You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
766 lines
36 KiB
766 lines
36 KiB
#include <AP_HAL/AP_HAL.h> |
|
|
|
#include "AP_NavEKF3.h" |
|
#include "AP_NavEKF3_core.h" |
|
#include <AP_AHRS/AP_AHRS.h> |
|
#include <AP_Vehicle/AP_Vehicle.h> |
|
#include <GCS_MAVLink/GCS.h> |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
/******************************************************** |
|
* RESET FUNCTIONS * |
|
********************************************************/ |
|
|
|
/******************************************************** |
|
* FUSE MEASURED_DATA * |
|
********************************************************/ |
|
|
|
// select fusion of optical flow measurements |
|
void NavEKF3_core::SelectFlowFusion() |
|
{ |
|
// start performance timer |
|
hal.util->perf_begin(_perf_FuseOptFlow); |
|
|
|
// Check for data at the fusion time horizon |
|
flowDataToFuse = storedOF.recall(ofDataDelayed, imuDataDelayed.time_ms); |
|
|
|
// Check if the magnetometer has been fused on that time step and the filter is running at faster than 200 Hz |
|
// If so, don't fuse measurements on this time step to reduce frame over-runs |
|
// Only allow one time slip to prevent high rate magnetometer data preventing fusion of other measurements |
|
if (magFusePerformed && dtIMUavg < 0.005f && !optFlowFusionDelayed) { |
|
optFlowFusionDelayed = true; |
|
return; |
|
} else { |
|
optFlowFusionDelayed = false; |
|
} |
|
|
|
// Perform Data Checks |
|
// Check if the optical flow data is still valid |
|
flowDataValid = ((imuSampleTime_ms - flowValidMeaTime_ms) < 1000); |
|
// check is the terrain offset estimate is still valid - if we are using range finder as the main height reference, the ground is assumed to be at 0 |
|
gndOffsetValid = ((imuSampleTime_ms - gndHgtValidTime_ms) < 5000) || (activeHgtSource == HGT_SOURCE_RNG); |
|
// Perform tilt check |
|
bool tiltOK = (prevTnb.c.z > frontend->DCM33FlowMin); |
|
// Constrain measurements to zero if takeoff is not detected and the height above ground |
|
// is insuffient to achieve acceptable focus. This allows the vehicle to be picked up |
|
// and carried to test optical flow operation |
|
if (!takeOffDetected && ((terrainState - stateStruct.position.z) < 0.5f)) { |
|
ofDataDelayed.flowRadXYcomp.zero(); |
|
ofDataDelayed.flowRadXY.zero(); |
|
flowDataValid = true; |
|
} |
|
|
|
// if have valid flow or range measurements, fuse data into a 1-state EKF to estimate terrain height |
|
if (((flowDataToFuse && (frontend->_flowUse == FLOW_USE_TERRAIN)) || rangeDataToFuse) && tiltOK) { |
|
// Estimate the terrain offset (runs a one state EKF) |
|
EstimateTerrainOffset(); |
|
} |
|
|
|
// Fuse optical flow data into the main filter |
|
if (flowDataToFuse && tiltOK) { |
|
if (frontend->_flowUse == FLOW_USE_NAV) { |
|
// Set the flow noise used by the fusion processes |
|
R_LOS = sq(MAX(frontend->_flowNoise, 0.05f)); |
|
// Fuse the optical flow X and Y axis data into the main filter sequentially |
|
FuseOptFlow(); |
|
} |
|
// reset flag to indicate that no new flow data is available for fusion |
|
flowDataToFuse = false; |
|
} |
|
|
|
// stop the performance timer |
|
hal.util->perf_end(_perf_FuseOptFlow); |
|
} |
|
|
|
/* |
|
Estimation of terrain offset using a single state EKF |
|
The filter can fuse motion compensated optical flow rates and range finder measurements |
|
Equations generated using https://github.com/PX4/ecl/tree/master/EKF/matlab/scripts/Terrain%20Estimator |
|
*/ |
|
void NavEKF3_core::EstimateTerrainOffset() |
|
{ |
|
// start performance timer |
|
hal.util->perf_begin(_perf_TerrainOffset); |
|
|
|
// horizontal velocity squared |
|
float velHorizSq = sq(stateStruct.velocity.x) + sq(stateStruct.velocity.y); |
|
|
|
// don't fuse flow data if LOS rate is misaligned, without GPS, or insufficient velocity, as it is poorly observable |
|
// don't fuse flow data if it exceeds validity limits |
|
// don't update terrain offset if ground is being used as the zero height datum in the main filter |
|
bool cantFuseFlowData = ((frontend->_flowUse != FLOW_USE_TERRAIN) |
|
|| gpsNotAvailable |
|
|| PV_AidingMode == AID_RELATIVE |
|
|| velHorizSq < 25.0f |
|
|| (MAX(ofDataDelayed.flowRadXY[0],ofDataDelayed.flowRadXY[1]) > frontend->_maxFlowRate)); |
|
|
|
if ((!rangeDataToFuse && cantFuseFlowData) || (activeHgtSource == HGT_SOURCE_RNG)) { |
|
// skip update |
|
inhibitGndState = true; |
|
} else { |
|
inhibitGndState = false; |
|
// record the time we last updated the terrain offset state |
|
gndHgtValidTime_ms = imuSampleTime_ms; |
|
|
|
// propagate ground position state noise each time this is called using the difference in position since the last observations and an RMS gradient assumption |
|
// limit distance to prevent intialisation afer bad gps causing bad numerical conditioning |
|
float distanceTravelledSq = sq(stateStruct.position[0] - prevPosN) + sq(stateStruct.position[1] - prevPosE); |
|
distanceTravelledSq = MIN(distanceTravelledSq, 100.0f); |
|
prevPosN = stateStruct.position[0]; |
|
prevPosE = stateStruct.position[1]; |
|
|
|
// in addition to a terrain gradient error model, we also have the growth in uncertainty due to the copters vertical velocity |
|
float timeLapsed = MIN(0.001f * (imuSampleTime_ms - timeAtLastAuxEKF_ms), 1.0f); |
|
float Pincrement = (distanceTravelledSq * sq(frontend->_terrGradMax)) + sq(timeLapsed)*P[6][6]; |
|
Popt += Pincrement; |
|
timeAtLastAuxEKF_ms = imuSampleTime_ms; |
|
|
|
// fuse range finder data |
|
if (rangeDataToFuse) { |
|
// predict range |
|
float predRngMeas = MAX((terrainState - stateStruct.position[2]),rngOnGnd) / prevTnb.c.z; |
|
|
|
// Copy required states to local variable names |
|
float q0 = stateStruct.quat[0]; // quaternion at optical flow measurement time |
|
float q1 = stateStruct.quat[1]; // quaternion at optical flow measurement time |
|
float q2 = stateStruct.quat[2]; // quaternion at optical flow measurement time |
|
float q3 = stateStruct.quat[3]; // quaternion at optical flow measurement time |
|
|
|
// Set range finder measurement noise variance. TODO make this a function of range and tilt to allow for sensor, alignment and AHRS errors |
|
float R_RNG = frontend->_rngNoise; |
|
|
|
// calculate Kalman gain |
|
float SK_RNG = sq(q0) - sq(q1) - sq(q2) + sq(q3); |
|
float K_RNG = Popt/(SK_RNG*(R_RNG + Popt/sq(SK_RNG))); |
|
|
|
// Calculate the innovation variance for data logging |
|
varInnovRng = (R_RNG + Popt/sq(SK_RNG)); |
|
|
|
// constrain terrain height to be below the vehicle |
|
terrainState = MAX(terrainState, stateStruct.position[2] + rngOnGnd); |
|
|
|
// Calculate the measurement innovation |
|
innovRng = predRngMeas - rangeDataDelayed.rng; |
|
|
|
// calculate the innovation consistency test ratio |
|
auxRngTestRatio = sq(innovRng) / (sq(MAX(0.01f * (float)frontend->_rngInnovGate, 1.0f)) * varInnovRng); |
|
|
|
// Check the innovation test ratio and don't fuse if too large |
|
if (auxRngTestRatio < 1.0f) { |
|
// correct the state |
|
terrainState -= K_RNG * innovRng; |
|
|
|
// constrain the state |
|
terrainState = MAX(terrainState, stateStruct.position[2] + rngOnGnd); |
|
|
|
// correct the covariance |
|
Popt = Popt - sq(Popt)/(SK_RNG*(R_RNG + Popt/sq(SK_RNG))*(sq(q0) - sq(q1) - sq(q2) + sq(q3))); |
|
|
|
// prevent the state variance from becoming negative |
|
Popt = MAX(Popt,0.0f); |
|
|
|
} |
|
} |
|
|
|
if (!cantFuseFlowData) { |
|
|
|
Vector3f relVelSensor; // velocity of sensor relative to ground in sensor axes |
|
Vector2f losPred; // predicted optical flow angular rate measurement |
|
float q0 = stateStruct.quat[0]; // quaternion at optical flow measurement time |
|
float q1 = stateStruct.quat[1]; // quaternion at optical flow measurement time |
|
float q2 = stateStruct.quat[2]; // quaternion at optical flow measurement time |
|
float q3 = stateStruct.quat[3]; // quaternion at optical flow measurement time |
|
float K_OPT; |
|
float H_OPT; |
|
Vector2f auxFlowObsInnovVar; |
|
|
|
// predict range to centre of image |
|
float flowRngPred = MAX((terrainState - stateStruct.position.z),rngOnGnd) / prevTnb.c.z; |
|
|
|
// constrain terrain height to be below the vehicle |
|
terrainState = MAX(terrainState, stateStruct.position.z + rngOnGnd); |
|
|
|
// calculate relative velocity in sensor frame |
|
relVelSensor = prevTnb*stateStruct.velocity; |
|
|
|
// divide velocity by range, subtract body rates and apply scale factor to |
|
// get predicted sensed angular optical rates relative to X and Y sensor axes |
|
losPred.x = relVelSensor.y / flowRngPred; |
|
losPred.y = - relVelSensor.x / flowRngPred; |
|
|
|
// calculate innovations |
|
auxFlowObsInnov = losPred - ofDataDelayed.flowRadXYcomp; |
|
|
|
// calculate observation jacobians |
|
float t2 = q0*q0; |
|
float t3 = q1*q1; |
|
float t4 = q2*q2; |
|
float t5 = q3*q3; |
|
float t6 = stateStruct.position.z - terrainState; |
|
float t7 = 1.0f / (t6*t6); |
|
float t8 = q0*q3*2.0f; |
|
float t9 = t2-t3-t4+t5; |
|
|
|
// prevent the state variances from becoming badly conditioned |
|
Popt = MAX(Popt,1E-6f); |
|
|
|
// calculate observation noise variance from parameter |
|
float flow_noise_variance = sq(MAX(frontend->_flowNoise, 0.05f)); |
|
|
|
// Fuse Y axis data |
|
|
|
// Calculate observation partial derivative |
|
H_OPT = t7*t9*(-stateStruct.velocity.z*(q0*q2*2.0-q1*q3*2.0)+stateStruct.velocity.x*(t2+t3-t4-t5)+stateStruct.velocity.y*(t8+q1*q2*2.0)); |
|
|
|
// calculate innovation variance |
|
auxFlowObsInnovVar.y = H_OPT * Popt * H_OPT + flow_noise_variance; |
|
|
|
// calculate Kalman gain |
|
K_OPT = Popt * H_OPT / auxFlowObsInnovVar.y; |
|
|
|
// calculate the innovation consistency test ratio |
|
auxFlowTestRatio.y = sq(auxFlowObsInnov.y) / (sq(MAX(0.01f * (float)frontend->_flowInnovGate, 1.0f)) * auxFlowObsInnovVar.y); |
|
|
|
// don't fuse if optical flow data is outside valid range |
|
if (auxFlowTestRatio.y < 1.0f) { |
|
|
|
// correct the state |
|
terrainState -= K_OPT * auxFlowObsInnov.y; |
|
|
|
// constrain the state |
|
terrainState = MAX(terrainState, stateStruct.position.z + rngOnGnd); |
|
|
|
// update intermediate variables used when fusing the X axis |
|
t6 = stateStruct.position.z - terrainState; |
|
t7 = 1.0f / (t6*t6); |
|
|
|
// correct the covariance |
|
Popt = Popt - K_OPT * H_OPT * Popt; |
|
|
|
// prevent the state variances from becoming badly conditioned |
|
Popt = MAX(Popt,1E-6f); |
|
} |
|
|
|
// fuse X axis data |
|
H_OPT = -t7*t9*(stateStruct.velocity.z*(q0*q1*2.0+q2*q3*2.0)+stateStruct.velocity.y*(t2-t3+t4-t5)-stateStruct.velocity.x*(t8-q1*q2*2.0)); |
|
|
|
// calculate innovation variances |
|
auxFlowObsInnovVar.x = H_OPT * Popt * H_OPT + flow_noise_variance; |
|
|
|
// calculate Kalman gain |
|
K_OPT = Popt * H_OPT / auxFlowObsInnovVar.x; |
|
|
|
// calculate the innovation consistency test ratio |
|
auxFlowTestRatio.x = sq(auxFlowObsInnov.x) / (sq(MAX(0.01f * (float)frontend->_flowInnovGate, 1.0f)) * auxFlowObsInnovVar.x); |
|
|
|
// don't fuse if optical flow data is outside valid range |
|
if (auxFlowTestRatio.x < 1.0f) { |
|
|
|
// correct the state |
|
terrainState -= K_OPT * auxFlowObsInnov.x; |
|
|
|
// constrain the state |
|
terrainState = MAX(terrainState, stateStruct.position.z + rngOnGnd); |
|
|
|
// correct the covariance |
|
Popt = Popt - K_OPT * H_OPT * Popt; |
|
|
|
// prevent the state variances from becoming badly conditioned |
|
Popt = MAX(Popt,1E-6f); |
|
} |
|
} |
|
} |
|
|
|
// stop the performance timer |
|
hal.util->perf_end(_perf_TerrainOffset); |
|
} |
|
|
|
/* |
|
* Fuse angular motion compensated optical flow rates using explicit algebraic equations generated with Matlab symbolic toolbox. |
|
* The script file used to generate these and other equations in this filter can be found here: |
|
* https://github.com/PX4/ecl/blob/master/matlab/scripts/Inertial%20Nav%20EKF/GenerateNavFilterEquations.m |
|
* Requires a valid terrain height estimate. |
|
*/ |
|
void NavEKF3_core::FuseOptFlow() |
|
{ |
|
Vector24 H_LOS; |
|
Vector3f relVelSensor; |
|
Vector14 SH_LOS; |
|
Vector2 losPred; |
|
|
|
// Copy required states to local variable names |
|
float q0 = stateStruct.quat[0]; |
|
float q1 = stateStruct.quat[1]; |
|
float q2 = stateStruct.quat[2]; |
|
float q3 = stateStruct.quat[3]; |
|
float vn = stateStruct.velocity.x; |
|
float ve = stateStruct.velocity.y; |
|
float vd = stateStruct.velocity.z; |
|
float pd = stateStruct.position.z; |
|
|
|
// constrain height above ground to be above range measured on ground |
|
float heightAboveGndEst = MAX((terrainState - pd), rngOnGnd); |
|
float ptd = pd + heightAboveGndEst; |
|
|
|
// Calculate common expressions for observation jacobians |
|
SH_LOS[0] = sq(q0) - sq(q1) - sq(q2) + sq(q3); |
|
SH_LOS[1] = vn*(sq(q0) + sq(q1) - sq(q2) - sq(q3)) - vd*(2*q0*q2 - 2*q1*q3) + ve*(2*q0*q3 + 2*q1*q2); |
|
SH_LOS[2] = ve*(sq(q0) - sq(q1) + sq(q2) - sq(q3)) + vd*(2*q0*q1 + 2*q2*q3) - vn*(2*q0*q3 - 2*q1*q2); |
|
SH_LOS[3] = 1/(pd - ptd); |
|
SH_LOS[4] = vd*SH_LOS[0] - ve*(2*q0*q1 - 2*q2*q3) + vn*(2*q0*q2 + 2*q1*q3); |
|
SH_LOS[5] = 2.0f*q0*q2 - 2.0f*q1*q3; |
|
SH_LOS[6] = 2.0f*q0*q1 + 2.0f*q2*q3; |
|
SH_LOS[7] = q0*q0; |
|
SH_LOS[8] = q1*q1; |
|
SH_LOS[9] = q2*q2; |
|
SH_LOS[10] = q3*q3; |
|
SH_LOS[11] = q0*q3*2.0f; |
|
SH_LOS[12] = pd-ptd; |
|
SH_LOS[13] = 1.0f/(SH_LOS[12]*SH_LOS[12]); |
|
|
|
// Fuse X and Y axis measurements sequentially assuming observation errors are uncorrelated |
|
for (uint8_t obsIndex=0; obsIndex<=1; obsIndex++) { // fuse X axis data first |
|
// calculate range from ground plain to centre of sensor fov assuming flat earth |
|
float range = constrain_float((heightAboveGndEst/prevTnb.c.z),rngOnGnd,1000.0f); |
|
|
|
// correct range for flow sensor offset body frame position offset |
|
// the corrected value is the predicted range from the sensor focal point to the |
|
// centre of the image on the ground assuming flat terrain |
|
Vector3f posOffsetBody = (*ofDataDelayed.body_offset) - accelPosOffset; |
|
if (!posOffsetBody.is_zero()) { |
|
Vector3f posOffsetEarth = prevTnb.mul_transpose(posOffsetBody); |
|
range -= posOffsetEarth.z / prevTnb.c.z; |
|
} |
|
|
|
// calculate relative velocity in sensor frame including the relative motion due to rotation |
|
relVelSensor = (prevTnb * stateStruct.velocity) + (ofDataDelayed.bodyRadXYZ % posOffsetBody); |
|
|
|
// divide velocity by range to get predicted angular LOS rates relative to X and Y axes |
|
losPred[0] = relVelSensor.y/range; |
|
losPred[1] = -relVelSensor.x/range; |
|
|
|
// calculate observation jacobians and Kalman gains |
|
memset(&H_LOS[0], 0, sizeof(H_LOS)); |
|
if (obsIndex == 0) { |
|
// calculate X axis observation Jacobian |
|
float t2 = 1.0f / range; |
|
H_LOS[0] = t2*(q1*vd*2.0f+q0*ve*2.0f-q3*vn*2.0f); |
|
H_LOS[1] = t2*(q0*vd*2.0f-q1*ve*2.0f+q2*vn*2.0f); |
|
H_LOS[2] = t2*(q3*vd*2.0f+q2*ve*2.0f+q1*vn*2.0f); |
|
H_LOS[3] = -t2*(q2*vd*-2.0f+q3*ve*2.0f+q0*vn*2.0f); |
|
H_LOS[4] = -t2*(q0*q3*2.0f-q1*q2*2.0f); |
|
H_LOS[5] = t2*(q0*q0-q1*q1+q2*q2-q3*q3); |
|
H_LOS[6] = t2*(q0*q1*2.0f+q2*q3*2.0f); |
|
|
|
// calculate intermediate variables for the X observation innovation variance and Kalman gains |
|
float t3 = q1*vd*2.0f; |
|
float t4 = q0*ve*2.0f; |
|
float t11 = q3*vn*2.0f; |
|
float t5 = t3+t4-t11; |
|
float t6 = q0*q3*2.0f; |
|
float t29 = q1*q2*2.0f; |
|
float t7 = t6-t29; |
|
float t8 = q0*q1*2.0f; |
|
float t9 = q2*q3*2.0f; |
|
float t10 = t8+t9; |
|
float t12 = P[0][0]*t2*t5; |
|
float t13 = q0*vd*2.0f; |
|
float t14 = q2*vn*2.0f; |
|
float t28 = q1*ve*2.0f; |
|
float t15 = t13+t14-t28; |
|
float t16 = q3*vd*2.0f; |
|
float t17 = q2*ve*2.0f; |
|
float t18 = q1*vn*2.0f; |
|
float t19 = t16+t17+t18; |
|
float t20 = q3*ve*2.0f; |
|
float t21 = q0*vn*2.0f; |
|
float t30 = q2*vd*2.0f; |
|
float t22 = t20+t21-t30; |
|
float t23 = q0*q0; |
|
float t24 = q1*q1; |
|
float t25 = q2*q2; |
|
float t26 = q3*q3; |
|
float t27 = t23-t24+t25-t26; |
|
float t31 = P[1][1]*t2*t15; |
|
float t32 = P[6][0]*t2*t10; |
|
float t33 = P[1][0]*t2*t15; |
|
float t34 = P[2][0]*t2*t19; |
|
float t35 = P[5][0]*t2*t27; |
|
float t79 = P[4][0]*t2*t7; |
|
float t80 = P[3][0]*t2*t22; |
|
float t36 = t12+t32+t33+t34+t35-t79-t80; |
|
float t37 = t2*t5*t36; |
|
float t38 = P[6][1]*t2*t10; |
|
float t39 = P[0][1]*t2*t5; |
|
float t40 = P[2][1]*t2*t19; |
|
float t41 = P[5][1]*t2*t27; |
|
float t81 = P[4][1]*t2*t7; |
|
float t82 = P[3][1]*t2*t22; |
|
float t42 = t31+t38+t39+t40+t41-t81-t82; |
|
float t43 = t2*t15*t42; |
|
float t44 = P[6][2]*t2*t10; |
|
float t45 = P[0][2]*t2*t5; |
|
float t46 = P[1][2]*t2*t15; |
|
float t47 = P[2][2]*t2*t19; |
|
float t48 = P[5][2]*t2*t27; |
|
float t83 = P[4][2]*t2*t7; |
|
float t84 = P[3][2]*t2*t22; |
|
float t49 = t44+t45+t46+t47+t48-t83-t84; |
|
float t50 = t2*t19*t49; |
|
float t51 = P[6][3]*t2*t10; |
|
float t52 = P[0][3]*t2*t5; |
|
float t53 = P[1][3]*t2*t15; |
|
float t54 = P[2][3]*t2*t19; |
|
float t55 = P[5][3]*t2*t27; |
|
float t85 = P[4][3]*t2*t7; |
|
float t86 = P[3][3]*t2*t22; |
|
float t56 = t51+t52+t53+t54+t55-t85-t86; |
|
float t57 = P[6][5]*t2*t10; |
|
float t58 = P[0][5]*t2*t5; |
|
float t59 = P[1][5]*t2*t15; |
|
float t60 = P[2][5]*t2*t19; |
|
float t61 = P[5][5]*t2*t27; |
|
float t88 = P[4][5]*t2*t7; |
|
float t89 = P[3][5]*t2*t22; |
|
float t62 = t57+t58+t59+t60+t61-t88-t89; |
|
float t63 = t2*t27*t62; |
|
float t64 = P[6][4]*t2*t10; |
|
float t65 = P[0][4]*t2*t5; |
|
float t66 = P[1][4]*t2*t15; |
|
float t67 = P[2][4]*t2*t19; |
|
float t68 = P[5][4]*t2*t27; |
|
float t90 = P[4][4]*t2*t7; |
|
float t91 = P[3][4]*t2*t22; |
|
float t69 = t64+t65+t66+t67+t68-t90-t91; |
|
float t70 = P[6][6]*t2*t10; |
|
float t71 = P[0][6]*t2*t5; |
|
float t72 = P[1][6]*t2*t15; |
|
float t73 = P[2][6]*t2*t19; |
|
float t74 = P[5][6]*t2*t27; |
|
float t93 = P[4][6]*t2*t7; |
|
float t94 = P[3][6]*t2*t22; |
|
float t75 = t70+t71+t72+t73+t74-t93-t94; |
|
float t76 = t2*t10*t75; |
|
float t87 = t2*t22*t56; |
|
float t92 = t2*t7*t69; |
|
float t77 = R_LOS+t37+t43+t50+t63+t76-t87-t92; |
|
float t78; |
|
|
|
// calculate innovation variance for X axis observation and protect against a badly conditioned calculation |
|
if (t77 > R_LOS) { |
|
t78 = 1.0f/t77; |
|
faultStatus.bad_xflow = false; |
|
} else { |
|
t77 = R_LOS; |
|
t78 = 1.0f/R_LOS; |
|
faultStatus.bad_xflow = true; |
|
return; |
|
} |
|
varInnovOptFlow[0] = t77; |
|
|
|
// calculate innovation for X axis observation |
|
innovOptFlow[0] = losPred[0] - ofDataDelayed.flowRadXYcomp.x; |
|
|
|
// calculate Kalman gains for X-axis observation |
|
Kfusion[0] = t78*(t12-P[0][4]*t2*t7+P[0][1]*t2*t15+P[0][6]*t2*t10+P[0][2]*t2*t19-P[0][3]*t2*t22+P[0][5]*t2*t27); |
|
Kfusion[1] = t78*(t31+P[1][0]*t2*t5-P[1][4]*t2*t7+P[1][6]*t2*t10+P[1][2]*t2*t19-P[1][3]*t2*t22+P[1][5]*t2*t27); |
|
Kfusion[2] = t78*(t47+P[2][0]*t2*t5-P[2][4]*t2*t7+P[2][1]*t2*t15+P[2][6]*t2*t10-P[2][3]*t2*t22+P[2][5]*t2*t27); |
|
Kfusion[3] = t78*(-t86+P[3][0]*t2*t5-P[3][4]*t2*t7+P[3][1]*t2*t15+P[3][6]*t2*t10+P[3][2]*t2*t19+P[3][5]*t2*t27); |
|
Kfusion[4] = t78*(-t90+P[4][0]*t2*t5+P[4][1]*t2*t15+P[4][6]*t2*t10+P[4][2]*t2*t19-P[4][3]*t2*t22+P[4][5]*t2*t27); |
|
Kfusion[5] = t78*(t61+P[5][0]*t2*t5-P[5][4]*t2*t7+P[5][1]*t2*t15+P[5][6]*t2*t10+P[5][2]*t2*t19-P[5][3]*t2*t22); |
|
Kfusion[6] = t78*(t70+P[6][0]*t2*t5-P[6][4]*t2*t7+P[6][1]*t2*t15+P[6][2]*t2*t19-P[6][3]*t2*t22+P[6][5]*t2*t27); |
|
Kfusion[7] = t78*(P[7][0]*t2*t5-P[7][4]*t2*t7+P[7][1]*t2*t15+P[7][6]*t2*t10+P[7][2]*t2*t19-P[7][3]*t2*t22+P[7][5]*t2*t27); |
|
Kfusion[8] = t78*(P[8][0]*t2*t5-P[8][4]*t2*t7+P[8][1]*t2*t15+P[8][6]*t2*t10+P[8][2]*t2*t19-P[8][3]*t2*t22+P[8][5]*t2*t27); |
|
Kfusion[9] = t78*(P[9][0]*t2*t5-P[9][4]*t2*t7+P[9][1]*t2*t15+P[9][6]*t2*t10+P[9][2]*t2*t19-P[9][3]*t2*t22+P[9][5]*t2*t27); |
|
|
|
if (!inhibitDelAngBiasStates) { |
|
Kfusion[10] = t78*(P[10][0]*t2*t5-P[10][4]*t2*t7+P[10][1]*t2*t15+P[10][6]*t2*t10+P[10][2]*t2*t19-P[10][3]*t2*t22+P[10][5]*t2*t27); |
|
Kfusion[11] = t78*(P[11][0]*t2*t5-P[11][4]*t2*t7+P[11][1]*t2*t15+P[11][6]*t2*t10+P[11][2]*t2*t19-P[11][3]*t2*t22+P[11][5]*t2*t27); |
|
Kfusion[12] = t78*(P[12][0]*t2*t5-P[12][4]*t2*t7+P[12][1]*t2*t15+P[12][6]*t2*t10+P[12][2]*t2*t19-P[12][3]*t2*t22+P[12][5]*t2*t27); |
|
} else { |
|
// zero indexes 10 to 12 = 3*4 bytes |
|
memset(&Kfusion[10], 0, 12); |
|
} |
|
|
|
if (!inhibitDelVelBiasStates) { |
|
Kfusion[13] = t78*(P[13][0]*t2*t5-P[13][4]*t2*t7+P[13][1]*t2*t15+P[13][6]*t2*t10+P[13][2]*t2*t19-P[13][3]*t2*t22+P[13][5]*t2*t27); |
|
Kfusion[14] = t78*(P[14][0]*t2*t5-P[14][4]*t2*t7+P[14][1]*t2*t15+P[14][6]*t2*t10+P[14][2]*t2*t19-P[14][3]*t2*t22+P[14][5]*t2*t27); |
|
Kfusion[15] = t78*(P[15][0]*t2*t5-P[15][4]*t2*t7+P[15][1]*t2*t15+P[15][6]*t2*t10+P[15][2]*t2*t19-P[15][3]*t2*t22+P[15][5]*t2*t27); |
|
} else { |
|
// zero indexes 13 to 15 = 3*4 bytes |
|
memset(&Kfusion[13], 0, 12); |
|
} |
|
|
|
if (!inhibitMagStates) { |
|
Kfusion[16] = t78*(P[16][0]*t2*t5-P[16][4]*t2*t7+P[16][1]*t2*t15+P[16][6]*t2*t10+P[16][2]*t2*t19-P[16][3]*t2*t22+P[16][5]*t2*t27); |
|
Kfusion[17] = t78*(P[17][0]*t2*t5-P[17][4]*t2*t7+P[17][1]*t2*t15+P[17][6]*t2*t10+P[17][2]*t2*t19-P[17][3]*t2*t22+P[17][5]*t2*t27); |
|
Kfusion[18] = t78*(P[18][0]*t2*t5-P[18][4]*t2*t7+P[18][1]*t2*t15+P[18][6]*t2*t10+P[18][2]*t2*t19-P[18][3]*t2*t22+P[18][5]*t2*t27); |
|
Kfusion[19] = t78*(P[19][0]*t2*t5-P[19][4]*t2*t7+P[19][1]*t2*t15+P[19][6]*t2*t10+P[19][2]*t2*t19-P[19][3]*t2*t22+P[19][5]*t2*t27); |
|
Kfusion[20] = t78*(P[20][0]*t2*t5-P[20][4]*t2*t7+P[20][1]*t2*t15+P[20][6]*t2*t10+P[20][2]*t2*t19-P[20][3]*t2*t22+P[20][5]*t2*t27); |
|
Kfusion[21] = t78*(P[21][0]*t2*t5-P[21][4]*t2*t7+P[21][1]*t2*t15+P[21][6]*t2*t10+P[21][2]*t2*t19-P[21][3]*t2*t22+P[21][5]*t2*t27); |
|
} else { |
|
// zero indexes 16 to 21 = 6*4 bytes |
|
memset(&Kfusion[16], 0, 24); |
|
} |
|
|
|
if (!inhibitWindStates) { |
|
Kfusion[22] = t78*(P[22][0]*t2*t5-P[22][4]*t2*t7+P[22][1]*t2*t15+P[22][6]*t2*t10+P[22][2]*t2*t19-P[22][3]*t2*t22+P[22][5]*t2*t27); |
|
Kfusion[23] = t78*(P[23][0]*t2*t5-P[23][4]*t2*t7+P[23][1]*t2*t15+P[23][6]*t2*t10+P[23][2]*t2*t19-P[23][3]*t2*t22+P[23][5]*t2*t27); |
|
} else { |
|
// zero indexes 22 to 23 = 2*4 bytes |
|
memset(&Kfusion[22], 0, 8); |
|
} |
|
|
|
} else { |
|
|
|
// calculate Y axis observation Jacobian |
|
float t2 = 1.0f / range; |
|
H_LOS[0] = -t2*(q2*vd*-2.0f+q3*ve*2.0f+q0*vn*2.0f); |
|
H_LOS[1] = -t2*(q3*vd*2.0f+q2*ve*2.0f+q1*vn*2.0f); |
|
H_LOS[2] = t2*(q0*vd*2.0f-q1*ve*2.0f+q2*vn*2.0f); |
|
H_LOS[3] = -t2*(q1*vd*2.0f+q0*ve*2.0f-q3*vn*2.0f); |
|
H_LOS[4] = -t2*(q0*q0+q1*q1-q2*q2-q3*q3); |
|
H_LOS[5] = -t2*(q0*q3*2.0f+q1*q2*2.0f); |
|
H_LOS[6] = t2*(q0*q2*2.0f-q1*q3*2.0f); |
|
|
|
// calculate intermediate variables for the Y observation innovation variance and Kalman gains |
|
float t3 = q3*ve*2.0f; |
|
float t4 = q0*vn*2.0f; |
|
float t11 = q2*vd*2.0f; |
|
float t5 = t3+t4-t11; |
|
float t6 = q0*q3*2.0f; |
|
float t7 = q1*q2*2.0f; |
|
float t8 = t6+t7; |
|
float t9 = q0*q2*2.0f; |
|
float t28 = q1*q3*2.0f; |
|
float t10 = t9-t28; |
|
float t12 = P[0][0]*t2*t5; |
|
float t13 = q3*vd*2.0f; |
|
float t14 = q2*ve*2.0f; |
|
float t15 = q1*vn*2.0f; |
|
float t16 = t13+t14+t15; |
|
float t17 = q0*vd*2.0f; |
|
float t18 = q2*vn*2.0f; |
|
float t29 = q1*ve*2.0f; |
|
float t19 = t17+t18-t29; |
|
float t20 = q1*vd*2.0f; |
|
float t21 = q0*ve*2.0f; |
|
float t30 = q3*vn*2.0f; |
|
float t22 = t20+t21-t30; |
|
float t23 = q0*q0; |
|
float t24 = q1*q1; |
|
float t25 = q2*q2; |
|
float t26 = q3*q3; |
|
float t27 = t23+t24-t25-t26; |
|
float t31 = P[1][1]*t2*t16; |
|
float t32 = P[5][0]*t2*t8; |
|
float t33 = P[1][0]*t2*t16; |
|
float t34 = P[3][0]*t2*t22; |
|
float t35 = P[4][0]*t2*t27; |
|
float t80 = P[6][0]*t2*t10; |
|
float t81 = P[2][0]*t2*t19; |
|
float t36 = t12+t32+t33+t34+t35-t80-t81; |
|
float t37 = t2*t5*t36; |
|
float t38 = P[5][1]*t2*t8; |
|
float t39 = P[0][1]*t2*t5; |
|
float t40 = P[3][1]*t2*t22; |
|
float t41 = P[4][1]*t2*t27; |
|
float t82 = P[6][1]*t2*t10; |
|
float t83 = P[2][1]*t2*t19; |
|
float t42 = t31+t38+t39+t40+t41-t82-t83; |
|
float t43 = t2*t16*t42; |
|
float t44 = P[5][2]*t2*t8; |
|
float t45 = P[0][2]*t2*t5; |
|
float t46 = P[1][2]*t2*t16; |
|
float t47 = P[3][2]*t2*t22; |
|
float t48 = P[4][2]*t2*t27; |
|
float t79 = P[2][2]*t2*t19; |
|
float t84 = P[6][2]*t2*t10; |
|
float t49 = t44+t45+t46+t47+t48-t79-t84; |
|
float t50 = P[5][3]*t2*t8; |
|
float t51 = P[0][3]*t2*t5; |
|
float t52 = P[1][3]*t2*t16; |
|
float t53 = P[3][3]*t2*t22; |
|
float t54 = P[4][3]*t2*t27; |
|
float t86 = P[6][3]*t2*t10; |
|
float t87 = P[2][3]*t2*t19; |
|
float t55 = t50+t51+t52+t53+t54-t86-t87; |
|
float t56 = t2*t22*t55; |
|
float t57 = P[5][4]*t2*t8; |
|
float t58 = P[0][4]*t2*t5; |
|
float t59 = P[1][4]*t2*t16; |
|
float t60 = P[3][4]*t2*t22; |
|
float t61 = P[4][4]*t2*t27; |
|
float t88 = P[6][4]*t2*t10; |
|
float t89 = P[2][4]*t2*t19; |
|
float t62 = t57+t58+t59+t60+t61-t88-t89; |
|
float t63 = t2*t27*t62; |
|
float t64 = P[5][5]*t2*t8; |
|
float t65 = P[0][5]*t2*t5; |
|
float t66 = P[1][5]*t2*t16; |
|
float t67 = P[3][5]*t2*t22; |
|
float t68 = P[4][5]*t2*t27; |
|
float t90 = P[6][5]*t2*t10; |
|
float t91 = P[2][5]*t2*t19; |
|
float t69 = t64+t65+t66+t67+t68-t90-t91; |
|
float t70 = t2*t8*t69; |
|
float t71 = P[5][6]*t2*t8; |
|
float t72 = P[0][6]*t2*t5; |
|
float t73 = P[1][6]*t2*t16; |
|
float t74 = P[3][6]*t2*t22; |
|
float t75 = P[4][6]*t2*t27; |
|
float t92 = P[6][6]*t2*t10; |
|
float t93 = P[2][6]*t2*t19; |
|
float t76 = t71+t72+t73+t74+t75-t92-t93; |
|
float t85 = t2*t19*t49; |
|
float t94 = t2*t10*t76; |
|
float t77 = R_LOS+t37+t43+t56+t63+t70-t85-t94; |
|
float t78; |
|
|
|
// calculate innovation variance for Y axis observation and protect against a badly conditioned calculation |
|
if (t77 > R_LOS) { |
|
t78 = 1.0f/t77; |
|
faultStatus.bad_yflow = false; |
|
} else { |
|
t77 = R_LOS; |
|
t78 = 1.0f/R_LOS; |
|
faultStatus.bad_yflow = true; |
|
return; |
|
} |
|
varInnovOptFlow[1] = t77; |
|
|
|
// calculate innovation for Y observation |
|
innovOptFlow[1] = losPred[1] - ofDataDelayed.flowRadXYcomp.y; |
|
|
|
// calculate Kalman gains for the Y-axis observation |
|
Kfusion[0] = -t78*(t12+P[0][5]*t2*t8-P[0][6]*t2*t10+P[0][1]*t2*t16-P[0][2]*t2*t19+P[0][3]*t2*t22+P[0][4]*t2*t27); |
|
Kfusion[1] = -t78*(t31+P[1][0]*t2*t5+P[1][5]*t2*t8-P[1][6]*t2*t10-P[1][2]*t2*t19+P[1][3]*t2*t22+P[1][4]*t2*t27); |
|
Kfusion[2] = -t78*(-t79+P[2][0]*t2*t5+P[2][5]*t2*t8-P[2][6]*t2*t10+P[2][1]*t2*t16+P[2][3]*t2*t22+P[2][4]*t2*t27); |
|
Kfusion[3] = -t78*(t53+P[3][0]*t2*t5+P[3][5]*t2*t8-P[3][6]*t2*t10+P[3][1]*t2*t16-P[3][2]*t2*t19+P[3][4]*t2*t27); |
|
Kfusion[4] = -t78*(t61+P[4][0]*t2*t5+P[4][5]*t2*t8-P[4][6]*t2*t10+P[4][1]*t2*t16-P[4][2]*t2*t19+P[4][3]*t2*t22); |
|
Kfusion[5] = -t78*(t64+P[5][0]*t2*t5-P[5][6]*t2*t10+P[5][1]*t2*t16-P[5][2]*t2*t19+P[5][3]*t2*t22+P[5][4]*t2*t27); |
|
Kfusion[6] = -t78*(-t92+P[6][0]*t2*t5+P[6][5]*t2*t8+P[6][1]*t2*t16-P[6][2]*t2*t19+P[6][3]*t2*t22+P[6][4]*t2*t27); |
|
Kfusion[7] = -t78*(P[7][0]*t2*t5+P[7][5]*t2*t8-P[7][6]*t2*t10+P[7][1]*t2*t16-P[7][2]*t2*t19+P[7][3]*t2*t22+P[7][4]*t2*t27); |
|
Kfusion[8] = -t78*(P[8][0]*t2*t5+P[8][5]*t2*t8-P[8][6]*t2*t10+P[8][1]*t2*t16-P[8][2]*t2*t19+P[8][3]*t2*t22+P[8][4]*t2*t27); |
|
Kfusion[9] = -t78*(P[9][0]*t2*t5+P[9][5]*t2*t8-P[9][6]*t2*t10+P[9][1]*t2*t16-P[9][2]*t2*t19+P[9][3]*t2*t22+P[9][4]*t2*t27); |
|
|
|
if (!inhibitDelAngBiasStates) { |
|
Kfusion[10] = -t78*(P[10][0]*t2*t5+P[10][5]*t2*t8-P[10][6]*t2*t10+P[10][1]*t2*t16-P[10][2]*t2*t19+P[10][3]*t2*t22+P[10][4]*t2*t27); |
|
Kfusion[11] = -t78*(P[11][0]*t2*t5+P[11][5]*t2*t8-P[11][6]*t2*t10+P[11][1]*t2*t16-P[11][2]*t2*t19+P[11][3]*t2*t22+P[11][4]*t2*t27); |
|
Kfusion[12] = -t78*(P[12][0]*t2*t5+P[12][5]*t2*t8-P[12][6]*t2*t10+P[12][1]*t2*t16-P[12][2]*t2*t19+P[12][3]*t2*t22+P[12][4]*t2*t27); |
|
} else { |
|
// zero indexes 10 to 12 = 3*4 bytes |
|
memset(&Kfusion[10], 0, 12); |
|
} |
|
|
|
if (!inhibitDelVelBiasStates) { |
|
Kfusion[13] = -t78*(P[13][0]*t2*t5+P[13][5]*t2*t8-P[13][6]*t2*t10+P[13][1]*t2*t16-P[13][2]*t2*t19+P[13][3]*t2*t22+P[13][4]*t2*t27); |
|
Kfusion[14] = -t78*(P[14][0]*t2*t5+P[14][5]*t2*t8-P[14][6]*t2*t10+P[14][1]*t2*t16-P[14][2]*t2*t19+P[14][3]*t2*t22+P[14][4]*t2*t27); |
|
Kfusion[15] = -t78*(P[15][0]*t2*t5+P[15][5]*t2*t8-P[15][6]*t2*t10+P[15][1]*t2*t16-P[15][2]*t2*t19+P[15][3]*t2*t22+P[15][4]*t2*t27); |
|
} else { |
|
// zero indexes 13 to 15 = 3*4 bytes |
|
memset(&Kfusion[13], 0, 12); |
|
} |
|
|
|
if (!inhibitMagStates) { |
|
Kfusion[16] = -t78*(P[16][0]*t2*t5+P[16][5]*t2*t8-P[16][6]*t2*t10+P[16][1]*t2*t16-P[16][2]*t2*t19+P[16][3]*t2*t22+P[16][4]*t2*t27); |
|
Kfusion[17] = -t78*(P[17][0]*t2*t5+P[17][5]*t2*t8-P[17][6]*t2*t10+P[17][1]*t2*t16-P[17][2]*t2*t19+P[17][3]*t2*t22+P[17][4]*t2*t27); |
|
Kfusion[18] = -t78*(P[18][0]*t2*t5+P[18][5]*t2*t8-P[18][6]*t2*t10+P[18][1]*t2*t16-P[18][2]*t2*t19+P[18][3]*t2*t22+P[18][4]*t2*t27); |
|
Kfusion[19] = -t78*(P[19][0]*t2*t5+P[19][5]*t2*t8-P[19][6]*t2*t10+P[19][1]*t2*t16-P[19][2]*t2*t19+P[19][3]*t2*t22+P[19][4]*t2*t27); |
|
Kfusion[20] = -t78*(P[20][0]*t2*t5+P[20][5]*t2*t8-P[20][6]*t2*t10+P[20][1]*t2*t16-P[20][2]*t2*t19+P[20][3]*t2*t22+P[20][4]*t2*t27); |
|
Kfusion[21] = -t78*(P[21][0]*t2*t5+P[21][5]*t2*t8-P[21][6]*t2*t10+P[21][1]*t2*t16-P[21][2]*t2*t19+P[21][3]*t2*t22+P[21][4]*t2*t27); |
|
} else { |
|
// zero indexes 16 to 21 = 6*4 bytes |
|
memset(&Kfusion[16], 0, 24); |
|
} |
|
|
|
if (!inhibitWindStates) { |
|
Kfusion[22] = -t78*(P[22][0]*t2*t5+P[22][5]*t2*t8-P[22][6]*t2*t10+P[22][1]*t2*t16-P[22][2]*t2*t19+P[22][3]*t2*t22+P[22][4]*t2*t27); |
|
Kfusion[23] = -t78*(P[23][0]*t2*t5+P[23][5]*t2*t8-P[23][6]*t2*t10+P[23][1]*t2*t16-P[23][2]*t2*t19+P[23][3]*t2*t22+P[23][4]*t2*t27); |
|
} else { |
|
// zero indexes 22 to 23 = 2*4 bytes |
|
memset(&Kfusion[22], 0, 8); |
|
} |
|
} |
|
|
|
// calculate the innovation consistency test ratio |
|
flowTestRatio[obsIndex] = sq(innovOptFlow[obsIndex]) / (sq(MAX(0.01f * (float)frontend->_flowInnovGate, 1.0f)) * varInnovOptFlow[obsIndex]); |
|
|
|
// Check the innovation for consistency and don't fuse if out of bounds or flow is too fast to be reliable |
|
if ((flowTestRatio[obsIndex]) < 1.0f && (ofDataDelayed.flowRadXY.x < frontend->_maxFlowRate) && (ofDataDelayed.flowRadXY.y < frontend->_maxFlowRate)) { |
|
// record the last time observations were accepted for fusion |
|
prevFlowFuseTime_ms = imuSampleTime_ms; |
|
// notify first time only |
|
if (!flowFusionActive) { |
|
flowFusionActive = true; |
|
gcs().send_text(MAV_SEVERITY_INFO, "EKF3 IMU%u fusing optical flow",(unsigned)imu_index); |
|
} |
|
// correct the covariance P = (I - K*H)*P |
|
// take advantage of the empty columns in KH to reduce the |
|
// number of operations |
|
for (unsigned i = 0; i<=stateIndexLim; i++) { |
|
for (unsigned j = 0; j<=6; j++) { |
|
KH[i][j] = Kfusion[i] * H_LOS[j]; |
|
} |
|
for (unsigned j = 7; j<=stateIndexLim; j++) { |
|
KH[i][j] = 0.0f; |
|
} |
|
} |
|
for (unsigned j = 0; j<=stateIndexLim; j++) { |
|
for (unsigned i = 0; i<=stateIndexLim; i++) { |
|
ftype res = 0; |
|
res += KH[i][0] * P[0][j]; |
|
res += KH[i][1] * P[1][j]; |
|
res += KH[i][2] * P[2][j]; |
|
res += KH[i][3] * P[3][j]; |
|
res += KH[i][4] * P[4][j]; |
|
res += KH[i][5] * P[5][j]; |
|
res += KH[i][6] * P[6][j]; |
|
KHP[i][j] = res; |
|
} |
|
} |
|
|
|
// Check that we are not going to drive any variances negative and skip the update if so |
|
bool healthyFusion = true; |
|
for (uint8_t i= 0; i<=stateIndexLim; i++) { |
|
if (KHP[i][i] > P[i][i]) { |
|
healthyFusion = false; |
|
} |
|
} |
|
|
|
if (healthyFusion) { |
|
// update the covariance matrix |
|
for (uint8_t i= 0; i<=stateIndexLim; i++) { |
|
for (uint8_t j= 0; j<=stateIndexLim; j++) { |
|
P[i][j] = P[i][j] - KHP[i][j]; |
|
} |
|
} |
|
|
|
// force the covariance matrix to be symmetrical and limit the variances to prevent ill-conditioning. |
|
ForceSymmetry(); |
|
ConstrainVariances(); |
|
|
|
// correct the state vector |
|
for (uint8_t j= 0; j<=stateIndexLim; j++) { |
|
statesArray[j] = statesArray[j] - Kfusion[j] * innovOptFlow[obsIndex]; |
|
} |
|
stateStruct.quat.normalize(); |
|
|
|
} else { |
|
// record bad axis |
|
if (obsIndex == 0) { |
|
faultStatus.bad_xflow = true; |
|
} else if (obsIndex == 1) { |
|
faultStatus.bad_yflow = true; |
|
} |
|
|
|
} |
|
} |
|
} |
|
} |
|
|
|
/******************************************************** |
|
* MISC FUNCTIONS * |
|
********************************************************/ |
|
|
|
|