You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
579 lines
32 KiB
579 lines
32 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
/* |
|
* control_hybrid.pde - init and run calls for hybrid flight mode |
|
* hybrid tries to improve upon regular loiter by mixing the pilot input with the loiter controller |
|
*/ |
|
|
|
#define HYBRID_SPEED_0 10 // speed below which it is always safe to switch to loiter |
|
#define HYBRID_LOITER_STAB_TIMER 300 // Must be higher than HYBRID_BRAKE_LOITER_MIX_TIMER (twice is a good deal) set it from 100 to 500, the number of centiseconds between loiter engage and getting wind_comp (once loiter stabilized) |
|
#define HYBRID_BRAKE_TIME_ESTIMATE_MAX 600 // max number of cycles the brake will be applied before we switch to loiter |
|
#define HYBRID_BRAKE_TO_LOITER_TIMER 150 // Number of cycles to transition from brake mode to loiter mode. Must be lower than HYBRID_LOITER_STAB_TIMER |
|
#define HYBRID_LOITER_TO_PILOT_MIX_TIMER 50 // Set it from 100 to 200, the number of centiseconds loiter and manual commands are mixed to make a smooth transition. |
|
#define HYBRID_SMOOTH_RATE_FACTOR 0.04f // filter applied to pilot's roll/pitch input as it returns to center. A lower number will cause the roll/pitch to return to zero more slowly if the brake_rate is also low. |
|
#define HYBRID_STICK_RELEASE_SMOOTH_ANGLE 1800 // max angle required (in centi-degrees) after which the smooth stick release effect is applied |
|
#define HYBRID_WIND_COMP_ESTIMATE_SPEED_MAX 30 // wind compensation estimates will only run when velocity is at or below this speed in cm/s |
|
|
|
// declare some function to keep compiler happy |
|
static void hybrid_update_pilot_lean_angle(int16_t &lean_angle_filtered, int16_t &lean_angle_raw); |
|
static int16_t hybrid_mix_controls(float mix_ratio, int16_t first_control, int16_t second_control); |
|
static void hybrid_update_brake_angle_from_velocity(int16_t &brake_angle, float velocity); |
|
static void hybrid_update_wind_comp_estimate(); |
|
static void hybrid_get_wind_comp_lean_angles(int16_t &roll_angle, int16_t &pitch_angle); |
|
|
|
// mission state enumeration |
|
enum hybrid_rp_mode { |
|
HYBRID_PILOT_OVERRIDE=0, // pilot is controlling this axis (i.e. roll or pitch) |
|
HYBRID_BRAKE, // this axis is braking towards zero |
|
HYBRID_BRAKE_READY_TO_LOITER, // this axis has completed braking and is ready to enter loiter mode (both modes must be this value before moving to next stage) |
|
HYBRID_BRAKE_TO_LOITER, // both vehicle's axis (roll and pitch) are transitioning from braking to loiter mode (braking and loiter controls are mixed) |
|
HYBRID_LOITER, // both vehicle axis are holding position |
|
HYBRID_LOITER_TO_PILOT_OVERRIDE // pilot has input controls on this axis and this axis is transitioning to pilot override (other axis will transition to brake if no pilot input) |
|
}; |
|
|
|
static struct { |
|
hybrid_rp_mode roll_mode : 3; // roll mode: pilot override, brake or loiter |
|
hybrid_rp_mode pitch_mode : 3; // pitch mode: pilot override, brake or loiter |
|
uint8_t braking_time_updated_roll : 1; // true once we have re-estimated the braking time. This is done once as the vehicle begins to flatten out after braking |
|
uint8_t braking_time_updated_pitch : 1; // true once we have re-estimated the braking time. This is done once as the vehicle begins to flatten out after braking |
|
|
|
// pilot input related variables |
|
int16_t pilot_roll; // pilot requested roll angle (filtered to slow returns to zero) |
|
int16_t pilot_pitch; // pilot requested roll angle (filtered to slow returns to zero) |
|
|
|
// braking related variables |
|
float brake_gain; // gain used during conversion of vehicle's velocity to lean angle during braking (calculated from brake_rate) |
|
int16_t brake_roll; // target roll angle during braking periods |
|
int16_t brake_pitch; // target pitch angle during braking periods |
|
int16_t brake_timeout_roll; // number of cycles allowed for the braking to complete, this timeout will be updated at half-braking |
|
int16_t brake_timeout_pitch; // number of cycles allowed for the braking to complete, this timeout will be updated at half-braking |
|
int16_t brake_angle_max_roll; // maximum lean angle achieved during braking. Used to determine when the vehicle has begun to flatten out so that we can re-estimate the braking time |
|
int16_t brake_angle_max_pitch; // maximum lean angle achieved during braking Used to determine when the vehicle has begun to flatten out so that we can re-estimate the braking time |
|
int16_t brake_to_loiter_timer; // cycles to mix brake and loiter controls in HYBRID_BRAKE_TO_LOITER |
|
|
|
// loiter related variables |
|
int16_t loiter_to_pilot_timer_roll; // cycles to mix loiter and pilot controls in HYBRID_LOITER_TO_PILOT |
|
int16_t loiter_to_pilot_timer_pitch; // cycles to mix loiter and pilot controls in HYBRID_LOITER_TO_PILOT |
|
int16_t loiter_final_roll; // final roll angle from loiter controller as we exit loiter mode (used for mixing with pilot input) |
|
int16_t loiter_final_pitch; // final pitch angle from loiter controller as we exit loiter mode (used for mixing with pilot input) |
|
|
|
// wind compensation related variables |
|
Vector2f wind_comp_ef; // wind compensation in earth frame, filtered lean angles from position controller |
|
int16_t wind_comp_roll; // roll angle to compensate for wind |
|
int16_t wind_comp_pitch; // pitch angle to compensate for wind |
|
int8_t wind_comp_timer; // counter to reduce wind_offset calcs to 10hz |
|
|
|
// final output |
|
int16_t roll; // final roll angle sent to attitude controller |
|
int16_t pitch; // final pitch angle sent to attitude controller |
|
} hybrid; |
|
|
|
// hybrid_init - initialise hybrid controller |
|
static bool hybrid_init(bool ignore_checks) |
|
{ |
|
// fail to initialise hybrid mode if no GPS lock |
|
if (!GPS_ok() && !ignore_checks) { |
|
return false; |
|
} |
|
|
|
// set target to current position |
|
wp_nav.init_loiter_target(); |
|
|
|
// clear pilot's feed forward for roll and pitch |
|
wp_nav.set_pilot_desired_acceleration(0, 0); |
|
|
|
// initialise altitude target to stopping point |
|
pos_control.set_target_to_stopping_point_z(); |
|
|
|
// initialise lean angles to current attitude |
|
hybrid.pilot_roll = 0; |
|
hybrid.pilot_pitch = 0; |
|
hybrid.roll = constrain_int16(ahrs.roll_sensor, -g.hybrid_brake_angle_max, g.hybrid_brake_angle_max); |
|
hybrid.pitch = constrain_int16(ahrs.pitch_sensor, -g.hybrid_brake_angle_max, g.hybrid_brake_angle_max); |
|
|
|
// compute brake_gain |
|
hybrid.brake_gain = (15.0f * (float)g.hybrid_brake_rate + 95.0f) / 100.0f; |
|
|
|
if (ap.land_complete) { |
|
// if landed begin in loiter mode |
|
hybrid.roll_mode = HYBRID_LOITER; |
|
hybrid.pitch_mode = HYBRID_LOITER; |
|
}else{ |
|
// if not landed start in pilot override to avoid hard twitch |
|
hybrid.roll_mode = HYBRID_PILOT_OVERRIDE; |
|
hybrid.pitch_mode = HYBRID_PILOT_OVERRIDE; |
|
} |
|
|
|
// initialise wind_comp each time hybrid is switched on |
|
hybrid.wind_comp_ef.zero(); |
|
hybrid.wind_comp_roll = 0; |
|
hybrid.wind_comp_pitch = 0; |
|
hybrid.wind_comp_timer = 0; |
|
|
|
return true; |
|
} |
|
|
|
// hybrid_run - runs the hybrid controller |
|
// should be called at 100hz or more |
|
static void hybrid_run() |
|
{ |
|
int16_t target_roll, target_pitch; // pilot's roll and pitch angle inputs |
|
float target_yaw_rate = 0; // pilot desired yaw rate in centi-degrees/sec |
|
float target_climb_rate = 0; // pilot desired climb rate in centimeters/sec |
|
float brake_to_loiter_mix; // mix of brake and loiter controls. 0 = fully brake controls, 1 = fully loiter controls |
|
float loiter_to_pilot_mix; // mix of loiter and pilot controls. 0 = fully loiter controls, 1 = fully pilot controls |
|
float vel_fw, vel_right; // vehicle's current velocity in body-frame forward and right directions |
|
const Vector3f& vel = inertial_nav.get_velocity(); |
|
|
|
// if not auto armed set throttle to zero and exit immediately |
|
if(!ap.auto_armed || !inertial_nav.position_ok()) { |
|
wp_nav.init_loiter_target(); |
|
attitude_control.init_targets(); |
|
attitude_control.set_throttle_out(0, false); |
|
return; |
|
} |
|
|
|
// process pilot inputs |
|
if (!failsafe.radio) { |
|
// apply SIMPLE mode transform to pilot inputs |
|
update_simple_mode(); |
|
|
|
// get pilot's desired yaw rate |
|
target_yaw_rate = get_pilot_desired_yaw_rate(g.rc_4.control_in); |
|
|
|
// get pilot desired climb rate (for alt-hold mode and take-off) |
|
target_climb_rate = get_pilot_desired_climb_rate(g.rc_3.control_in); |
|
|
|
// check for pilot requested take-off |
|
if (ap.land_complete && target_climb_rate > 0) { |
|
// indicate we are taking off |
|
set_land_complete(false); |
|
// clear i term when we're taking off |
|
set_throttle_takeoff(); |
|
} |
|
} |
|
|
|
// if landed initialise loiter targets, set throttle to zero and exit |
|
if (ap.land_complete) { |
|
wp_nav.init_loiter_target(); |
|
attitude_control.init_targets(); |
|
attitude_control.set_throttle_out(0, false); |
|
return; |
|
}else{ |
|
// convert pilot input to lean angles |
|
get_pilot_desired_lean_angles(g.rc_1.control_in, g.rc_2.control_in, target_roll, target_pitch); |
|
|
|
// convert inertial nav earth-frame velocities to body-frame |
|
// To-Do: move this to AP_Math (or perhaps we already have a function to do this) |
|
vel_fw = vel.x*ahrs.cos_yaw() + vel.y*ahrs.sin_yaw(); |
|
vel_right = -vel.x*ahrs.sin_yaw() + vel.y*ahrs.cos_yaw(); |
|
|
|
// Roll state machine |
|
// Each state (aka mode) is responsible for: |
|
// 1. dealing with pilot input |
|
// 2. calculating the final roll output to the attitude controller |
|
// 3. checking if the state (aka mode) should be changed and if 'yes' perform any required initialisation for the new state |
|
switch (hybrid.roll_mode) { |
|
|
|
case HYBRID_PILOT_OVERRIDE: |
|
// update pilot desired roll angle using latest radio input |
|
// this filters the input so that it returns to zero no faster than the brake-rate |
|
hybrid_update_pilot_lean_angle(hybrid.pilot_roll, target_roll); |
|
|
|
// switch to BRAKE mode for next iteration if no pilot input |
|
if ((target_roll == 0) && (abs(hybrid.pilot_roll) < 2 * g.hybrid_brake_rate)) { |
|
// initialise BRAKE mode |
|
hybrid.roll_mode = HYBRID_BRAKE; // Set brake roll mode |
|
hybrid.brake_roll = 0; // initialise braking angle to zero |
|
hybrid.brake_angle_max_roll = 0; // reset brake_angle_max so we can detect when vehicle begins to flatten out during braking |
|
hybrid.brake_timeout_roll = HYBRID_BRAKE_TIME_ESTIMATE_MAX; // number of cycles the brake will be applied, updated during braking mode. To-Do: this must be adjusted based on loop rate |
|
hybrid.braking_time_updated_roll = false; // flag the braking time can be re-estimated |
|
} |
|
|
|
// final lean angle should be pilot input plus wind compensation |
|
hybrid.roll = hybrid.pilot_roll + hybrid.wind_comp_roll; |
|
break; |
|
|
|
case HYBRID_BRAKE: |
|
case HYBRID_BRAKE_READY_TO_LOITER: |
|
// calculate brake_roll angle to counter-act velocity |
|
hybrid_update_brake_angle_from_velocity(hybrid.brake_roll, vel_right); |
|
|
|
// update braking time estimate |
|
if (!hybrid.braking_time_updated_roll) { |
|
// check if brake angle is increasing |
|
if (abs(hybrid.brake_roll) >= hybrid.brake_angle_max_roll) { |
|
hybrid.brake_angle_max_roll = abs(hybrid.brake_roll); |
|
} else { |
|
// braking angle has started decreasing so re-estimate braking time |
|
hybrid.brake_timeout_roll = 1+(uint16_t)(15L*(int32_t)(abs(hybrid.brake_roll))/(10L*(int32_t)g.hybrid_brake_rate)); // the 1.2 (12/10) factor has to be tuned in flight, here it means 120% of the "normal" time. |
|
hybrid.braking_time_updated_roll = true; |
|
} |
|
} |
|
|
|
// if velocity is very low reduce braking time to 0.5seconds |
|
if ((fabs(vel_right) <= HYBRID_SPEED_0) && (hybrid.brake_timeout_roll > 50)) { |
|
hybrid.brake_timeout_roll = 50; |
|
} |
|
|
|
// reduce braking timer |
|
if (hybrid.brake_timeout_roll > 0) { |
|
hybrid.brake_timeout_roll--; |
|
} else { |
|
// indicate that we are ready to move to Loiter. |
|
// Loiter will only actually be engaged once both roll_mode and pitch_mode are changed to HYBRID_BRAKE_READY_TO_LOITER |
|
// logic for engaging loiter is handled below the roll and pitch mode switch statements |
|
hybrid.roll_mode = HYBRID_BRAKE_READY_TO_LOITER; |
|
} |
|
|
|
// check for pilot input |
|
if (target_roll != 0) { |
|
hybrid.roll_mode = HYBRID_PILOT_OVERRIDE; |
|
} |
|
|
|
// final lean angle is braking angle + wind compensation angle |
|
hybrid.roll = hybrid.brake_roll + hybrid.wind_comp_roll; |
|
break; |
|
|
|
case HYBRID_BRAKE_TO_LOITER: |
|
case HYBRID_LOITER: |
|
// these modes are combined roll-pitch modes and are handled below |
|
break; |
|
|
|
case HYBRID_LOITER_TO_PILOT_OVERRIDE: |
|
// update pilot desired roll angle using latest radio input |
|
// this filters the input so that it returns to zero no faster than the brake-rate |
|
hybrid_update_pilot_lean_angle(hybrid.pilot_roll, target_roll); |
|
|
|
// count-down loiter to pilot timer |
|
if (hybrid.loiter_to_pilot_timer_roll > 0) { |
|
hybrid.loiter_to_pilot_timer_roll--; |
|
} else { |
|
// when timer runs out switch to full pilot override for next iteration |
|
hybrid.roll_mode = HYBRID_PILOT_OVERRIDE; |
|
} |
|
|
|
// calculate loiter_to_pilot mix ratio |
|
loiter_to_pilot_mix = (float)hybrid.loiter_to_pilot_timer_roll / (float)HYBRID_LOITER_TO_PILOT_MIX_TIMER; |
|
|
|
// mix final loiter lean angle and pilot desired lean angles |
|
hybrid.roll = hybrid_mix_controls(loiter_to_pilot_mix, hybrid.loiter_final_roll, hybrid.pilot_roll + hybrid.wind_comp_roll); |
|
break; |
|
} |
|
|
|
// Pitch state machine |
|
// Each state (aka mode) is responsible for: |
|
// 1. dealing with pilot input |
|
// 2. calculating the final pitch output to the attitude contpitcher |
|
// 3. checking if the state (aka mode) should be changed and if 'yes' perform any required initialisation for the new state |
|
switch (hybrid.pitch_mode) { |
|
|
|
case HYBRID_PILOT_OVERRIDE: |
|
// update pilot desired pitch angle using latest radio input |
|
// this filters the input so that it returns to zero no faster than the brake-rate |
|
hybrid_update_pilot_lean_angle(hybrid.pilot_pitch, target_pitch); |
|
|
|
// switch to BRAKE mode for next iteration if no pilot input |
|
if ((target_pitch == 0) && (abs(hybrid.pilot_pitch) < 2 * g.hybrid_brake_rate)) { |
|
// initialise BRAKE mode |
|
hybrid.pitch_mode = HYBRID_BRAKE; // set brake pitch mode |
|
hybrid.brake_pitch = 0; // initialise braking angle to zero |
|
hybrid.brake_angle_max_pitch = 0; // reset brake_angle_max so we can detect when vehicle begins to flatten out during braking |
|
hybrid.brake_timeout_pitch = HYBRID_BRAKE_TIME_ESTIMATE_MAX; // number of cycles the brake will be applied, updated during braking mode. To-Do: this must be adjusted based on loop rate |
|
hybrid.braking_time_updated_pitch = false; // flag the braking time can be re-estimated |
|
} |
|
|
|
// final lean angle should be pilot input plus wind compensation |
|
hybrid.pitch = hybrid.pilot_pitch + hybrid.wind_comp_pitch; |
|
break; |
|
|
|
case HYBRID_BRAKE: |
|
case HYBRID_BRAKE_READY_TO_LOITER: |
|
// calculate brake_pitch angle to counter-act velocity |
|
hybrid_update_brake_angle_from_velocity(hybrid.brake_pitch, -vel_fw); |
|
|
|
// update braking time estimate |
|
if (!hybrid.braking_time_updated_pitch) { |
|
// check if brake angle is increasing |
|
if (abs(hybrid.brake_pitch) >= hybrid.brake_angle_max_pitch) { |
|
hybrid.brake_angle_max_pitch = abs(hybrid.brake_pitch); |
|
} else { |
|
// braking angle has started decreasing so re-estimate braking time |
|
hybrid.brake_timeout_pitch = 1+(uint16_t)(15L*(int32_t)(abs(hybrid.brake_pitch))/(10L*(int32_t)g.hybrid_brake_rate)); // the 1.2 (12/10) factor has to be tuned in flight, here it means 120% of the "normal" time. |
|
hybrid.braking_time_updated_pitch = true; |
|
} |
|
} |
|
|
|
// if velocity is very low reduce braking time to 0.5seconds |
|
// Note: this speed is extremely low (only 10cm/s) meaning this case is likely never executed |
|
if ((fabs(vel_right) <= HYBRID_SPEED_0) && (hybrid.brake_timeout_pitch > 50)) { |
|
hybrid.brake_timeout_pitch = 50; |
|
} |
|
|
|
// reduce braking timer |
|
if (hybrid.brake_timeout_pitch > 0) { |
|
hybrid.brake_timeout_pitch--; |
|
} else { |
|
// indicate that we are ready to move to Loiter. |
|
// Loiter will only actually be engaged once both pitch_mode and pitch_mode are changed to HYBRID_BRAKE_READY_TO_LOITER |
|
// logic for engaging loiter is handled below the pitch and pitch mode switch statements |
|
hybrid.pitch_mode = HYBRID_BRAKE_READY_TO_LOITER; |
|
} |
|
|
|
// check for pilot input |
|
if (target_pitch != 0) { |
|
hybrid.pitch_mode = HYBRID_PILOT_OVERRIDE; |
|
} |
|
|
|
// final lean angle is braking angle + wind compensation angle |
|
hybrid.pitch = hybrid.brake_pitch + hybrid.wind_comp_pitch; |
|
break; |
|
|
|
case HYBRID_BRAKE_TO_LOITER: |
|
case HYBRID_LOITER: |
|
// these modes are combined pitch-pitch modes and are handled below |
|
break; |
|
|
|
case HYBRID_LOITER_TO_PILOT_OVERRIDE: |
|
// update pilot desired pitch angle using latest radio input |
|
// this filters the input so that it returns to zero no faster than the brake-rate |
|
hybrid_update_pilot_lean_angle(hybrid.pilot_pitch, target_pitch); |
|
|
|
// count-down loiter to pilot timer |
|
if (hybrid.loiter_to_pilot_timer_pitch > 0) { |
|
hybrid.loiter_to_pilot_timer_pitch--; |
|
} else { |
|
// when timer runs out switch to full pilot override for next iteration |
|
hybrid.pitch_mode = HYBRID_PILOT_OVERRIDE; |
|
} |
|
|
|
// calculate loiter_to_pilot mix ratio |
|
loiter_to_pilot_mix = (float)hybrid.loiter_to_pilot_timer_pitch / (float)HYBRID_LOITER_TO_PILOT_MIX_TIMER; |
|
|
|
// mix final loiter lean angle and pilot desired lean angles |
|
hybrid.pitch = hybrid_mix_controls(loiter_to_pilot_mix, hybrid.loiter_final_pitch, hybrid.pilot_pitch + hybrid.wind_comp_pitch); |
|
break; |
|
} |
|
|
|
// |
|
// Shared roll & pitch states (HYBRID_BRAKE_TO_LOITER and HYBRID_LOITER) |
|
// |
|
|
|
// switch into LOITER mode when both roll and pitch are ready |
|
if (hybrid.roll_mode == HYBRID_BRAKE_READY_TO_LOITER && hybrid.pitch_mode == HYBRID_BRAKE_READY_TO_LOITER) { |
|
hybrid.roll_mode = HYBRID_BRAKE_TO_LOITER; |
|
hybrid.pitch_mode = HYBRID_BRAKE_TO_LOITER; |
|
hybrid.brake_to_loiter_timer = HYBRID_BRAKE_TO_LOITER_TIMER; |
|
// init loiter controller |
|
wp_nav.init_loiter_target(); |
|
// move wind compensation back into loiter I term |
|
g.pid_loiter_rate_lat.set_integrator(hybrid.wind_comp_ef.x); |
|
g.pid_loiter_rate_lon.set_integrator(hybrid.wind_comp_ef.y); |
|
} |
|
|
|
// roll-mode is used as the combined roll+pitch mode when in BRAKE_TO_LOITER or LOITER modes |
|
if (hybrid.roll_mode == HYBRID_BRAKE_TO_LOITER || hybrid.roll_mode == HYBRID_LOITER) { |
|
|
|
// force pitch mode to be same as roll_mode just to keep it consistent (it's not actually used in these states) |
|
hybrid.pitch_mode = hybrid.roll_mode; |
|
|
|
// handle combined roll+pitch mode |
|
switch (hybrid.roll_mode) { |
|
case HYBRID_BRAKE_TO_LOITER: |
|
// reduce brake_to_loiter timer |
|
if (hybrid.brake_to_loiter_timer > 0) { |
|
hybrid.brake_to_loiter_timer--; |
|
} else { |
|
// progress to full loiter on next iteration |
|
hybrid.roll_mode = HYBRID_LOITER; |
|
hybrid.pitch_mode = HYBRID_LOITER; |
|
} |
|
|
|
// calculate percentage mix of loiter and brake control |
|
brake_to_loiter_mix = (float)hybrid.brake_to_loiter_timer / (float)HYBRID_BRAKE_TO_LOITER_TIMER; |
|
|
|
// calculate brake_roll and pitch angles to counter-act velocity |
|
hybrid_update_brake_angle_from_velocity(hybrid.brake_roll, vel_right); |
|
hybrid_update_brake_angle_from_velocity(hybrid.brake_pitch, -vel_fw); |
|
|
|
// run loiter controller |
|
wp_nav.update_loiter(); |
|
|
|
// calculate final roll and pitch output by mixing loiter and brake controls |
|
hybrid.roll = hybrid_mix_controls(brake_to_loiter_mix, hybrid.brake_roll + hybrid.wind_comp_roll, wp_nav.get_roll()); |
|
hybrid.pitch = hybrid_mix_controls(brake_to_loiter_mix, hybrid.brake_pitch + hybrid.wind_comp_pitch, wp_nav.get_pitch()); |
|
|
|
// check for pilot input |
|
if (target_roll != 0 || target_pitch != 0) { |
|
// if roll input switch to pilot override for roll |
|
if (target_roll != 0) { |
|
hybrid.roll_mode = HYBRID_PILOT_OVERRIDE; |
|
// switch pitch-mode to brake (but ready to go back to loiter anytime) |
|
hybrid.pitch_mode = HYBRID_BRAKE_READY_TO_LOITER; |
|
} |
|
// if pitch input switch to pilot override for pitch |
|
if (target_pitch != 0) { |
|
hybrid.pitch_mode = HYBRID_PILOT_OVERRIDE; |
|
if (target_roll == 0) { |
|
// switch roll-mode to brake (but ready to go back to loiter anytime) |
|
hybrid.roll_mode = HYBRID_BRAKE_READY_TO_LOITER; |
|
} |
|
} |
|
} |
|
break; |
|
|
|
case HYBRID_LOITER: |
|
// run loiter controller |
|
wp_nav.update_loiter(); |
|
|
|
// set roll angle based on loiter controller outputs |
|
hybrid.roll = wp_nav.get_roll(); |
|
hybrid.pitch = wp_nav.get_pitch(); |
|
|
|
// update wind compensation estimate |
|
hybrid_update_wind_comp_estimate(); |
|
|
|
// check for pilot input |
|
if (target_roll != 0 || target_pitch != 0) { |
|
// if roll input switch to pilot override for roll |
|
if (target_roll != 0) { |
|
hybrid.roll_mode = HYBRID_LOITER_TO_PILOT_OVERRIDE; |
|
hybrid.loiter_to_pilot_timer_roll = HYBRID_LOITER_TO_PILOT_MIX_TIMER; |
|
// initialise pilot_roll |
|
hybrid.pilot_roll = target_roll; |
|
// switch pitch-mode to brake (but ready to go back to loiter anytime) |
|
hybrid.pitch_mode = HYBRID_BRAKE_READY_TO_LOITER; |
|
} |
|
// if pitch input switch to pilot override for pitch |
|
if (target_pitch != 0) { |
|
hybrid.pitch_mode = HYBRID_LOITER_TO_PILOT_OVERRIDE; |
|
hybrid.loiter_to_pilot_timer_pitch = HYBRID_LOITER_TO_PILOT_MIX_TIMER; |
|
// initialise pilot_pitch |
|
hybrid.pilot_pitch = target_pitch; |
|
// if roll not overriden switch roll-mode to brake (but be ready to go back to loiter any time) |
|
if (target_roll == 0) { |
|
hybrid.roll_mode = HYBRID_BRAKE_READY_TO_LOITER; |
|
} |
|
} |
|
// store final loiter outputs for mixing with pilot input |
|
hybrid.loiter_final_roll = wp_nav.get_roll(); |
|
hybrid.loiter_final_pitch = wp_nav.get_pitch(); |
|
// retrieve latest wind compensation lean angles |
|
hybrid_get_wind_comp_lean_angles(hybrid.wind_comp_roll, hybrid.wind_comp_pitch); |
|
} |
|
break; |
|
|
|
default: |
|
// do nothing for uncombined roll and pitch modes |
|
break; |
|
} |
|
} |
|
|
|
// constrain target pitch/roll angles |
|
hybrid.roll = constrain_int16(hybrid.roll, -aparm.angle_max, aparm.angle_max); |
|
hybrid.pitch = constrain_int16(hybrid.pitch, -aparm.angle_max, aparm.angle_max); |
|
|
|
// update attitude controller targets |
|
attitude_control.angle_ef_roll_pitch_rate_ef_yaw(hybrid.roll, hybrid.pitch, target_yaw_rate); |
|
|
|
// throttle control |
|
if (sonar_alt_health >= SONAR_ALT_HEALTH_MAX) { |
|
// if sonar is ok, use surface tracking |
|
target_climb_rate = get_throttle_surface_tracking(target_climb_rate, pos_control.get_alt_target(), G_Dt); |
|
} |
|
// update altitude target and call position controller |
|
pos_control.set_alt_target_from_climb_rate(target_climb_rate, G_Dt); |
|
pos_control.update_z_controller(); |
|
} |
|
} |
|
|
|
// hybrid_update_pilot_lean_angle - update the pilot's filtered lean angle with the latest raw input received |
|
static void hybrid_update_pilot_lean_angle(int16_t &lean_angle_filtered, int16_t &lean_angle_raw) |
|
{ |
|
// if raw input is large or reversing the vehicle's lean angle immediately set the fitlered angle to the new raw angle |
|
if ((lean_angle_filtered > 0 && lean_angle_raw < 0) || (lean_angle_filtered < 0 && lean_angle_raw > 0) || (abs(lean_angle_raw) > HYBRID_STICK_RELEASE_SMOOTH_ANGLE)) { |
|
lean_angle_filtered = lean_angle_raw; |
|
} else { |
|
// lean_angle_raw must be pulling lean_angle_filtered towards zero, smooth the decrease |
|
if (lean_angle_filtered > 0) { |
|
// reduce the filtered lean angle at 4% or the brake rate (whichever is faster). |
|
// To-Do: the HYBRID_SMOOTH_RATE_FACTOR must be adjusted based on update rate |
|
lean_angle_filtered -= max((float)lean_angle_filtered * HYBRID_SMOOTH_RATE_FACTOR, g.hybrid_brake_rate); |
|
// do not let the filtered angle fall below the pilot's input lean angle. |
|
// the above line pulls the filtered angle down and the below line acts as a catch |
|
lean_angle_filtered = max(lean_angle_filtered, lean_angle_raw); |
|
}else{ |
|
// To-Do: the HYBRID_SMOOTH_RATE_FACTOR must be adjusted based on update rate |
|
lean_angle_filtered += max(-(float)lean_angle_filtered * HYBRID_SMOOTH_RATE_FACTOR, g.hybrid_brake_rate); |
|
lean_angle_filtered = min(lean_angle_filtered, lean_angle_raw); |
|
} |
|
} |
|
} |
|
|
|
// hybrid_mix_controls - mixes two controls based on the mix_ratio |
|
// mix_ratio of 1 = use first_control completely, 0 = use second_control completely, 0.5 = mix evenly |
|
static int16_t hybrid_mix_controls(float mix_ratio, int16_t first_control, int16_t second_control) |
|
{ |
|
mix_ratio = constrain_float(mix_ratio, 0.0f, 1.0f); |
|
return (int16_t)((mix_ratio * first_control) + ((1.0f-mix_ratio)*second_control)); |
|
} |
|
|
|
// hybrid_update_brake_angle_from_velocity - updates the brake_angle based on the vehicle's velocity and brake_gain |
|
// brake_angle is slewed with the wpnav.hybrid_brake_rate and constrained by the wpnav.hybrid_braking_angle_max |
|
// velocity is assumed to be in the same direction as lean angle so for pitch you should provide the velocity backwards (i.e. -ve forward velocity) |
|
static void hybrid_update_brake_angle_from_velocity(int16_t &brake_angle, float velocity) |
|
{ |
|
float lean_angle; |
|
|
|
// calculate velocity-only based lean angle |
|
if (velocity >= 0) { |
|
lean_angle = -hybrid.brake_gain * velocity * (1.0f+500.0f/(velocity+60.0f)); |
|
} else { |
|
lean_angle = -hybrid.brake_gain * velocity * (1.0f+500.0f/(-velocity+60.0f)); |
|
} |
|
|
|
// do not let lean_angle be too far from brake_angle |
|
// To-Do: this constraint needs to account for loop update rate |
|
brake_angle = constrain_int16((int16_t)lean_angle, brake_angle - g.hybrid_brake_rate, brake_angle + g.hybrid_brake_rate); |
|
|
|
// constrain final brake_angle |
|
brake_angle = constrain_int16(brake_angle, -g.hybrid_brake_angle_max, g.hybrid_brake_angle_max); |
|
} |
|
|
|
// hybrid_update_wind_comp_estimate - updates wind compensation estimate |
|
// should be called at the maximum loop rate when loiter is engaged |
|
// To-Do: adjust the filtering for 100hz and 400hz update rates |
|
static void hybrid_update_wind_comp_estimate() |
|
{ |
|
if (inertial_nav.get_velocity_xy() > HYBRID_WIND_COMP_ESTIMATE_SPEED_MAX) { |
|
return; |
|
} |
|
|
|
// get position controller accel target |
|
// To-Do: clean this up by using accessor in loiter controller (or move entire hybrid controller to a library shared with loiter) |
|
const Vector3f& accel_target = pos_control.get_accel_target(); |
|
|
|
// update wind compensation in earth-frame lean angles |
|
if (hybrid.wind_comp_ef.x == 0) { |
|
// if wind compensation has not been initialised set it immediately to the pos controller's desired accel in north direction |
|
hybrid.wind_comp_ef.x = accel_target.x; |
|
} else { |
|
// low pass filter the position controller's lean angle output |
|
hybrid.wind_comp_ef.x = 0.97f*hybrid.wind_comp_ef.x + 0.03f*accel_target.x; |
|
} |
|
if (hybrid.wind_comp_ef.y == 0) { |
|
// if wind compensation has not been initialised set it immediately to the pos controller's desired accel in north direction |
|
hybrid.wind_comp_ef.y = accel_target.y; |
|
} else { |
|
// low pass filter the position controller's lean angle output |
|
hybrid.wind_comp_ef.y = 0.97f*hybrid.wind_comp_ef.y + 0.03f*accel_target.y; |
|
} |
|
} |
|
|
|
// hybrid_get_wind_comp_lean_angles - retrieve wind compensation angles in body frame roll and pitch angles |
|
static void hybrid_get_wind_comp_lean_angles(int16_t &roll_angle, int16_t &pitch_angle) |
|
{ |
|
// convert earth frame desired accelerations to body frame roll and pitch lean angles |
|
roll_angle = (float)fast_atan((-hybrid.wind_comp_ef.x*ahrs.sin_yaw() + hybrid.wind_comp_ef.y*ahrs.cos_yaw())/981)*(18000/M_PI); |
|
pitch_angle = (float)fast_atan(-(hybrid.wind_comp_ef.x*ahrs.cos_yaw() + hybrid.wind_comp_ef.y*ahrs.sin_yaw())/981)*(18000/M_PI); |
|
}
|
|
|