You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1007 lines
33 KiB
1007 lines
33 KiB
/* |
|
* The MIT License (MIT) |
|
* |
|
* Copyright (c) 2014 Pavel Kirienko |
|
* |
|
* Permission is hereby granted, free of charge, to any person obtaining a copy of |
|
* this software and associated documentation files (the "Software"), to deal in |
|
* the Software without restriction, including without limitation the rights to |
|
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of |
|
* the Software, and to permit persons to whom the Software is furnished to do so, |
|
* subject to the following conditions: |
|
* |
|
* The above copyright notice and this permission notice shall be included in all |
|
* copies or substantial portions of the Software. |
|
* |
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS |
|
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR |
|
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER |
|
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
|
*/ |
|
|
|
/* |
|
* This file is free software: you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License as published by the |
|
* Free Software Foundation, either version 3 of the License, or |
|
* (at your option) any later version. |
|
* |
|
* This file is distributed in the hope that it will be useful, but |
|
* WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
|
* See the GNU General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public License along |
|
* with this program. If not, see <http://www.gnu.org/licenses/>. |
|
* |
|
* Code by Siddharth Bharat Purohit |
|
*/ |
|
|
|
#include "AP_HAL_ChibiOS.h" |
|
|
|
#if HAL_NUM_CAN_IFACES |
|
#include <cassert> |
|
#include <cstring> |
|
#include <AP_Math/AP_Math.h> |
|
# include <hal.h> |
|
#include <AP_CANManager/AP_CANManager.h> |
|
#include <AP_Common/ExpandingString.h> |
|
|
|
# if defined(STM32H7XX) |
|
#include "CANFDIface.h" |
|
|
|
#define FDCAN1_IT0_IRQHandler STM32_FDCAN1_IT0_HANDLER |
|
#define FDCAN1_IT1_IRQHandler STM32_FDCAN1_IT1_HANDLER |
|
#define FDCAN2_IT0_IRQHandler STM32_FDCAN2_IT0_HANDLER |
|
#define FDCAN2_IT1_IRQHandler STM32_FDCAN2_IT1_HANDLER |
|
|
|
#define FDCAN_FRAME_BUFFER_SIZE 4 // Buffer size for 8 bytes data field |
|
|
|
//Message RAM Allocations in Word lengths |
|
#define MAX_FILTER_LIST_SIZE 80U //80 element Standard Filter List elements or 40 element Extended Filter List |
|
#define FDCAN_NUM_RXFIFO0_SIZE 104U //26 Frames |
|
#define FDCAN_TX_FIFO_BUFFER_SIZE 128U //32 Frames |
|
|
|
#define MESSAGE_RAM_END_ADDR 0x4000B5FC |
|
|
|
extern AP_HAL::HAL& hal; |
|
|
|
static_assert(STM32_FDCANCLK <= 80U*1000U*1000U, "FDCAN clock must be max 80MHz"); |
|
|
|
using namespace ChibiOS; |
|
|
|
#if HAL_MAX_CAN_PROTOCOL_DRIVERS |
|
#define Debug(fmt, args...) do { AP::can().log_text(AP_CANManager::LOG_DEBUG, "CANFDIface", fmt, ##args); } while (0) |
|
#else |
|
#define Debug(fmt, args...) |
|
#endif |
|
|
|
constexpr CANIface::CanType* const CANIface::Can[]; |
|
static ChibiOS::CANIface* can_ifaces[HAL_NUM_CAN_IFACES] = {nullptr}; |
|
#define REG_SET_TIMEOUT 250 // if it takes longer than 250ms for setting a register we have failed |
|
static inline bool driver_initialised(uint8_t iface_index) |
|
{ |
|
if (iface_index >= HAL_NUM_CAN_IFACES) { |
|
return false; |
|
} |
|
if (can_ifaces[iface_index] == nullptr) { |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
static inline void handleCANInterrupt(uint8_t iface_index, uint8_t line_index) |
|
{ |
|
if (!driver_initialised(iface_index)) { |
|
//Just reset all the interrupts and return |
|
CANIface::Can[iface_index]->IR = FDCAN_IR_RF0N; |
|
CANIface::Can[iface_index]->IR = FDCAN_IR_RF1N; |
|
CANIface::Can[iface_index]->IR = FDCAN_IR_TEFN; |
|
return; |
|
} |
|
if (line_index == 0) { |
|
if ((CANIface::Can[iface_index]->IR & FDCAN_IR_RF0N) || |
|
(CANIface::Can[iface_index]->IR & FDCAN_IR_RF0F)) { |
|
CANIface::Can[iface_index]->IR = FDCAN_IR_RF0N | FDCAN_IR_RF0F; |
|
can_ifaces[iface_index]->handleRxInterrupt(0); |
|
} |
|
if ((CANIface::Can[iface_index]->IR & FDCAN_IR_RF1N) || |
|
(CANIface::Can[iface_index]->IR & FDCAN_IR_RF1F)) { |
|
CANIface::Can[iface_index]->IR = FDCAN_IR_RF1N | FDCAN_IR_RF1F; |
|
can_ifaces[iface_index]->handleRxInterrupt(1); |
|
} |
|
} else { |
|
if (CANIface::Can[iface_index]->IR & FDCAN_IR_TC) { |
|
CANIface::Can[iface_index]->IR = FDCAN_IR_TC; |
|
uint64_t timestamp_us = AP_HAL::micros64(); |
|
if (timestamp_us > 0) { |
|
timestamp_us--; |
|
} |
|
can_ifaces[iface_index]->handleTxCompleteInterrupt(timestamp_us); |
|
} |
|
|
|
if ((CANIface::Can[iface_index]->IR & FDCAN_IR_BO)) { |
|
CANIface::Can[iface_index]->IR = FDCAN_IR_BO; |
|
can_ifaces[iface_index]->handleBusOffInterrupt(); |
|
} |
|
} |
|
can_ifaces[iface_index]->pollErrorFlagsFromISR(); |
|
} |
|
|
|
uint32_t CANIface::FDCANMessageRAMOffset_ = 0; |
|
|
|
CANIface::CANIface(uint8_t index) : |
|
self_index_(index), |
|
rx_bytebuffer_((uint8_t*)rx_buffer, sizeof(rx_buffer)), |
|
rx_queue_(&rx_bytebuffer_) |
|
{ |
|
if (index >= HAL_NUM_CAN_IFACES) { |
|
AP_HAL::panic("Bad CANIface index."); |
|
} else { |
|
can_ = Can[index]; |
|
} |
|
} |
|
|
|
void CANIface::handleBusOffInterrupt() |
|
{ |
|
_detected_bus_off = true; |
|
} |
|
|
|
bool CANIface::computeTimings(const uint32_t target_bitrate, Timings& out_timings) |
|
{ |
|
if (target_bitrate < 1) { |
|
return false; |
|
} |
|
|
|
/* |
|
* Hardware configuration |
|
*/ |
|
const uint32_t pclk = STM32_FDCANCLK; |
|
|
|
|
|
static const int MaxBS1 = 16; |
|
static const int MaxBS2 = 8; |
|
|
|
/* |
|
* Ref. "Automatic Baudrate Detection in CANopen Networks", U. Koppe, MicroControl GmbH & Co. KG |
|
* CAN in Automation, 2003 |
|
* |
|
* According to the source, optimal quanta per bit are: |
|
* Bitrate Optimal Maximum |
|
* 1000 kbps 8 10 |
|
* 500 kbps 16 17 |
|
* 250 kbps 16 17 |
|
* 125 kbps 16 17 |
|
*/ |
|
const int max_quanta_per_bit = (target_bitrate >= 1000000) ? 10 : 17; |
|
|
|
static const int MaxSamplePointLocation = 900; |
|
|
|
/* |
|
* Computing (prescaler * BS): |
|
* BITRATE = 1 / (PRESCALER * (1 / PCLK) * (1 + BS1 + BS2)) -- See the Reference Manual |
|
* BITRATE = PCLK / (PRESCALER * (1 + BS1 + BS2)) -- Simplified |
|
* let: |
|
* BS = 1 + BS1 + BS2 -- Number of time quanta per bit |
|
* PRESCALER_BS = PRESCALER * BS |
|
* ==> |
|
* PRESCALER_BS = PCLK / BITRATE |
|
*/ |
|
const uint32_t prescaler_bs = pclk / target_bitrate; |
|
|
|
/* |
|
* Searching for such prescaler value so that the number of quanta per bit is highest. |
|
*/ |
|
uint8_t bs1_bs2_sum = uint8_t(max_quanta_per_bit - 1); |
|
|
|
while ((prescaler_bs % (1 + bs1_bs2_sum)) != 0) { |
|
if (bs1_bs2_sum <= 2) { |
|
return false; // No solution |
|
} |
|
bs1_bs2_sum--; |
|
} |
|
|
|
const uint32_t prescaler = prescaler_bs / (1 + bs1_bs2_sum); |
|
if ((prescaler < 1U) || (prescaler > 1024U)) { |
|
return false; // No solution |
|
} |
|
|
|
/* |
|
* Now we have a constraint: (BS1 + BS2) == bs1_bs2_sum. |
|
* We need to find the values so that the sample point is as close as possible to the optimal value. |
|
* |
|
* Solve[(1 + bs1)/(1 + bs1 + bs2) == 7/8, bs2] (* Where 7/8 is 0.875, the recommended sample point location *) |
|
* {{bs2 -> (1 + bs1)/7}} |
|
* |
|
* Hence: |
|
* bs2 = (1 + bs1) / 7 |
|
* bs1 = (7 * bs1_bs2_sum - 1) / 8 |
|
* |
|
* Sample point location can be computed as follows: |
|
* Sample point location = (1 + bs1) / (1 + bs1 + bs2) |
|
* |
|
* Since the optimal solution is so close to the maximum, we prepare two solutions, and then pick the best one: |
|
* - With rounding to nearest |
|
* - With rounding to zero |
|
*/ |
|
struct BsPair { |
|
uint8_t bs1; |
|
uint8_t bs2; |
|
uint16_t sample_point_permill; |
|
|
|
BsPair() : |
|
bs1(0), |
|
bs2(0), |
|
sample_point_permill(0) |
|
{ } |
|
|
|
BsPair(uint8_t bs1_bs2_sum, uint8_t arg_bs1) : |
|
bs1(arg_bs1), |
|
bs2(uint8_t(bs1_bs2_sum - bs1)), |
|
sample_point_permill(uint16_t(1000 * (1 + bs1) / (1 + bs1 + bs2))) |
|
{} |
|
|
|
bool isValid() const |
|
{ |
|
return (bs1 >= 1) && (bs1 <= MaxBS1) && (bs2 >= 1) && (bs2 <= MaxBS2); |
|
} |
|
}; |
|
|
|
// First attempt with rounding to nearest |
|
BsPair solution(bs1_bs2_sum, uint8_t(((7 * bs1_bs2_sum - 1) + 4) / 8)); |
|
|
|
if (solution.sample_point_permill > MaxSamplePointLocation) { |
|
// Second attempt with rounding to zero |
|
solution = BsPair(bs1_bs2_sum, uint8_t((7 * bs1_bs2_sum - 1) / 8)); |
|
} |
|
|
|
/* |
|
* Final validation |
|
* Helpful Python: |
|
* def sample_point_from_btr(x): |
|
* assert 0b0011110010000000111111000000000 & x == 0 |
|
* ts2,ts1,brp = (x>>20)&7, (x>>16)&15, x&511 |
|
* return (1+ts1+1)/(1+ts1+1+ts2+1) |
|
* |
|
*/ |
|
if ((target_bitrate != (pclk / (prescaler * (1 + solution.bs1 + solution.bs2)))) || !solution.isValid()) { |
|
return false; |
|
} |
|
|
|
Debug("Timings: quanta/bit: %d, sample point location: %.1f%%\n", |
|
int(1 + solution.bs1 + solution.bs2), float(solution.sample_point_permill) / 10.F); |
|
|
|
out_timings.prescaler = uint16_t(prescaler - 1U); |
|
out_timings.sjw = 0; // Which means one |
|
out_timings.bs1 = uint8_t(solution.bs1 - 1); |
|
out_timings.bs2 = uint8_t(solution.bs2 - 1); |
|
return true; |
|
} |
|
|
|
int16_t CANIface::send(const AP_HAL::CANFrame& frame, uint64_t tx_deadline, |
|
CanIOFlags flags) |
|
{ |
|
stats.tx_requests++; |
|
if (frame.isErrorFrame() || frame.dlc > 8 || !initialised_) { |
|
stats.tx_rejected++; |
|
return -1; |
|
} |
|
|
|
CriticalSectionLocker lock; |
|
|
|
/* |
|
* Seeking for an empty slot |
|
*/ |
|
uint8_t index; |
|
|
|
if ((can_->TXFQS & FDCAN_TXFQS_TFQF) != 0) { |
|
stats.tx_rejected++; |
|
return 0; //we don't have free space |
|
} |
|
index = ((can_->TXFQS & FDCAN_TXFQS_TFQPI) >> FDCAN_TXFQS_TFQPI_Pos); |
|
|
|
// Copy Frame to RAM |
|
// Calculate Tx element address |
|
uint32_t* buffer = (uint32_t *)(MessageRam_.TxFIFOQSA + (index * FDCAN_FRAME_BUFFER_SIZE * 4)); |
|
|
|
//Setup Frame ID |
|
if (frame.isExtended()) { |
|
buffer[0] = (IDE | frame.id); |
|
} else { |
|
buffer[0] = (frame.id << 18); |
|
} |
|
if (frame.isRemoteTransmissionRequest()) { |
|
buffer[0] |= RTR; |
|
} |
|
//Write Data Length Code, and Message Marker |
|
buffer[1] = frame.dlc << 16 | index << 24; |
|
|
|
// Write Frame to the message RAM |
|
buffer[2] = (uint32_t(frame.data[3]) << 24) | |
|
(uint32_t(frame.data[2]) << 16) | |
|
(uint32_t(frame.data[1]) << 8) | |
|
(uint32_t(frame.data[0]) << 0); |
|
buffer[3] = (uint32_t(frame.data[7]) << 24) | |
|
(uint32_t(frame.data[6]) << 16) | |
|
(uint32_t(frame.data[5]) << 8) | |
|
(uint32_t(frame.data[4]) << 0); |
|
//Set Add Request |
|
can_->TXBAR = (1 << index); |
|
|
|
//Registering the pending transmission so we can track its deadline and loopback it as needed |
|
pending_tx_[index].deadline = tx_deadline; |
|
pending_tx_[index].frame = frame; |
|
pending_tx_[index].loopback = (flags & AP_HAL::CANIface::Loopback) != 0; |
|
pending_tx_[index].abort_on_error = (flags & AP_HAL::CANIface::AbortOnError) != 0; |
|
pending_tx_[index].index = index; |
|
// setup frame initial state |
|
pending_tx_[index].aborted = false; |
|
pending_tx_[index].setup = true; |
|
pending_tx_[index].pushed = false; |
|
return 1; |
|
} |
|
|
|
int16_t CANIface::receive(AP_HAL::CANFrame& out_frame, uint64_t& out_timestamp_us, CanIOFlags& out_flags) |
|
{ |
|
CriticalSectionLocker lock; |
|
CanRxItem rx_item; |
|
if (!rx_queue_.pop(rx_item) || !initialised_) { |
|
return 0; |
|
} |
|
out_frame = rx_item.frame; |
|
out_timestamp_us = rx_item.timestamp_us; |
|
out_flags = rx_item.flags; |
|
return 1; |
|
} |
|
|
|
bool CANIface::configureFilters(const CanFilterConfig* filter_configs, |
|
uint16_t num_configs) |
|
{ |
|
uint32_t num_extid = 0, num_stdid = 0; |
|
uint32_t total_available_list_size = MAX_FILTER_LIST_SIZE; |
|
uint32_t* filter_ptr; |
|
if (initialised_ || mode_ != FilteredMode) { |
|
// we are already initialised can't do anything here |
|
return false; |
|
} |
|
//count number of frames of each type |
|
for (uint8_t i = 0; i < num_configs; i++) { |
|
const CanFilterConfig* const cfg = filter_configs + i; |
|
if ((cfg->id & AP_HAL::CANFrame::FlagEFF) || !(cfg->mask & AP_HAL::CANFrame::FlagEFF)) { |
|
num_extid++; |
|
} else { |
|
num_stdid++; |
|
} |
|
} |
|
CriticalSectionLocker lock; |
|
//Allocate Message RAM for Standard ID Filter List |
|
if (num_stdid == 0) { //No Frame with Standard ID is to be accepted |
|
can_->GFC |= 0x2; //Reject All Standard ID Frames |
|
} else if ((num_stdid < total_available_list_size) && (num_stdid <= 128)) { |
|
can_->SIDFC = (FDCANMessageRAMOffset_ << 2) | (num_stdid << 16); |
|
MessageRam_.StandardFilterSA = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U); |
|
FDCANMessageRAMOffset_ += num_stdid; |
|
total_available_list_size -= num_stdid; |
|
can_->GFC |= (0x3U << 4); //Reject non matching Standard frames |
|
} else { //The List is too big, return fail |
|
can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode |
|
uint32_t while_start_ms = AP_HAL::millis(); |
|
while ((can_->CCCR & FDCAN_CCCR_INIT) == 1) { |
|
if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) { |
|
return false; |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
if (num_stdid) { |
|
num_stdid = 0; //reset list count |
|
filter_ptr = (uint32_t*)MessageRam_.StandardFilterSA; |
|
//Run through the filter list and setup standard id filter list |
|
for (uint8_t i = 0; i < num_configs; i++) { |
|
uint32_t id = 0; |
|
uint32_t mask = 0; |
|
const CanFilterConfig* const cfg = filter_configs + i; |
|
if (!((cfg->id & AP_HAL::CANFrame::FlagEFF) || !(cfg->mask & AP_HAL::CANFrame::FlagEFF))) { |
|
id = (cfg->id & AP_HAL::CANFrame::MaskStdID); // Regular std frames, nothing fancy. |
|
mask = (cfg->mask & 0x7F); |
|
filter_ptr[num_stdid] = 0x2U << 30 | //Classic CAN Filter |
|
0x1U << 27 | //Store in Rx FIFO0 if filter matches |
|
id << 16 | |
|
mask; |
|
num_stdid++; |
|
} |
|
} |
|
} |
|
|
|
//Allocate Message RAM for Extended ID Filter List |
|
if (num_extid == 0) { //No Frame with Extended ID is to be accepted |
|
can_->GFC |= 0x1; //Reject All Extended ID Frames |
|
} else if ((num_extid < (total_available_list_size/2)) && (num_extid <= 64)) { |
|
can_->XIDFC = (FDCANMessageRAMOffset_ << 2) | (num_extid << 16); |
|
MessageRam_.ExtendedFilterSA = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U); |
|
FDCANMessageRAMOffset_ += num_extid*2; |
|
can_->GFC |= (0x3U << 2); // Reject non matching Extended frames |
|
} else { //The List is too big, return fail |
|
can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode |
|
uint32_t while_start_ms = AP_HAL::millis(); |
|
while ((can_->CCCR & FDCAN_CCCR_INIT) == 1) { |
|
if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) { |
|
return false; |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
if (num_extid) { |
|
num_extid = 0; |
|
filter_ptr = (uint32_t*)MessageRam_.ExtendedFilterSA; |
|
//Run through the filter list and setup extended id filter list |
|
for (uint8_t i = 0; i < num_configs; i++) { |
|
uint32_t id = 0; |
|
uint32_t mask = 0; |
|
const CanFilterConfig* const cfg = filter_configs + i; |
|
if ((cfg->id & AP_HAL::CANFrame::FlagEFF) || !(cfg->mask & AP_HAL::CANFrame::FlagEFF)) { |
|
id = (cfg->id & AP_HAL::CANFrame::MaskExtID); |
|
mask = (cfg->mask & AP_HAL::CANFrame::MaskExtID); |
|
filter_ptr[num_extid*2] = 0x1U << 29 | id; //Store in Rx FIFO0 if filter matches |
|
filter_ptr[num_extid*2 + 1] = 0x2U << 30 | mask; // Classic CAN Filter |
|
num_extid++; |
|
} |
|
} |
|
} |
|
|
|
MessageRam_.EndAddress = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U); |
|
if (MessageRam_.EndAddress > MESSAGE_RAM_END_ADDR) { |
|
//We are overflowing the limit of Allocated Message RAM |
|
AP_HAL::panic("CANFDIface: Message RAM Overflow!"); |
|
} |
|
|
|
// Finally get out of Config Mode |
|
can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode |
|
uint32_t while_start_ms = AP_HAL::millis(); |
|
while ((can_->CCCR & FDCAN_CCCR_INIT) == 1) { |
|
if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) { |
|
return false; |
|
} |
|
} |
|
initialised_ = true; |
|
return true; |
|
} |
|
|
|
uint16_t CANIface::getNumFilters() const |
|
{ |
|
return MAX_FILTER_LIST_SIZE; |
|
} |
|
|
|
bool CANIface::clock_init_ = false; |
|
bool CANIface::init(const uint32_t bitrate, const OperatingMode mode) |
|
{ |
|
Debug("Bitrate %lu mode %d", static_cast<unsigned long>(bitrate), static_cast<int>(mode)); |
|
if (self_index_ > HAL_NUM_CAN_IFACES) { |
|
Debug("CAN drv init failed"); |
|
return false; |
|
} |
|
if (can_ifaces[self_index_] == nullptr) { |
|
can_ifaces[self_index_] = this; |
|
#if !defined(HAL_BOOTLOADER_BUILD) |
|
hal.can[self_index_] = this; |
|
#endif |
|
} |
|
|
|
|
|
bitrate_ = bitrate; |
|
mode_ = mode; |
|
//Only do it once |
|
//Doing it second time will reset the previously initialised bus |
|
if (!clock_init_) { |
|
CriticalSectionLocker lock; |
|
RCC->APB1HENR |= RCC_APB1HENR_FDCANEN; |
|
RCC->APB1HRSTR |= RCC_APB1HRSTR_FDCANRST; |
|
RCC->APB1HRSTR &= ~RCC_APB1HRSTR_FDCANRST; |
|
clock_init_ = true; |
|
} |
|
|
|
/* |
|
* IRQ |
|
*/ |
|
if (!irq_init_) { |
|
CriticalSectionLocker lock; |
|
if (self_index_ == 0) { |
|
nvicEnableVector(FDCAN1_IT0_IRQn, CORTEX_MAX_KERNEL_PRIORITY); |
|
nvicEnableVector(FDCAN1_IT1_IRQn, CORTEX_MAX_KERNEL_PRIORITY); |
|
} |
|
# if HAL_NUM_CAN_IFACES > 1 |
|
else if (self_index_ == 1) { |
|
nvicEnableVector(FDCAN2_IT0_IRQn, CORTEX_MAX_KERNEL_PRIORITY); |
|
nvicEnableVector(FDCAN2_IT1_IRQn, CORTEX_MAX_KERNEL_PRIORITY); |
|
} |
|
# endif |
|
irq_init_ = true; |
|
} |
|
|
|
|
|
// Setup FDCAN for configuration mode and disable all interrupts |
|
{ |
|
CriticalSectionLocker lock; |
|
|
|
can_->CCCR &= ~FDCAN_CCCR_CSR; // Exit sleep mode |
|
uint32_t while_start_ms = AP_HAL::millis(); |
|
while ((can_->CCCR & FDCAN_CCCR_CSA) == FDCAN_CCCR_CSA) { |
|
if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) { |
|
return false; |
|
} |
|
} //Wait for wake up ack |
|
can_->CCCR |= FDCAN_CCCR_INIT; // Request init |
|
while_start_ms = AP_HAL::millis(); |
|
while ((can_->CCCR & FDCAN_CCCR_INIT) == 0) { |
|
if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) { |
|
return false; |
|
} |
|
} |
|
can_->CCCR |= FDCAN_CCCR_CCE; //Enable Config change |
|
can_->IE = 0; // Disable interrupts while initialization is in progress |
|
} |
|
|
|
/* |
|
* Object state - interrupts are disabled, so it's safe to modify it now |
|
*/ |
|
rx_queue_.clear(); |
|
for (uint32_t i=0; i < NumTxMailboxes; i++) { |
|
pending_tx_[i] = CanTxItem(); |
|
} |
|
peak_tx_mailbox_index_ = 0; |
|
had_activity_ = false; |
|
|
|
/* |
|
* CAN timings for this bitrate |
|
*/ |
|
Timings timings; |
|
|
|
if (!computeTimings(bitrate, timings)) { |
|
can_->CCCR &= ~FDCAN_CCCR_INIT; |
|
uint32_t while_start_ms = AP_HAL::millis(); |
|
while ((can_->CCCR & FDCAN_CCCR_INIT) == 1) { |
|
if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) { |
|
return false; |
|
} |
|
} |
|
return false; |
|
} |
|
Debug("Timings: presc=%u sjw=%u bs1=%u bs2=%u\n", |
|
unsigned(timings.prescaler), unsigned(timings.sjw), unsigned(timings.bs1), unsigned(timings.bs2)); |
|
|
|
//setup timing register |
|
//TODO: Do timing calculations for FDCAN |
|
can_->NBTP = ((timings.sjw << FDCAN_NBTP_NSJW_Pos) | |
|
(timings.bs1 << FDCAN_NBTP_NTSEG1_Pos) | |
|
(timings.bs2 << FDCAN_NBTP_TSEG2_Pos) | |
|
(timings.prescaler << FDCAN_NBTP_NBRP_Pos)); |
|
|
|
//RX Config |
|
can_->RXESC = 0; //Set for 8Byte Frames |
|
|
|
//Setup Message RAM |
|
setupMessageRam(); |
|
// Reset Bus Off |
|
_detected_bus_off = false; |
|
//Clear all Interrupts |
|
can_->IR = 0x3FFFFFFF; |
|
//Enable Interrupts |
|
can_->IE = FDCAN_IE_TCE | // Transmit Complete interrupt enable |
|
FDCAN_IE_BOE | // Bus off Error Interrupt enable |
|
FDCAN_IE_RF0NE | // RX FIFO 0 new message |
|
FDCAN_IE_RF0FE | // Rx FIFO 0 FIFO Full |
|
FDCAN_IE_RF1NE | // RX FIFO 1 new message |
|
FDCAN_IE_RF1FE; // Rx FIFO 1 FIFO Full |
|
can_->ILS = FDCAN_ILS_TCL | FDCAN_ILS_BOE; //Set Line 1 for Transmit Complete Event Interrupt and Bus Off Interrupt |
|
// And Busoff error |
|
can_->TXBTIE = 0xFFFFFFFF; |
|
can_->ILE = 0x3; |
|
|
|
// If mode is Filtered then we finish the initialisation in configureFilter method |
|
// otherwise we finish here |
|
if (mode != FilteredMode) { |
|
can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode |
|
uint32_t while_start_ms = AP_HAL::millis(); |
|
while ((can_->CCCR & FDCAN_CCCR_INIT) == 1) { |
|
if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) { |
|
return false; |
|
} |
|
} |
|
|
|
//initialised |
|
initialised_ = true; |
|
} |
|
return true; |
|
} |
|
|
|
void CANIface::clear_rx() |
|
{ |
|
CriticalSectionLocker lock; |
|
rx_queue_.clear(); |
|
} |
|
|
|
void CANIface::setupMessageRam() |
|
{ |
|
uint32_t num_elements = 0; |
|
|
|
// Rx FIFO 0 start address and element count |
|
num_elements = MIN((FDCAN_NUM_RXFIFO0_SIZE/FDCAN_FRAME_BUFFER_SIZE), 64U); |
|
if (num_elements) { |
|
can_->RXF0C = (FDCANMessageRAMOffset_ << 2) | (num_elements << 16); |
|
MessageRam_.RxFIFO0SA = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U); |
|
FDCANMessageRAMOffset_ += num_elements*FDCAN_FRAME_BUFFER_SIZE; |
|
} |
|
|
|
// Tx FIFO/queue start address and element count |
|
num_elements = MIN((FDCAN_TX_FIFO_BUFFER_SIZE/FDCAN_FRAME_BUFFER_SIZE), 32U); |
|
if (num_elements) { |
|
can_->TXBC = (FDCANMessageRAMOffset_ << 2) | (num_elements << 24); |
|
MessageRam_.TxFIFOQSA = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U); |
|
FDCANMessageRAMOffset_ += num_elements*FDCAN_FRAME_BUFFER_SIZE; |
|
} |
|
MessageRam_.EndAddress = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U); |
|
if (MessageRam_.EndAddress > MESSAGE_RAM_END_ADDR) { |
|
//We are overflowing the limit of Allocated Message RAM |
|
AP_HAL::panic("CANFDIface: Message RAM Overflow!"); |
|
return; |
|
} |
|
} |
|
|
|
void CANIface::handleTxCompleteInterrupt(const uint64_t timestamp_us) |
|
{ |
|
for (uint8_t i = 0; i < NumTxMailboxes; i++) { |
|
if ((can_->TXBTO & (1UL << i))) { |
|
|
|
if (!pending_tx_[i].pushed) { |
|
stats.tx_success++; |
|
pending_tx_[i].pushed = true; |
|
} else { |
|
continue; |
|
} |
|
|
|
if (pending_tx_[i].loopback && had_activity_) { |
|
CanRxItem rx_item; |
|
rx_item.frame = pending_tx_[i].frame; |
|
rx_item.timestamp_us = timestamp_us; |
|
rx_item.flags = AP_HAL::CANIface::Loopback; |
|
rx_queue_.push(rx_item); |
|
} |
|
if (event_handle_ != nullptr) { |
|
stats.num_events++; |
|
#if !defined(HAL_BUILD_AP_PERIPH) && !defined(HAL_BOOTLOADER_BUILD) |
|
evt_src_.signalI(1 << self_index_); |
|
#endif |
|
} |
|
} |
|
} |
|
} |
|
|
|
bool CANIface::readRxFIFO(uint8_t fifo_index) |
|
{ |
|
uint32_t *frame_ptr; |
|
uint32_t index; |
|
uint64_t timestamp_us = AP_HAL::micros64(); |
|
if (fifo_index == 0) { |
|
//Check if RAM allocated to RX FIFO |
|
if ((can_->RXF0C & FDCAN_RXF0C_F0S) == 0) { |
|
return false; |
|
} |
|
//Register Message Lost as a hardware error |
|
if ((can_->RXF0S & FDCAN_RXF0S_RF0L) != 0) { |
|
stats.rx_errors++; |
|
} |
|
|
|
if ((can_->RXF0S & FDCAN_RXF0S_F0FL) == 0) { |
|
return false; //No More messages in FIFO |
|
} else { |
|
index = ((can_->RXF0S & FDCAN_RXF0S_F0GI) >> 8); |
|
frame_ptr = (uint32_t *)(MessageRam_.RxFIFO0SA + (index * FDCAN_FRAME_BUFFER_SIZE * 4)); |
|
} |
|
} else if (fifo_index == 1) { |
|
//Check if RAM allocated to RX FIFO |
|
if ((can_->RXF1C & FDCAN_RXF1C_F1S) == 0) { |
|
return false; |
|
} |
|
//Register Message Lost as a hardware error |
|
if ((can_->RXF1S & FDCAN_RXF1S_RF1L) != 0) { |
|
stats.rx_errors++; |
|
} |
|
|
|
if ((can_->RXF1S & FDCAN_RXF1S_F1FL) == 0) { |
|
return false; |
|
} else { |
|
index = ((can_->RXF1S & FDCAN_RXF1S_F1GI) >> 8); |
|
frame_ptr = (uint32_t *)(MessageRam_.RxFIFO1SA + (index * FDCAN_FRAME_BUFFER_SIZE * 4)); |
|
} |
|
} else { |
|
return false; |
|
} |
|
|
|
// Read the frame contents |
|
AP_HAL::CANFrame frame; |
|
uint32_t id = frame_ptr[0]; |
|
if ((id & IDE) == 0) { |
|
//Standard ID |
|
frame.id = ((id & STID_MASK) >> 18) & AP_HAL::CANFrame::MaskStdID; |
|
} else { |
|
//Extended ID |
|
frame.id = (id & EXID_MASK) & AP_HAL::CANFrame::MaskExtID; |
|
frame.id |= AP_HAL::CANFrame::FlagEFF; |
|
} |
|
|
|
if ((id & RTR) != 0) { |
|
frame.id |= AP_HAL::CANFrame::FlagRTR; |
|
} |
|
frame.dlc = (frame_ptr[1] & DLC_MASK) >> 16; |
|
uint8_t *data = (uint8_t*)&frame_ptr[2]; |
|
//We only handle Data Length of 8 Bytes for now |
|
for (uint8_t i = 0; i < 8; i++) { |
|
frame.data[i] = data[i]; |
|
} |
|
|
|
//Acknowledge the FIFO entry we just read |
|
if (fifo_index == 0) { |
|
can_->RXF0A = index; |
|
} else if (fifo_index == 1) { |
|
can_->RXF1A = index; |
|
} |
|
|
|
/* |
|
* Store with timeout into the FIFO buffer |
|
*/ |
|
|
|
CanRxItem rx_item; |
|
rx_item.frame = frame; |
|
rx_item.timestamp_us = timestamp_us; |
|
rx_item.flags = 0; |
|
if (rx_queue_.push(rx_item)) { |
|
stats.rx_received++; |
|
} else { |
|
stats.rx_overflow++; |
|
} |
|
return true; |
|
} |
|
|
|
void CANIface::handleRxInterrupt(uint8_t fifo_index) |
|
{ |
|
while (readRxFIFO(fifo_index)) { |
|
had_activity_ = true; |
|
} |
|
if (event_handle_ != nullptr) { |
|
stats.num_events++; |
|
#if !defined(HAL_BUILD_AP_PERIPH) && !defined(HAL_BOOTLOADER_BUILD) |
|
evt_src_.signalI(1 << self_index_); |
|
#endif |
|
} |
|
} |
|
|
|
/** |
|
* This method is used to count errors and abort transmission on error if necessary. |
|
* This functionality used to be implemented in the SCE interrupt handler, but that approach was |
|
* generating too much processing overhead, especially on disconnected interfaces. |
|
* |
|
* Should be called from RX ISR, TX ISR, and select(); interrupts must be enabled. |
|
*/ |
|
void CANIface::pollErrorFlagsFromISR() |
|
{ |
|
const uint8_t cel = can_->ECR >> 16; |
|
|
|
if (cel != 0) { |
|
for (int i = 0; i < NumTxMailboxes; i++) { |
|
if (!pending_tx_[i].abort_on_error || pending_tx_[i].aborted) { |
|
continue; |
|
} |
|
if (((1 << pending_tx_[i].index) & can_->TXBRP)) { |
|
can_->TXBCR = 1 << pending_tx_[i].index; // Goodnight sweet transmission |
|
pending_tx_[i].aborted = true; |
|
stats.tx_abort++; |
|
} |
|
} |
|
} |
|
} |
|
|
|
void CANIface::pollErrorFlags() |
|
{ |
|
CriticalSectionLocker cs_locker; |
|
pollErrorFlagsFromISR(); |
|
} |
|
|
|
bool CANIface::canAcceptNewTxFrame() const |
|
{ |
|
//Check if Tx FIFO is allocated |
|
if ((can_->TXBC & FDCAN_TXBC_TFQS) == 0) { |
|
return false; |
|
} |
|
if ((can_->TXFQS & FDCAN_TXFQS_TFQF) != 0) { |
|
return false; //we don't have free space |
|
} |
|
|
|
return true; |
|
} |
|
|
|
/** |
|
* Total number of hardware failures and other kinds of errors (e.g. queue overruns). |
|
* May increase continuously if the interface is not connected to the bus. |
|
*/ |
|
uint32_t CANIface::getErrorCount() const |
|
{ |
|
CriticalSectionLocker lock; |
|
return stats.num_busoff_err + |
|
stats.rx_errors + |
|
stats.rx_overflow + |
|
stats.tx_rejected + |
|
stats.tx_abort + |
|
stats.tx_timedout; |
|
} |
|
|
|
#if !defined(HAL_BUILD_AP_PERIPH) && !defined(HAL_BOOTLOADER_BUILD) |
|
ChibiOS::EventSource CANIface::evt_src_; |
|
bool CANIface::set_event_handle(AP_HAL::EventHandle* handle) |
|
{ |
|
CriticalSectionLocker lock; |
|
event_handle_ = handle; |
|
event_handle_->set_source(&evt_src_); |
|
return event_handle_->register_event(1 << self_index_); |
|
} |
|
#endif |
|
|
|
bool CANIface::isRxBufferEmpty() const |
|
{ |
|
CriticalSectionLocker lock; |
|
return rx_queue_.available() == 0; |
|
} |
|
|
|
void CANIface::clearErrors() |
|
{ |
|
if (_detected_bus_off) { |
|
//Try Recovering from BusOff |
|
//While in Bus off mode the CAN Peripheral is put |
|
//into INIT mode, when we ask Peripheral to get out |
|
//of INIT mode, the bit stream processor (BSP) synchronizes |
|
//itself to the data transfer on the CAN bus by |
|
//waiting for the occurrence of a sequence of 11 consecutive |
|
//recessive bits (Bus_Idle) before it can take part in bus |
|
//activities and start the message transfer |
|
can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode |
|
stats.num_busoff_err++; |
|
_detected_bus_off = false; |
|
} |
|
} |
|
|
|
void CANIface::discardTimedOutTxMailboxes(uint64_t current_time) |
|
{ |
|
CriticalSectionLocker lock; |
|
for (int i = 0; i < NumTxMailboxes; i++) { |
|
if (pending_tx_[i].aborted || !pending_tx_[i].setup) { |
|
continue; |
|
} |
|
if (((1 << pending_tx_[i].index) & can_->TXBRP) && pending_tx_[i].deadline < current_time) { |
|
can_->TXBCR = 1 << pending_tx_[i].index; // Goodnight sweet transmission |
|
pending_tx_[i].aborted = true; |
|
stats.tx_timedout++; |
|
} |
|
} |
|
} |
|
|
|
void CANIface::checkAvailable(bool& read, bool& write, const AP_HAL::CANFrame* pending_tx) const |
|
{ |
|
write = false; |
|
read = !isRxBufferEmpty(); |
|
if (pending_tx != nullptr) { |
|
write = canAcceptNewTxFrame(); |
|
} |
|
} |
|
|
|
bool CANIface::select(bool &read, bool &write, |
|
const AP_HAL::CANFrame* pending_tx, |
|
uint64_t blocking_deadline) |
|
{ |
|
const bool in_read = read; |
|
const bool in_write= write; |
|
uint64_t time = AP_HAL::micros(); |
|
|
|
if (!read && !write) { |
|
//invalid request |
|
return false; |
|
} |
|
|
|
discardTimedOutTxMailboxes(time); // Check TX timeouts - this may release some TX slots |
|
pollErrorFlags(); |
|
clearErrors(); |
|
|
|
checkAvailable(read, write, pending_tx); // Check if we already have some of the requested events |
|
if ((read && in_read) || (write && in_write)) { |
|
return true; |
|
} |
|
while (time < blocking_deadline) { |
|
if (event_handle_ == nullptr) { |
|
break; |
|
} |
|
event_handle_->wait(blocking_deadline - time); // Block until timeout expires or any iface updates |
|
checkAvailable(read, write, pending_tx); // Check what we got |
|
if ((read && in_read) || (write && in_write)) { |
|
return true; |
|
} |
|
time = AP_HAL::micros(); |
|
} |
|
return true; // Return value doesn't matter as long as it is non-negative |
|
} |
|
|
|
#if !defined(HAL_BUILD_AP_PERIPH) && !defined(HAL_BOOTLOADER_BUILD) |
|
void CANIface::get_stats(ExpandingString &str) |
|
{ |
|
CriticalSectionLocker lock; |
|
str.printf("tx_requests: %lu\n" |
|
"tx_rejected: %lu\n" |
|
"tx_success: %lu\n" |
|
"tx_timedout: %lu\n" |
|
"tx_abort: %lu\n" |
|
"rx_received: %lu\n" |
|
"rx_overflow: %lu\n" |
|
"rx_errors: %lu\n" |
|
"num_busoff_err: %lu\n" |
|
"num_events: %lu\n", |
|
stats.tx_requests, |
|
stats.tx_rejected, |
|
stats.tx_success, |
|
stats.tx_timedout, |
|
stats.tx_abort, |
|
stats.rx_received, |
|
stats.rx_overflow, |
|
stats.rx_errors, |
|
stats.num_busoff_err, |
|
stats.num_events); |
|
} |
|
#endif |
|
|
|
/* |
|
* Interrupt handlers |
|
*/ |
|
extern "C" |
|
{ |
|
|
|
CH_IRQ_HANDLER(FDCAN1_IT0_IRQHandler); |
|
CH_IRQ_HANDLER(FDCAN1_IT0_IRQHandler) |
|
{ |
|
CH_IRQ_PROLOGUE(); |
|
handleCANInterrupt(0, 0); |
|
CH_IRQ_EPILOGUE(); |
|
} |
|
|
|
CH_IRQ_HANDLER(FDCAN1_IT1_IRQHandler); |
|
CH_IRQ_HANDLER(FDCAN1_IT1_IRQHandler) |
|
{ |
|
CH_IRQ_PROLOGUE(); |
|
handleCANInterrupt(0, 1); |
|
CH_IRQ_EPILOGUE(); |
|
} |
|
|
|
|
|
# if HAL_NUM_CAN_IFACES > 1 |
|
|
|
CH_IRQ_HANDLER(FDCAN2_IT0_IRQHandler); |
|
CH_IRQ_HANDLER(FDCAN2_IT0_IRQHandler) |
|
{ |
|
CH_IRQ_PROLOGUE(); |
|
handleCANInterrupt(1, 0); |
|
CH_IRQ_EPILOGUE(); |
|
} |
|
|
|
CH_IRQ_HANDLER(FDCAN2_IT1_IRQHandler); |
|
CH_IRQ_HANDLER(FDCAN2_IT1_IRQHandler) |
|
{ |
|
CH_IRQ_PROLOGUE(); |
|
handleCANInterrupt(1, 1); |
|
CH_IRQ_EPILOGUE(); |
|
} |
|
|
|
# endif |
|
|
|
} // extern "C" |
|
|
|
#endif //defined(STM32H7XX) |
|
|
|
#endif //HAL_NUM_CAN_IFACES
|
|
|