You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
348 lines
13 KiB
348 lines
13 KiB
#include "Rover.h" |
|
|
|
/***************************************** |
|
Throttle slew limit |
|
*****************************************/ |
|
void Rover::throttle_slew_limit(void) { |
|
if (g.throttle_slewrate > 0) { |
|
SRV_Channels::limit_slew_rate(SRV_Channel::k_throttle, g.throttle_slewrate, G_Dt); |
|
if (have_skid_steering()) { |
|
// when skid steering also limit 2nd channel |
|
SRV_Channels::limit_slew_rate(SRV_Channel::k_steering, g.throttle_slewrate, G_Dt); |
|
} |
|
} |
|
} |
|
|
|
/* |
|
check for triggering of start of auto mode |
|
*/ |
|
bool Rover::auto_check_trigger(void) { |
|
// only applies to AUTO mode |
|
if (control_mode != AUTO) { |
|
return true; |
|
} |
|
|
|
// check for user pressing the auto trigger to off |
|
if (auto_triggered && g.auto_trigger_pin != -1 && check_digital_pin(g.auto_trigger_pin) == 1) { |
|
gcs_send_text(MAV_SEVERITY_WARNING, "AUTO triggered off"); |
|
auto_triggered = false; |
|
return false; |
|
} |
|
|
|
// if already triggered, then return true, so you don't |
|
// need to hold the switch down |
|
if (auto_triggered) { |
|
return true; |
|
} |
|
|
|
if (g.auto_trigger_pin == -1 && is_zero(g.auto_kickstart)) { |
|
// no trigger configured - let's go! |
|
auto_triggered = true; |
|
return true; |
|
} |
|
|
|
if (g.auto_trigger_pin != -1 && check_digital_pin(g.auto_trigger_pin) == 0) { |
|
gcs_send_text(MAV_SEVERITY_WARNING, "Triggered AUTO with pin"); |
|
auto_triggered = true; |
|
return true; |
|
} |
|
|
|
if (!is_zero(g.auto_kickstart)) { |
|
const float xaccel = ins.get_accel().x; |
|
if (xaccel >= g.auto_kickstart) { |
|
gcs_send_text_fmt(MAV_SEVERITY_WARNING, "Triggered AUTO xaccel=%.1f", static_cast<double>(xaccel)); |
|
auto_triggered = true; |
|
return true; |
|
} |
|
} |
|
|
|
return false; |
|
} |
|
|
|
/* |
|
work out if we are going to use pivot steering |
|
*/ |
|
bool Rover::use_pivot_steering(void) { |
|
if (control_mode >= AUTO && have_skid_steering() && g.pivot_turn_angle != 0) { |
|
const int16_t bearing_error = wrap_180_cd(nav_controller->target_bearing_cd() - ahrs.yaw_sensor) / 100; |
|
if (abs(bearing_error) > g.pivot_turn_angle) { |
|
return true; |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
/* |
|
test if we are loitering AND should be stopped at a waypoint |
|
*/ |
|
bool Rover::in_stationary_loiter() |
|
{ |
|
// Confirm we are in AUTO mode and need to loiter for a time period |
|
if ((loiter_start_time > 0) && (control_mode == AUTO)) { |
|
// Check if active loiter is enabled AND we are outside the waypoint loiter radius |
|
// then the vehicle still needs to move so return false |
|
if (active_loiter && (wp_distance > g.waypoint_radius)) { |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
/* |
|
calculate the throtte for auto-throttle modes |
|
*/ |
|
void Rover::calc_throttle(float target_speed) { |
|
// If not autostarting OR we are loitering at a waypoint |
|
// then set the throttle to minimum |
|
if (!auto_check_trigger() || in_stationary_loiter()) { |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, g.throttle_min.get()); |
|
// Stop rotation in case of loitering and skid steering |
|
if (have_skid_steering()) { |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_steering, 0); |
|
} |
|
return; |
|
} |
|
|
|
const float throttle_base = (fabsf(target_speed) / g.speed_cruise) * g.throttle_cruise; |
|
const int throttle_target = throttle_base + throttle_nudge; |
|
|
|
/* |
|
reduce target speed in proportion to turning rate, up to the |
|
SPEED_TURN_GAIN percentage. |
|
*/ |
|
float steer_rate = fabsf(lateral_acceleration / (g.turn_max_g*GRAVITY_MSS)); |
|
steer_rate = constrain_float(steer_rate, 0.0f, 1.0f); |
|
|
|
// use g.speed_turn_gain for a 90 degree turn, and in proportion |
|
// for other turn angles |
|
const int32_t turn_angle = wrap_180_cd(next_navigation_leg_cd - ahrs.yaw_sensor); |
|
const float speed_turn_ratio = constrain_float(fabsf(turn_angle / 9000.0f), 0.0f, 1.0f); |
|
const float speed_turn_reduction = (100 - g.speed_turn_gain) * speed_turn_ratio * 0.01f; |
|
|
|
float reduction = 1.0f - steer_rate * speed_turn_reduction; |
|
|
|
if (control_mode >= AUTO && guided_mode != Guided_Velocity && wp_distance <= g.speed_turn_dist) { |
|
// in auto-modes we reduce speed when approaching waypoints |
|
const float reduction2 = 1.0f - speed_turn_reduction; |
|
if (reduction2 < reduction) { |
|
reduction = reduction2; |
|
} |
|
} |
|
|
|
// reduce the target speed by the reduction factor |
|
target_speed *= reduction; |
|
|
|
groundspeed_error = fabsf(target_speed) - ground_speed; |
|
|
|
throttle = throttle_target + (g.pidSpeedThrottle.get_pid(groundspeed_error * 100.0f) / 100.0f); |
|
|
|
// also reduce the throttle by the reduction factor. This gives a |
|
// much faster response in turns |
|
throttle *= reduction; |
|
|
|
if (in_reverse) { |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, constrain_int16(-throttle, -g.throttle_max, -g.throttle_min)); |
|
} else { |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, constrain_int16(throttle, g.throttle_min, g.throttle_max)); |
|
} |
|
|
|
if (!in_reverse && g.braking_percent != 0 && groundspeed_error < -g.braking_speederr) { |
|
// the user has asked to use reverse throttle to brake. Apply |
|
// it in proportion to the ground speed error, but only when |
|
// our ground speed error is more than BRAKING_SPEEDERR. |
|
// |
|
// We use a linear gain, with 0 gain at a ground speed error |
|
// of braking_speederr, and 100% gain when groundspeed_error |
|
// is 2*braking_speederr |
|
const float brake_gain = constrain_float(((-groundspeed_error)-g.braking_speederr)/g.braking_speederr, 0.0f, 1.0f); |
|
const int16_t braking_throttle = g.throttle_max * (g.braking_percent * 0.01f) * brake_gain; |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, constrain_int16(-braking_throttle, -g.throttle_max, -g.throttle_min)); |
|
|
|
// temporarily set us in reverse to allow the PWM setting to |
|
// go negative |
|
set_reverse(true); |
|
} |
|
|
|
if (guided_mode != Guided_Velocity) { |
|
if (use_pivot_steering()) { |
|
// In Guided Velocity, only the steering input is used to calculate the pivot turn. |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, 0); |
|
} |
|
} |
|
} |
|
|
|
/***************************************** |
|
Calculate desired turn angles (in medium freq loop) |
|
*****************************************/ |
|
|
|
void Rover::calc_lateral_acceleration() { |
|
switch (control_mode) { |
|
case AUTO: |
|
// If we have reached the waypoint previously navigate |
|
// back to it from our current position |
|
if (previously_reached_wp && (loiter_duration > 0)) { |
|
nav_controller->update_waypoint(current_loc, next_WP); |
|
} else { |
|
nav_controller->update_waypoint(prev_WP, next_WP); |
|
} |
|
break; |
|
|
|
case RTL: |
|
case GUIDED: |
|
case STEERING: |
|
nav_controller->update_waypoint(current_loc, next_WP); |
|
break; |
|
default: |
|
return; |
|
} |
|
|
|
// Calculate the required turn of the wheels |
|
|
|
// negative error = left turn |
|
// positive error = right turn |
|
lateral_acceleration = nav_controller->lateral_acceleration(); |
|
if (use_pivot_steering()) { |
|
const int16_t bearing_error = wrap_180_cd(nav_controller->target_bearing_cd() - ahrs.yaw_sensor) / 100; |
|
if (bearing_error > 0) { |
|
lateral_acceleration = g.turn_max_g * GRAVITY_MSS; |
|
} else { |
|
lateral_acceleration = -g.turn_max_g * GRAVITY_MSS; |
|
} |
|
} |
|
} |
|
|
|
/* |
|
calculate steering angle given lateral_acceleration |
|
*/ |
|
void Rover::calc_nav_steer() { |
|
// check to see if the rover is loitering |
|
if (in_stationary_loiter()) { |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_steering, 0); |
|
return; |
|
} |
|
|
|
// add in obstacle avoidance |
|
if (!in_reverse) { |
|
lateral_acceleration += (obstacle.turn_angle/45.0f) * g.turn_max_g; |
|
} |
|
|
|
// constrain to max G force |
|
lateral_acceleration = constrain_float(lateral_acceleration, -g.turn_max_g * GRAVITY_MSS, g.turn_max_g * GRAVITY_MSS); |
|
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_steering, steerController.get_steering_out_lat_accel(lateral_acceleration)); |
|
} |
|
|
|
/* |
|
run the skid steering mixer |
|
*/ |
|
void Rover::mix_skid_steering(void) |
|
{ |
|
const float steering_scaled = SRV_Channels::get_output_scaled(SRV_Channel::k_steering) / 4500.0f; |
|
const float throttle_scaled = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) / 100.0f; |
|
float motor1 = throttle_scaled + 0.5f * steering_scaled; |
|
float motor2 = throttle_scaled - 0.5f * steering_scaled; |
|
// Check that we are doing on spot turn |
|
if (fabsf(throttle_scaled) <= 0.01f) { |
|
// Use full range for on spot turn |
|
motor1 = steering_scaled; |
|
motor2 = -steering_scaled; |
|
} |
|
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleLeft, 1000.0f * motor1); |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleRight, 1000.0f * motor2); |
|
} |
|
|
|
/***************************************** |
|
Set the flight control servos based on the current calculated values |
|
*****************************************/ |
|
void Rover::set_servos(void) { |
|
if (in_reverse) { |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, constrain_int16(SRV_Channels::get_output_scaled(SRV_Channel::k_throttle), |
|
-g.throttle_max, |
|
-g.throttle_min)); |
|
} else { |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, constrain_int16(SRV_Channels::get_output_scaled(SRV_Channel::k_throttle), |
|
g.throttle_min, |
|
g.throttle_max)); |
|
} |
|
// Check Throttle failsafe in non auto mode. Suppress all ouput |
|
if ((failsafe.bits & FAILSAFE_EVENT_THROTTLE) && control_mode < AUTO) { |
|
// suppress throttle if in failsafe |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, 0); |
|
// suppress steer if in failsafe and skid steer mode |
|
if (have_skid_steering()) { |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_steering, 0); |
|
} |
|
} |
|
// Check if soft arm. Suppress all ouput |
|
if (!hal.util->get_soft_armed()) { |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, 0); |
|
// suppress steer if in failsafe and skid steer mode |
|
if (have_skid_steering()) { |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_steering, 0); |
|
} |
|
} |
|
// Apply slew rate limit on non Manual modes |
|
if (control_mode != MANUAL && control_mode != LEARNING) { |
|
// limit throttle movement speed |
|
throttle_slew_limit(); |
|
} |
|
// Apply skid steering mixing |
|
if (have_skid_steering()) { |
|
mix_skid_steering(); |
|
} |
|
|
|
if (!arming.is_armed()) { |
|
// Some ESCs get noisy (beep error msgs) if PWM == 0. |
|
// This little segment aims to avoid this. |
|
switch (arming.arming_required()) { |
|
case AP_Arming::NO: |
|
// keep existing behavior: do nothing to radio_out |
|
// (don't disarm throttle channel even if AP_Arming class is) |
|
break; |
|
|
|
case AP_Arming::YES_ZERO_PWM: |
|
SRV_Channels::set_output_limit(SRV_Channel::k_throttle, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); |
|
SRV_Channels::set_output_limit(SRV_Channel::k_throttleLeft, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); |
|
SRV_Channels::set_output_limit(SRV_Channel::k_throttleRight, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); |
|
if (have_skid_steering()) { |
|
SRV_Channels::set_output_limit(SRV_Channel::k_steering, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); |
|
} |
|
break; |
|
|
|
case AP_Arming::YES_MIN_PWM: |
|
default: |
|
SRV_Channels::set_output_limit(SRV_Channel::k_throttle, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM); |
|
SRV_Channels::set_output_limit(SRV_Channel::k_throttleLeft, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM); |
|
SRV_Channels::set_output_limit(SRV_Channel::k_throttleRight, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM); |
|
if (have_skid_steering()) { |
|
SRV_Channels::set_output_limit(SRV_Channel::k_steering, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM); |
|
} |
|
break; |
|
} |
|
} |
|
|
|
SRV_Channels::calc_pwm(); |
|
|
|
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS |
|
// send values to the PWM timers for output |
|
// ---------------------------------------- |
|
hal.rcout->cork(); |
|
SRV_Channels::output_ch_all(); |
|
hal.rcout->push(); |
|
#endif |
|
} |
|
|
|
/* |
|
work out if skid steering is available |
|
*/ |
|
bool Rover::have_skid_steering(void) |
|
{ |
|
if (SRV_Channels::function_assigned(SRV_Channel::k_throttleLeft) && |
|
SRV_Channels::function_assigned(SRV_Channel::k_throttleRight)) { |
|
return true; |
|
} |
|
return false; |
|
}
|
|
|