
|
} |
|
|
|
// allow auto disarm in manual flight modes or Loiter/AltHold if we're landed |
|
// always allow auto disarm if using interlock switch or motors are Emergency Stopped |
|
if (mode_has_manual_throttle(control_mode) || ap.land_complete || (ap.using_interlock && !motors.get_interlock()) || ap.motor_emergency_stop) { |
|
auto_disarming_counter++; |
|
|
|
// use a shorter delay if using throttle interlock switch or Emergency Stop, because it is less |
|
// obvious the copter is armed as the motors will not be spinning |
|
if (ap.using_interlock || ap.motor_emergency_stop){ |
|
disarm_delay = AUTO_DISARMING_DELAY_SHORT; |
|
} else { |
|
disarm_delay = AUTO_DISARMING_DELAY_LONG; |
|
} |
|
|
|
if(auto_disarming_counter >= disarm_delay) { |
|
init_disarm_motors(); |
|
auto_disarming_counter = 0; |
|
} |
|
}else{ |
|
auto_disarming_counter = 0; |
|
} |
|
} |
|
|
|
// init_arm_motors - performs arming process including initialisation of barometer and gyros |
|
// returns false if arming failed because of pre-arm checks, arming checks or a gyro calibration failure |
|
bool Copter::init_arm_motors(bool arming_from_gcs) |
|
{ |
|
// arming marker |
|
// Flag used to track if we have armed the motors the first time. |
|
// This is used to decide if we should run the ground_start routine |
|
// which calibrates the IMU |
|
static bool did_ground_start = false; |
|
static bool in_arm_motors = false; |
|
|
|
// exit immediately if already in this function |
|
if (in_arm_motors) { |
|
return false; |
|
} |
|
in_arm_motors = true; |
|
|
|
// run pre-arm-checks and display failures |
|
if(!pre_arm_checks(true) || !arm_checks(true, arming_from_gcs)) { |
|
AP_Notify::events.arming_failed = true; |
|
in_arm_motors = false; |
|
return false; |
|
} |
|
|
|
// disable cpu failsafe because initialising everything takes a while |
|
failsafe_disable(); |
|
|
|
// reset battery failsafe |
|
set_failsafe_battery(false); |
|
|
|
// notify that arming will occur (we do this early to give plenty of warning) |
|
AP_Notify::flags.armed = true; |
|
// call update_notify a few times to ensure the message gets out |
|
for (uint8_t i=0; i<=10; i++) { |
|
update_notify(); |
|
} |
|
|
|
#if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_SITL |
|
gcs_send_text_P(SEVERITY_HIGH, PSTR("ARMING MOTORS")); |
|
#endif |
|
|
|
// Remember Orientation |
|
// -------------------- |
|
init_simple_bearing(); |
|
|
|
initial_armed_bearing = ahrs.yaw_sensor; |
|
|
|
if (ap.home_state == HOME_UNSET) { |
|
// Reset EKF altitude if home hasn't been set yet (we use EKF altitude as substitute for alt above home) |
|
ahrs.get_NavEKF().resetHeightDatum(); |
|
Log_Write_Event(DATA_EKF_ALT_RESET); |
|
} else if (ap.home_state == HOME_SET_NOT_LOCKED) { |
|
// Reset home position if it has already been set before (but not locked) |
|
set_home_to_current_location(); |
|
} |
|
calc_distance_and_bearing(); |
|
|
|
if(did_ground_start == false) { |
|
startup_ground(true); |
|
// final check that gyros calibrated successfully |
|
if (((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) && !ins.gyro_calibrated_ok_all()) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Gyro calibration failed")); |
|
AP_Notify::flags.armed = false; |
|
failsafe_enable(); |
|
in_arm_motors = false; |
|
return false; |
|
} |
|
did_ground_start = true; |
|
} |
|
|
|
// check if we are using motor interlock control on an aux switch |
|
set_using_interlock(check_if_auxsw_mode_used(AUXSW_MOTOR_INTERLOCK)); |
|
|
|
// if we are using motor interlock switch and it's enabled, fail to arm |
|
if (ap.using_interlock && motors.get_interlock()){ |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Motor Interlock Enabled")); |
|
AP_Notify::flags.armed = false; |
|
return false; |
|
} |
|
|
|
// if we are not using Emergency Stop switch option, force Estop false to ensure motors |
|
// can run normally |
|
if (!check_if_auxsw_mode_used(AUXSW_MOTOR_ESTOP)){ |
|
set_motor_emergency_stop(false); |
|
// if we are using motor Estop switch, it must not be in Estop position |
|
} else if (check_if_auxsw_mode_used(AUXSW_MOTOR_ESTOP) && ap.motor_emergency_stop){ |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Motor Emergency Stopped")); |
|
AP_Notify::flags.armed = false; |
|
return false; |
|
} |
|
|
|
// enable gps velocity based centrefugal force compensation |
|
ahrs.set_correct_centrifugal(true); |
|
hal.util->set_soft_armed(true); |
|
|
|
#if SPRAYER == ENABLED |
|
// turn off sprayer's test if on |
|
sprayer.test_pump(false); |
|
#endif |
|
|
|
// short delay to allow reading of rc inputs |
|
delay(30); |
|
|
|
// enable output to motors |
|
enable_motor_output(); |
|
|
|
// finally actually arm the motors |
|
motors.armed(true); |
|
|
|
// log arming to dataflash |
|
Log_Write_Event(DATA_ARMED); |
|
|
|
// log flight mode in case it was changed while vehicle was disarmed |
|
DataFlash.Log_Write_Mode(control_mode); |
|
|
|
// reenable failsafe |
|
failsafe_enable(); |
|
|
|
// perf monitor ignores delay due to arming |
|
perf_ignore_this_loop(); |
|
|
|
// flag exiting this function |
|
in_arm_motors = false; |
|
|
|
// return success |
|
return true; |
|
} |
|
|
|
// perform pre-arm checks and set ap.pre_arm_check flag |
|
// return true if the checks pass successfully |
|
bool Copter::pre_arm_checks(bool display_failure) |
|
{ |
|
// exit immediately if already armed |
|
if (motors.armed()) { |
|
return true; |
|
} |
|
|
|
// check if motor interlock and Emergency Stop aux switches are used |
|
// at the same time. This cannot be allowed. |
|
if (check_if_auxsw_mode_used(AUXSW_MOTOR_INTERLOCK) && check_if_auxsw_mode_used(AUXSW_MOTOR_ESTOP)){ |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Interlock/E-Stop Conflict")); |
|
} |
|
return false; |
|
} |
|
|
|
// check if motor interlock aux switch is in use |
|
// if it is, switch needs to be in disabled position to arm |
|
// otherwise exit immediately. This check to be repeated, |
|
// as state can change at any time. |
|
set_using_interlock(check_if_auxsw_mode_used(AUXSW_MOTOR_INTERLOCK)); |
|
if (ap.using_interlock && motors.get_interlock()){ |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Motor Interlock Enabled")); |
|
} |
|
return false; |
|
} |
|
|
|
// if we are using Motor Emergency Stop aux switch, check it is not enabled |
|
// and warn if it is |
|
if (check_if_auxsw_mode_used(AUXSW_MOTOR_ESTOP) && ap.motor_emergency_stop){ |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Motor Emergency Stopped")); |
|
} |
|
return false; |
|
} |
|
|
|
// exit immediately if we've already successfully performed the pre-arm check |
|
if (ap.pre_arm_check) { |
|
// run gps checks because results may change and affect LED colour |
|
// no need to display failures because arm_checks will do that if the pilot tries to arm |
|
pre_arm_gps_checks(false); |
|
return true; |
|
} |
|
|
|
// succeed if pre arm checks are disabled |
|
if(g.arming_check == ARMING_CHECK_NONE) { |
|
set_pre_arm_check(true); |
|
set_pre_arm_rc_check(true); |
|
return true; |
|
} |
|
|
|
// pre-arm rc checks a prerequisite |
|
pre_arm_rc_checks(); |
|
if(!ap.pre_arm_rc_check) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: RC not calibrated")); |
|
} |
|
return false; |
|
} |
|
// check Baro |
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_BARO)) { |
|
// barometer health check |
|
if(!barometer.all_healthy()) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Barometer not healthy")); |
|
} |
|
return false; |
|
} |
|
// Check baro & inav alt are within 1m if EKF is operating in an absolute position mode. |
|
// Do not check if intending to operate in a ground relative height mode as EKF will output a ground relative height |
|
// that may differ from the baro height due to baro drift. |
|
nav_filter_status filt_status = inertial_nav.get_filter_status(); |
|
bool using_baro_ref = (!filt_status.flags.pred_horiz_pos_rel && filt_status.flags.pred_horiz_pos_abs); |
|
if (using_baro_ref) { |
|
if (fabsf(inertial_nav.get_altitude() - baro_alt) > PREARM_MAX_ALT_DISPARITY_CM) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Altitude disparity")); |
|
} |
|
return false; |
|
} |
|
} |
|
} |
|
|
|
// check Compass |
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_COMPASS)) { |
|
// check the primary compass is healthy |
|
if(!compass.healthy()) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Compass not healthy")); |
|
} |
|
return false; |
|
} |
|
|
|
// check compass learning is on or offsets have been set |
|
if(!compass.configured()) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Compass not calibrated")); |
|
} |
|
return false; |
|
} |
|
|
|
// check for unreasonable compass offsets |
|
Vector3f offsets = compass.get_offsets(); |
|
if(offsets.length() > COMPASS_OFFSETS_MAX) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Compass offsets too high")); |
|
} |
|
return false; |
|
} |
|
|
|
// check for unreasonable mag field length |
|
float mag_field = compass.get_field().length(); |
|
if (mag_field > COMPASS_MAGFIELD_EXPECTED*1.65f || mag_field < COMPASS_MAGFIELD_EXPECTED*0.35f) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check mag field")); |
|
} |
|
return false; |
|
} |
|
|
|
#if COMPASS_MAX_INSTANCES > 1 |
|
// check all compasses point in roughly same direction |
|
if (compass.get_count() > 1) { |
|
Vector3f prime_mag_vec = compass.get_field(); |
|
prime_mag_vec.normalize(); |
|
for(uint8_t i=0; i<compass.get_count(); i++) { |
|
// get next compass |
|
Vector3f mag_vec = compass.get_field(i); |
|
mag_vec.normalize(); |
|
Vector3f vec_diff = mag_vec - prime_mag_vec; |
|
if (compass.use_for_yaw(i) && vec_diff.length() > COMPASS_ACCEPTABLE_VECTOR_DIFF) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: inconsistent compasses")); |
|
} |
|
return false; |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
} |
|
|
|
// check GPS |
|
if (!pre_arm_gps_checks(display_failure)) { |
|
return false; |
|
} |
|
|
|
#if AC_FENCE == ENABLED |
|
// check fence is initialised |
|
if(!fence.pre_arm_check()) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: check fence")); |
|
} |
|
return false; |
|
} |
|
#endif |
|
|
|
// check INS |
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) { |
|
// check accelerometers have been calibrated |
|
if(!ins.accel_calibrated_ok_all()) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Accels not calibrated")); |
|
} |
|
return false; |
|
} |
|
|
|
// check accels are healthy |
|
if(!ins.get_accel_health_all()) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Accelerometers not healthy")); |
|
} |
|
return false; |
|
} |
|
|
|
#if INS_MAX_INSTANCES > 1 |
|
// check all accelerometers point in roughly same direction |
|
if (ins.get_accel_count() > 1) { |
|
const Vector3f &prime_accel_vec = ins.get_accel(); |
|
for(uint8_t i=0; i<ins.get_accel_count(); i++) { |
|
// get next accel vector |
|
const Vector3f &accel_vec = ins.get_accel(i); |
|
Vector3f vec_diff = accel_vec - prime_accel_vec; |
|
float threshold = PREARM_MAX_ACCEL_VECTOR_DIFF; |
|
if (i >= 2) { |
|
/* |
|
for boards with 3 IMUs we only use the first two |
|
in the EKF. Allow for larger accel discrepancy |
|
for IMU3 as it may be running at a different temperature |
|
*/ |
|
threshold *= 2; |
|
} |
|
if (vec_diff.length() > threshold) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: inconsistent Accelerometers")); |
|
} |
|
return false; |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
// check gyros are healthy |
|
if(!ins.get_gyro_health_all()) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Gyros not healthy")); |
|
} |
|
return false; |
|
} |
|
|
|
#if INS_MAX_INSTANCES > 1 |
|
// check all gyros are consistent |
|
if (ins.get_gyro_count() > 1) { |
|
for(uint8_t i=0; i<ins.get_gyro_count(); i++) { |
|
// get rotation rate difference between gyro #i and primary gyro |
|
Vector3f vec_diff = ins.get_gyro(i) - ins.get_gyro(); |
|
if (vec_diff.length() > PREARM_MAX_GYRO_VECTOR_DIFF) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: inconsistent Gyros")); |
|
} |
|
return false; |
|
} |
|
} |
|
} |
|
#endif |
|
} |
|
#if CONFIG_HAL_BOARD != HAL_BOARD_VRBRAIN |
|
#ifndef CONFIG_ARCH_BOARD_PX4FMU_V1 |
|
// check board voltage |
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_VOLTAGE)) { |
|
if(hal.analogin->board_voltage() < BOARD_VOLTAGE_MIN || hal.analogin->board_voltage() > BOARD_VOLTAGE_MAX) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check Board Voltage")); |
|
} |
|
return false; |
|
} |
|
} |
|
#endif |
|
#endif |
|
|
|
// check battery voltage |
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_VOLTAGE)) { |
|
if (failsafe.battery || (!ap.usb_connected && battery.exhausted(g.fs_batt_voltage, g.fs_batt_mah))) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check Battery")); |
|
} |
|
return false; |
|
} |
|
} |
|
|
|
// check various parameter values |
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_PARAMETERS)) { |
|
|
|
// ensure ch7 and ch8 have different functions |
|
if (check_duplicate_auxsw()) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Duplicate Aux Switch Options")); |
|
} |
|
return false; |
|
} |
|
|
|
// failsafe parameter checks |
|
if (g.failsafe_throttle) { |
|
// check throttle min is above throttle failsafe trigger and that the trigger is above ppm encoder's loss-of-signal value of 900 |
|
if (channel_throttle->radio_min <= g.failsafe_throttle_value+10 || g.failsafe_throttle_value < 910) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check FS_THR_VALUE")); |
|
} |
|
return false; |
|
} |
|
} |
|
|
|
// lean angle parameter check |
|
if (aparm.angle_max < 1000 || aparm.angle_max > 8000) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check ANGLE_MAX")); |
|
} |
|
return false; |
|
} |
|
|
|
// acro balance parameter check |
|
if ((g.acro_balance_roll > g.p_stabilize_roll.kP()) || (g.acro_balance_pitch > g.p_stabilize_pitch.kP())) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: ACRO_BAL_ROLL/PITCH")); |
|
} |
|
return false; |
|
} |
|
|
|
#if CONFIG_SONAR == ENABLED && OPTFLOW == ENABLED |
|
// check range finder if optflow enabled |
|
if (optflow.enabled() && !sonar.pre_arm_check()) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: check range finder")); |
|
} |
|
return false; |
|
} |
|
#endif |
|
#if FRAME_CONFIG == HELI_FRAME |
|
// check helicopter parameters |
|
if (!motors.parameter_check()) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check Heli Parameters")); |
|
} |
|
return false; |
|
} |
|
#endif // HELI_FRAME |
|
} |
|
|
|
// check throttle is above failsafe throttle |
|
// this is near the bottom to allow other failures to be displayed before checking pilot throttle |
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_RC)) { |
|
if (g.failsafe_throttle != FS_THR_DISABLED && channel_throttle->radio_in < g.failsafe_throttle_value) { |
|
if (display_failure) { |
|
#if FRAME_CONFIG == HELI_FRAME |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Collective below Failsafe")); |
|
#else |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Throttle below Failsafe")); |
|
#endif |
|
} |
|
return false; |
|
} |
|
} |
|
|
|
// if we've gotten this far then pre arm checks have completed |
|
set_pre_arm_check(true); |
|
return true; |
|
} |
|
|
|
// perform pre_arm_rc_checks checks and set ap.pre_arm_rc_check flag |
|
void Copter::pre_arm_rc_checks() |
|
{ |
|
// exit immediately if we've already successfully performed the pre-arm rc check |
|
if( ap.pre_arm_rc_check ) { |
|
return; |
|
} |
|
|
|
// set rc-checks to success if RC checks are disabled |
|
if ((g.arming_check != ARMING_CHECK_ALL) && !(g.arming_check & ARMING_CHECK_RC)) { |
|
set_pre_arm_rc_check(true); |
|
return; |
|
} |
|
|
|
// check if radio has been calibrated |
|
if(!channel_throttle->radio_min.load() && !channel_throttle->radio_max.load()) { |
|
return; |
|
} |
|
|
|
// check channels 1 & 2 have min <= 1300 and max >= 1700 |
|
if (channel_roll->radio_min > 1300 || channel_roll->radio_max < 1700 || channel_pitch->radio_min > 1300 || channel_pitch->radio_max < 1700) { |
|
return; |
|
} |
|
|
|
// check channels 3 & 4 have min <= 1300 and max >= 1700 |
|
if (channel_throttle->radio_min > 1300 || channel_throttle->radio_max < 1700 || channel_yaw->radio_min > 1300 || channel_yaw->radio_max < 1700) { |
|
return; |
|
} |
|
|
|
// check channels 1 & 2 have trim >= 1300 and <= 1700 |
|
if (channel_roll->radio_trim < 1300 || channel_roll->radio_trim > 1700 || channel_pitch->radio_trim < 1300 || channel_pitch->radio_trim > 1700) { |
|
return; |
|
} |
|
|
|
// check channel 4 has trim >= 1300 and <= 1700 |
|
if (channel_yaw->radio_trim < 1300 || channel_yaw->radio_trim > 1700) { |
|
return; |
|
} |
|
|
|
// if we've gotten this far rc is ok |
|
set_pre_arm_rc_check(true); |
|
} |
|
|
|
// performs pre_arm gps related checks and returns true if passed |
|
bool Copter::pre_arm_gps_checks(bool display_failure) |
|
{ |
|
// always check if inertial nav has started and is ready |
|
if(!ahrs.get_NavEKF().healthy()) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Waiting for Nav Checks")); |
|
} |
|
return false; |
|
} |
|
|
|
// return true immediately if gps check is disabled |
|
if (!(g.arming_check == ARMING_CHECK_ALL || g.arming_check & ARMING_CHECK_GPS)) { |
|
AP_Notify::flags.pre_arm_gps_check = true; |
|
return true; |
|
} |
|
|
|
// check if flight mode requires GPS |
|
bool gps_required = mode_requires_GPS(control_mode); |
|
|
|
#if AC_FENCE == ENABLED |
|
// if circular fence is enabled we need GPS |
|
if ((fence.get_enabled_fences() & AC_FENCE_TYPE_CIRCLE) != 0) { |
|
gps_required = true; |
|
} |
|
#endif |
|
|
|
// return true if GPS is not required |
|
if (!gps_required) { |
|
AP_Notify::flags.pre_arm_gps_check = true; |
|
return true; |
|
} |
|
|
|
// ensure GPS is ok |
|
if (!position_ok()) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Need 3D Fix")); |
|
} |
|
AP_Notify::flags.pre_arm_gps_check = false; |
|
return false; |
|
} |
|
|
|
// check home and EKF origin are not too far |
|
if (far_from_EKF_origin(ahrs.get_home())) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: EKF-home variance")); |
|
} |
|
AP_Notify::flags.pre_arm_gps_check = false; |
|
return false; |
|
} |
|
|
|
// warn about hdop separately - to prevent user confusion with no gps lock |
|
if (gps.get_hdop() > g.gps_hdop_good) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: High GPS HDOP")); |
|
} |
|
AP_Notify::flags.pre_arm_gps_check = false; |
|
return false; |
|
} |
|
|
|
// if we got here all must be ok |
|
AP_Notify::flags.pre_arm_gps_check = true; |
|
return true; |
|
} |
|
|
|
// arm_checks - perform final checks before arming |
|
// always called just before arming. Return true if ok to arm |
|
// has side-effect that logging is started |
|
bool Copter::arm_checks(bool display_failure, bool arming_from_gcs) |
|
{ |
|
#if LOGGING_ENABLED == ENABLED |
|
// start dataflash |
|
start_logging(); |
|
#endif |
|
|
|
// check accels and gyro are healthy |
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) { |
|
if(!ins.get_accel_health_all()) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Accelerometers not healthy")); |
|
} |
|
return false; |
|
} |
|
if(!ins.get_gyro_health_all()) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Gyros not healthy")); |
|
} |
|
return false; |
|
} |
|
} |
|
|
|
// always check if inertial nav has started and is ready |
|
if(!ahrs.healthy()) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Waiting for Nav Checks")); |
|
} |
|
return false; |
|
} |
|
|
|
// always check if the current mode allows arming |
|
if (!mode_allows_arming(control_mode, arming_from_gcs)) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Mode not armable")); |
|
} |
|
return false; |
|
} |
|
|
|
// always check if rotor is spinning on heli |
|
#if FRAME_CONFIG == HELI_FRAME |
|
// heli specific arming check |
|
if ((rsc_control_deglitched > 0) || !motors.allow_arming()){ |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Rotor Control Engaged")); |
|
} |
|
return false; |
|
} |
|
#endif // HELI_FRAME |
|
|
|
// succeed if arming checks are disabled |
|
if (g.arming_check == ARMING_CHECK_NONE) { |
|
return true; |
|
} |
|
|
|
// baro checks |
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_BARO)) { |
|
// baro health check |
|
if (!barometer.all_healthy()) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Barometer not healthy")); |
|
} |
|
return false; |
|
} |
|
// Check baro & inav alt are within 1m if EKF is operating in an absolute position mode. |
|
// Do not check if intending to operate in a ground relative height mode as EKF will output a ground relative height |
|
// that may differ from the baro height due to baro drift. |
|
nav_filter_status filt_status = inertial_nav.get_filter_status(); |
|
bool using_baro_ref = (!filt_status.flags.pred_horiz_pos_rel && filt_status.flags.pred_horiz_pos_abs); |
|
if (using_baro_ref && (fabsf(inertial_nav.get_altitude() - baro_alt) > PREARM_MAX_ALT_DISPARITY_CM)) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Altitude disparity")); |
|
} |
|
return false; |
|
} |
|
} |
|
|
|
// check gps |
|
if (!pre_arm_gps_checks(display_failure)) { |
|
return false; |
|
} |
|
|
|
#if AC_FENCE == ENABLED |
|
// check vehicle is within fence |
|
if(!fence.pre_arm_check()) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: check fence")); |
|
} |
|
return false; |
|
} |
|
#endif |
|
|
|
// check lean angle |
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) { |
|
if (degrees(acosf(ahrs.cos_roll()*ahrs.cos_pitch()))*100.0f > aparm.angle_max) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Leaning")); |
|
} |
|
return false; |
|
} |
|
} |
|
|
|
// check battery voltage |
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_VOLTAGE)) { |
|
if (failsafe.battery || (!ap.usb_connected && battery.exhausted(g.fs_batt_voltage, g.fs_batt_mah))) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Check Battery")); |
|
} |
|
return false; |
|
} |
|
} |
|
|
|
// check throttle |
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_RC)) { |
|
// check throttle is not too low - must be above failsafe throttle |
|
if (g.failsafe_throttle != FS_THR_DISABLED && channel_throttle->radio_in < g.failsafe_throttle_value) { |
|
if (display_failure) { |
|
#if FRAME_CONFIG == HELI_FRAME |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Collective below Failsafe")); |
|
#else |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Throttle below Failsafe")); |
|
#endif |
|
} |
|
return false; |
|
} |
|
|
|
// check throttle is not too high - skips checks if arming from GCS in Guided |
|
if (!(arming_from_gcs && control_mode == GUIDED)) { |
|
// above top of deadband is too always high |
|
if (channel_throttle->control_in > get_takeoff_trigger_throttle()) { |
|
if (display_failure) { |
|
#if FRAME_CONFIG == HELI_FRAME |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Collective too high")); |
|
#else |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Throttle too high")); |
|
#endif |
|
} |
|
return false; |
|
} |
|
// in manual modes throttle must be at zero |
|
if ((mode_has_manual_throttle(control_mode) || control_mode == DRIFT) && channel_throttle->control_in > 0) { |
|
if (display_failure) { |
|
#if FRAME_CONFIG == HELI_FRAME |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Collective too high")); |
|
#else |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Throttle too high")); |
|
#endif |
|
} |
|
return false; |
|
} |
|
} |
|
} |
|
|
|
// check if safety switch has been pushed |
|
if (hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Safety Switch")); |
|
} |
|
return false; |
|
} |
|
|
|
// if we've gotten this far all is ok |
|
return true; |
|
} |
|
|
|
// init_disarm_motors - disarm motors |
|
void Copter::init_disarm_motors() |
|
{ |
|
// return immediately if we are already disarmed |
|
if (!motors.armed()) { |
|
return; |
|
} |
|
|
|
#if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_SITL |
|
gcs_send_text_P(SEVERITY_HIGH, PSTR("DISARMING MOTORS")); |
|
#endif |
|
|
|
// save compass offsets learned by the EKF |
|
Vector3f magOffsets; |
|
if (ahrs.use_compass() && ahrs.getMagOffsets(magOffsets)) { |
|
compass.set_and_save_offsets(compass.get_primary(), magOffsets); |
|
} |
|
|
|
#if AUTOTUNE_ENABLED == ENABLED |
|
// save auto tuned parameters |
|
autotune_save_tuning_gains(); |
|
#endif |
|
|
|
// we are not in the air |
|
set_land_complete(true); |
|
set_land_complete_maybe(true); |
|
|
|
// log disarm to the dataflash |
|
Log_Write_Event(DATA_DISARMED); |
|
|
|
// send disarm command to motors |
|
motors.armed(false); |
|
|
|
// reset the mission |
|
mission.reset(); |
|
|
|
// suspend logging |
|
if (!(g.log_bitmask & MASK_LOG_WHEN_DISARMED)) { |
|
DataFlash.EnableWrites(false); |
|
} |
|
|
|
// disable gps velocity based centrefugal force compensation |
|
ahrs.set_correct_centrifugal(false); |
|
hal.util->set_soft_armed(false); |
|
} |
|
|
|
// motors_output - send output to motors library which will adjust and send to ESCs and servos |
|
void Copter::motors_output() |
|
{ |
|
// check if we are performing the motor test |
|
if (ap.motor_test) { |
|
motor_test_output(); |
|
} else { |
|
if (!ap.using_interlock){ |
|
// if not using interlock switch, set according to Emergency Stop status |
|
// where Emergency Stop is forced false during arming if Emergency Stop switch |
|
// is not used. Interlock enabled means motors run, so we must |
|
// invert motor_emergency_stop status for motors to run. |
|
motors.set_interlock(!ap.motor_emergency_stop); |
|
} |
|
motors.output(); |
|
} |
|
} |
|
|
|
// check for pilot stick input to trigger lost vehicle alarm |
|
void Copter::lost_vehicle_check() |
|
{ |
|
static uint8_t soundalarm_counter; |
|
|
|
// disable if aux switch is setup to vehicle alarm as the two could interfere |
|
if (check_if_auxsw_mode_used(AUXSW_LOST_COPTER_SOUND)) { |
|
return; |
|
} |
|
|
|
// ensure throttle is down, motors not armed, pitch and roll rc at max. Note: rc1=roll rc2=pitch |
|
if (ap.throttle_zero && !motors.armed() && (channel_roll->control_in > 4000) && (channel_pitch->control_in > 4000)) { |
|
if (soundalarm_counter >= LOST_VEHICLE_DELAY) { |
|
if (AP_Notify::flags.vehicle_lost == false) { |
|
AP_Notify::flags.vehicle_lost = true; |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Locate Copter Alarm!")); |
|
} |
|
} else { |
|
soundalarm_counter++; |
|
} |
|
} else { |
|
soundalarm_counter = 0; |
|
if (AP_Notify::flags.vehicle_lost == true) { |
|
AP_Notify::flags.vehicle_lost = false; |
|
} |
|
} |
|
}
|
|
|