You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
875 lines
28 KiB
875 lines
28 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
static void |
|
get_stabilize_roll(int32_t target_angle) |
|
{ |
|
// angle error |
|
target_angle = wrap_180(target_angle - ahrs.roll_sensor); |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
|
|
// limit the error we're feeding to the PID |
|
target_angle = constrain(target_angle, -4500, 4500); |
|
|
|
// convert to desired Rate: |
|
target_angle = g.pi_stabilize_roll.get_pi(target_angle, G_Dt); |
|
|
|
// output control - we do not use rate controllers for helicopters so send directly to servos |
|
g.rc_1.servo_out = constrain(target_angle, -4500, 4500); |
|
#else |
|
|
|
// convert to desired Rate: |
|
int32_t target_rate = g.pi_stabilize_roll.get_p(target_angle); |
|
|
|
int16_t i_stab; |
|
if(labs(ahrs.roll_sensor) < 500) { |
|
target_angle = constrain(target_angle, -500, 500); |
|
i_stab = g.pi_stabilize_roll.get_i(target_angle, G_Dt); |
|
}else{ |
|
i_stab = g.pi_stabilize_roll.get_integrator(); |
|
} |
|
|
|
// set targets for rate controller |
|
set_roll_rate_target(target_rate+i_stab, EARTH_FRAME); |
|
#endif |
|
} |
|
|
|
static void |
|
get_stabilize_pitch(int32_t target_angle) |
|
{ |
|
// angle error |
|
target_angle = wrap_180(target_angle - ahrs.pitch_sensor); |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
// limit the error we're feeding to the PID |
|
target_angle = constrain(target_angle, -4500, 4500); |
|
|
|
// convert to desired Rate: |
|
target_angle = g.pi_stabilize_pitch.get_pi(target_angle, G_Dt); |
|
|
|
// output control - we do not use rate controllers for helicopters so send directly to servos |
|
g.rc_2.servo_out = constrain(target_angle, -4500, 4500); |
|
#else |
|
|
|
// convert to desired Rate: |
|
int32_t target_rate = g.pi_stabilize_pitch.get_p(target_angle); |
|
|
|
int16_t i_stab; |
|
if(labs(ahrs.pitch_sensor) < 500) { |
|
target_angle = constrain(target_angle, -500, 500); |
|
i_stab = g.pi_stabilize_pitch.get_i(target_angle, G_Dt); |
|
}else{ |
|
i_stab = g.pi_stabilize_pitch.get_integrator(); |
|
} |
|
|
|
// set targets for rate controller |
|
set_pitch_rate_target(target_rate + i_stab, EARTH_FRAME); |
|
#endif |
|
} |
|
|
|
static void |
|
get_stabilize_yaw(int32_t target_angle) |
|
{ |
|
int32_t target_rate,i_term; |
|
int32_t angle_error; |
|
int32_t output = 0; |
|
|
|
// angle error |
|
angle_error = wrap_180(target_angle - ahrs.yaw_sensor); |
|
|
|
// limit the error we're feeding to the PID |
|
#if FRAME_CONFIG == HELI_FRAME |
|
angle_error = constrain(angle_error, -4500, 4500); |
|
#else |
|
angle_error = constrain(angle_error, -4000, 4000); |
|
#endif |
|
|
|
// convert angle error to desired Rate: |
|
target_rate = g.pi_stabilize_yaw.get_p(angle_error); |
|
i_term = g.pi_stabilize_yaw.get_i(angle_error, G_Dt); |
|
|
|
// do not use rate controllers for helicotpers with external gyros |
|
#if FRAME_CONFIG == HELI_FRAME |
|
if(motors.ext_gyro_enabled) { |
|
g.rc_4.servo_out = constrain((target_rate + i_term), -4500, 4500); |
|
} |
|
#endif |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash |
|
// log output if PID logging is on and we are tuning the yaw |
|
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_YAW_KP || g.radio_tuning == CH6_YAW_RATE_KP) ) { |
|
log_counter++; |
|
if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 |
|
log_counter = 0; |
|
Log_Write_PID(CH6_YAW_KP, angle_error, target_rate, i_term, 0, output, tuning_value); |
|
} |
|
} |
|
#endif |
|
|
|
// set targets for rate controller |
|
set_yaw_rate_target(target_rate+i_term, EARTH_FRAME); |
|
} |
|
|
|
static void |
|
get_stabilize_rate_yaw(int32_t target_rate) |
|
{ |
|
target_rate = g.pi_stabilize_yaw.get_p(target_rate); |
|
|
|
// set targets for rate controller |
|
set_yaw_rate_target(target_rate, EARTH_FRAME); |
|
} |
|
|
|
static void |
|
get_acro_roll(int32_t target_rate) |
|
{ |
|
target_rate = target_rate * g.acro_p; |
|
|
|
// set targets for rate controller |
|
set_roll_rate_target(target_rate, BODY_FRAME); |
|
} |
|
|
|
static void |
|
get_acro_pitch(int32_t target_rate) |
|
{ |
|
target_rate = target_rate * g.acro_p; |
|
|
|
// set targets for rate controller |
|
set_pitch_rate_target(target_rate, BODY_FRAME); |
|
} |
|
|
|
static void |
|
get_acro_yaw(int32_t target_rate) |
|
{ |
|
target_rate = target_rate * g.acro_p; |
|
|
|
// set targets for rate controller |
|
set_yaw_rate_target(target_rate, BODY_FRAME); |
|
} |
|
|
|
// Roll with rate input and stabilized in the earth frame |
|
static void |
|
get_roll_rate_stabilized_ef(int32_t stick_angle) |
|
{ |
|
int32_t angle_error = 0; |
|
|
|
// convert the input to the desired roll rate |
|
int32_t target_rate = stick_angle * g.acro_p - (roll_axis * g.acro_balance_roll)/100; |
|
|
|
// convert the input to the desired roll rate |
|
roll_axis += target_rate * G_Dt; |
|
roll_axis = wrap_180(roll_axis); |
|
|
|
// ensure that we don't reach gimbal lock |
|
if (roll_axis > 4500 || roll_axis < -4500) { |
|
roll_axis = constrain(roll_axis, -4500, 4500); |
|
angle_error = wrap_180(roll_axis - ahrs.roll_sensor); |
|
} else { |
|
// angle error with maximum of +- max_angle_overshoot |
|
angle_error = wrap_180(roll_axis - ahrs.roll_sensor); |
|
angle_error = constrain(angle_error, -MAX_ROLL_OVERSHOOT, MAX_ROLL_OVERSHOOT); |
|
} |
|
|
|
if (motors.armed() == false || ((g.rc_3.control_in == 0) && !failsafe)) { |
|
angle_error = 0; |
|
} |
|
|
|
// update roll_axis to be within max_angle_overshoot of our current heading |
|
roll_axis = wrap_180(angle_error + ahrs.roll_sensor); |
|
|
|
// set earth frame targets for rate controller |
|
|
|
// set earth frame targets for rate controller |
|
set_roll_rate_target(g.pi_stabilize_roll.get_p(angle_error) + target_rate, EARTH_FRAME); |
|
} |
|
|
|
// Pitch with rate input and stabilized in the earth frame |
|
static void |
|
get_pitch_rate_stabilized_ef(int32_t stick_angle) |
|
{ |
|
int32_t angle_error = 0; |
|
|
|
// convert the input to the desired pitch rate |
|
int32_t target_rate = stick_angle * g.acro_p - (pitch_axis * g.acro_balance_pitch)/100; |
|
|
|
// convert the input to the desired pitch rate |
|
pitch_axis += target_rate * G_Dt; |
|
pitch_axis = wrap_180(pitch_axis); |
|
|
|
// ensure that we don't reach gimbal lock |
|
if (pitch_axis > 4500 || pitch_axis < -4500) { |
|
pitch_axis = constrain(pitch_axis, -4500, 4500); |
|
angle_error = wrap_180(pitch_axis - ahrs.pitch_sensor); |
|
} else { |
|
// angle error with maximum of +- max_angle_overshoot |
|
angle_error = wrap_180(pitch_axis - ahrs.pitch_sensor); |
|
angle_error = constrain(angle_error, -MAX_PITCH_OVERSHOOT, MAX_PITCH_OVERSHOOT); |
|
} |
|
|
|
if (motors.armed() == false || ((g.rc_3.control_in == 0) && !failsafe)) { |
|
angle_error = 0; |
|
} |
|
|
|
// update pitch_axis to be within max_angle_overshoot of our current heading |
|
pitch_axis = wrap_180(angle_error + ahrs.pitch_sensor); |
|
|
|
// set earth frame targets for rate controller |
|
set_pitch_rate_target(g.pi_stabilize_pitch.get_p(angle_error) + target_rate, EARTH_FRAME); |
|
} |
|
|
|
// Yaw with rate input and stabilized in the earth frame |
|
static void |
|
get_yaw_rate_stabilized_ef(int32_t stick_angle) |
|
{ |
|
|
|
int32_t angle_error = 0; |
|
|
|
// convert the input to the desired yaw rate |
|
int32_t target_rate = stick_angle * g.acro_p; |
|
|
|
// convert the input to the desired yaw rate |
|
nav_yaw += target_rate * G_Dt; |
|
nav_yaw = wrap_360(nav_yaw); |
|
|
|
// calculate difference between desired heading and current heading |
|
angle_error = wrap_180(nav_yaw - ahrs.yaw_sensor); |
|
|
|
// limit the maximum overshoot |
|
angle_error = constrain(angle_error, -MAX_YAW_OVERSHOOT, MAX_YAW_OVERSHOOT); |
|
|
|
if (motors.armed() == false || ((g.rc_3.control_in == 0) && !failsafe)) { |
|
angle_error = 0; |
|
} |
|
|
|
// update nav_yaw to be within max_angle_overshoot of our current heading |
|
nav_yaw = wrap_360(angle_error + ahrs.yaw_sensor); |
|
|
|
// set earth frame targets for rate controller |
|
set_yaw_rate_target(g.pi_stabilize_yaw.get_p(angle_error)+target_rate, EARTH_FRAME); |
|
} |
|
|
|
// set_roll_rate_target - to be called by upper controllers to set roll rate targets in the earth frame |
|
void set_roll_rate_target( int32_t desired_rate, uint8_t earth_or_body_frame ) { |
|
rate_targets_frame = earth_or_body_frame; |
|
if( earth_or_body_frame == BODY_FRAME ) { |
|
roll_rate_target_bf = desired_rate; |
|
}else{ |
|
roll_rate_target_ef = desired_rate; |
|
} |
|
} |
|
|
|
// set_pitch_rate_target - to be called by upper controllers to set pitch rate targets in the earth frame |
|
void set_pitch_rate_target( int32_t desired_rate, uint8_t earth_or_body_frame ) { |
|
rate_targets_frame = earth_or_body_frame; |
|
if( earth_or_body_frame == BODY_FRAME ) { |
|
pitch_rate_target_bf = desired_rate; |
|
}else{ |
|
pitch_rate_target_ef = desired_rate; |
|
} |
|
} |
|
|
|
// set_yaw_rate_target - to be called by upper controllers to set yaw rate targets in the earth frame |
|
void set_yaw_rate_target( int32_t desired_rate, uint8_t earth_or_body_frame ) { |
|
rate_targets_frame = earth_or_body_frame; |
|
if( earth_or_body_frame == BODY_FRAME ) { |
|
yaw_rate_target_bf = desired_rate; |
|
}else{ |
|
yaw_rate_target_ef = desired_rate; |
|
} |
|
} |
|
|
|
// update_rate_contoller_targets - converts earth frame rates to body frame rates for rate controllers |
|
void |
|
update_rate_contoller_targets() |
|
{ |
|
if( rate_targets_frame == EARTH_FRAME ) { |
|
// convert earth frame rates to body frame rates |
|
roll_rate_target_bf = roll_rate_target_ef - sin_pitch * yaw_rate_target_ef; |
|
pitch_rate_target_bf = cos_roll_x * pitch_rate_target_ef + sin_roll * cos_pitch_x * yaw_rate_target_ef; |
|
yaw_rate_target_bf = cos_pitch_x * cos_roll_x * yaw_rate_target_ef - sin_roll * pitch_rate_target_ef; |
|
} |
|
} |
|
|
|
// run roll, pitch and yaw rate controllers and send output to motors |
|
// targets for these controllers comes from stabilize controllers |
|
void |
|
run_rate_controllers() |
|
{ |
|
#if FRAME_CONFIG == HELI_FRAME // helicopters only use rate controllers for yaw and only when not using an external gyro |
|
if(!motors.ext_gyro_enabled) { |
|
g.rc_4.servo_out = get_rate_yaw(yaw_rate_target_bf); |
|
} |
|
#else |
|
// call rate controllers |
|
g.rc_1.servo_out = get_rate_roll(roll_rate_target_bf); |
|
g.rc_2.servo_out = get_rate_pitch(pitch_rate_target_bf); |
|
g.rc_4.servo_out = get_rate_yaw(yaw_rate_target_bf); |
|
#endif |
|
} |
|
|
|
static int16_t |
|
get_rate_roll(int32_t target_rate) |
|
{ |
|
static int32_t last_rate = 0; // previous iterations rate |
|
int32_t p,i,d; // used to capture pid values for logging |
|
int32_t current_rate; // this iteration's rate |
|
int32_t rate_error; // simply target_rate - current_rate |
|
int32_t rate_d; // roll's acceleration |
|
int32_t output; // output from pid controller |
|
int32_t rate_d_dampener; // value to dampen output based on acceleration |
|
|
|
// get current rate |
|
current_rate = (omega.x * DEGX100); |
|
|
|
// calculate and filter the acceleration |
|
rate_d = roll_rate_d_filter.apply(current_rate - last_rate); |
|
|
|
// store rate for next iteration |
|
last_rate = current_rate; |
|
|
|
// call pid controller |
|
rate_error = target_rate - current_rate; |
|
p = g.pid_rate_roll.get_p(rate_error); |
|
|
|
// freeze I term if we've breached roll-pitch limits |
|
if( motors.reached_limit(AP_MOTOR_ROLLPITCH_LIMIT) ) { |
|
i = g.pid_rate_roll.get_integrator(); |
|
}else{ |
|
i = g.pid_rate_roll.get_i(rate_error, G_Dt); |
|
} |
|
|
|
d = g.pid_rate_roll.get_d(rate_error, G_Dt); |
|
output = p + i + d; |
|
|
|
// Dampening output with D term |
|
rate_d_dampener = rate_d * roll_scale_d; |
|
rate_d_dampener = constrain(rate_d_dampener, -400, 400); |
|
output -= rate_d_dampener; |
|
|
|
// constrain output |
|
output = constrain(output, -5000, 5000); |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash |
|
|
|
// log output if PID logging is on and we are tuning the rate P, I or D gains |
|
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_RATE_KP || g.radio_tuning == CH6_RATE_KI || g.radio_tuning == CH6_RATE_KD) ) { |
|
log_counter++; |
|
if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 |
|
log_counter = 0; |
|
Log_Write_PID(CH6_RATE_KP, rate_error, p, i, d-rate_d_dampener, output, tuning_value); |
|
} |
|
} |
|
#endif |
|
|
|
// output control |
|
return output; |
|
} |
|
|
|
static int16_t |
|
get_rate_pitch(int32_t target_rate) |
|
{ |
|
static int32_t last_rate = 0; // previous iterations rate |
|
int32_t p,i,d; // used to capture pid values for logging |
|
int32_t current_rate; // this iteration's rate |
|
int32_t rate_error; // simply target_rate - current_rate |
|
int32_t rate_d; // roll's acceleration |
|
int32_t output; // output from pid controller |
|
int32_t rate_d_dampener; // value to dampen output based on acceleration |
|
|
|
// get current rate |
|
current_rate = (omega.y * DEGX100); |
|
|
|
// calculate and filter the acceleration |
|
rate_d = pitch_rate_d_filter.apply(current_rate - last_rate); |
|
|
|
// store rate for next iteration |
|
last_rate = current_rate; |
|
|
|
// call pid controller |
|
rate_error = target_rate - current_rate; |
|
p = g.pid_rate_pitch.get_p(rate_error); |
|
// freeze I term if we've breached roll-pitch limits |
|
if( motors.reached_limit(AP_MOTOR_ROLLPITCH_LIMIT) ) { |
|
i = g.pid_rate_pitch.get_integrator(); |
|
}else{ |
|
i = g.pid_rate_pitch.get_i(rate_error, G_Dt); |
|
} |
|
d = g.pid_rate_pitch.get_d(rate_error, G_Dt); |
|
output = p + i + d; |
|
|
|
// Dampening output with D term |
|
rate_d_dampener = rate_d * pitch_scale_d; |
|
rate_d_dampener = constrain(rate_d_dampener, -400, 400); |
|
output -= rate_d_dampener; |
|
|
|
// constrain output |
|
output = constrain(output, -5000, 5000); |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash |
|
// log output if PID logging is on and we are tuning the rate P, I or D gains |
|
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_RATE_KP || g.radio_tuning == CH6_RATE_KI || g.radio_tuning == CH6_RATE_KD) ) { |
|
log_counter++; |
|
if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 |
|
log_counter = 0; |
|
Log_Write_PID(CH6_RATE_KP+100, rate_error, p, i, d-rate_d_dampener, output, tuning_value); |
|
} |
|
} |
|
#endif |
|
|
|
// output control |
|
return output; |
|
} |
|
|
|
static int16_t |
|
get_rate_yaw(int32_t target_rate) |
|
{ |
|
int32_t p,i,d; // used to capture pid values for logging |
|
int32_t rate_error; |
|
int32_t output; |
|
|
|
// rate control |
|
rate_error = target_rate - (omega.z * DEGX100); |
|
|
|
// separately calculate p, i, d values for logging |
|
p = g.pid_rate_yaw.get_p(rate_error); |
|
// freeze I term if we've breached yaw limits |
|
if( motors.reached_limit(AP_MOTOR_YAW_LIMIT) ) { |
|
i = g.pid_rate_yaw.get_integrator(); |
|
}else{ |
|
i = g.pid_rate_yaw.get_i(rate_error, G_Dt); |
|
} |
|
d = g.pid_rate_yaw.get_d(rate_error, G_Dt); |
|
|
|
output = p+i+d; |
|
output = constrain(output, -4500, 4500); |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash |
|
// log output if PID loggins is on and we are tuning the yaw |
|
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_YAW_KP || g.radio_tuning == CH6_YAW_RATE_KP) ) { |
|
log_counter++; |
|
if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 |
|
log_counter = 0; |
|
Log_Write_PID(CH6_YAW_RATE_KP, rate_error, p, i, d, output, tuning_value); |
|
} |
|
} |
|
#endif |
|
|
|
#if FRAME_CONFIG == HELI_FRAME || FRAME_CONFIG == TRI_FRAME |
|
// constrain output |
|
return output; |
|
#else |
|
// output control: |
|
int16_t yaw_limit = 2200 + abs(g.rc_4.control_in); |
|
|
|
// smoother Yaw control: |
|
return constrain(output, -yaw_limit, yaw_limit); |
|
#endif |
|
|
|
} |
|
|
|
static int16_t |
|
get_throttle_rate(int16_t z_target_speed) |
|
{ |
|
int32_t p,i,d; // used to capture pid values for logging |
|
int16_t z_rate_error, output; |
|
|
|
// calculate rate error |
|
#if INERTIAL_NAV == ENABLED |
|
z_rate_error = z_target_speed - accels_velocity.z; // calc the speed error |
|
#else |
|
z_rate_error = z_target_speed - climb_rate; // calc the speed error |
|
#endif |
|
|
|
int32_t tmp = (z_target_speed * z_target_speed * (int32_t)g.throttle_cruise) / 200000; |
|
|
|
if(z_target_speed < 0) tmp = -tmp; |
|
|
|
output = constrain(tmp, -32000, 32000); // constraint to remove chance of overflow when adding int32_t to int16_t |
|
|
|
// separately calculate p, i, d values for logging |
|
p = g.pid_throttle.get_p(z_rate_error); |
|
// freeze I term if we've breached throttle limits |
|
if( motors.reached_limit(AP_MOTOR_THROTTLE_LIMIT) ) { |
|
i = g.pid_throttle.get_integrator(); |
|
}else{ |
|
i = g.pid_throttle.get_i(z_rate_error, .02); |
|
} |
|
d = g.pid_throttle.get_d(z_rate_error, .02); |
|
|
|
// |
|
// limit the rate |
|
output += constrain(p+i+d, -80, 120); |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash |
|
// log output if PID loggins is on and we are tuning the yaw |
|
if( g.log_bitmask & MASK_LOG_PID && g.radio_tuning == CH6_THROTTLE_KP ) { |
|
log_counter++; |
|
if( log_counter >= 10 ) { // (update rate / desired output rate) = (50hz / 10hz) = 5hz |
|
log_counter = 0; |
|
Log_Write_PID(CH6_THROTTLE_KP, z_rate_error, p, i, d, output, tuning_value); |
|
} |
|
} |
|
#endif |
|
|
|
return output; |
|
} |
|
|
|
// Keeps old data out of our calculation / logs |
|
static void reset_nav_params(void) |
|
{ |
|
nav_throttle = 0; |
|
|
|
// always start Circle mode at same angle |
|
circle_angle = 0; |
|
|
|
// We must be heading to a new WP, so XTrack must be 0 |
|
crosstrack_error = 0; |
|
|
|
// Will be set by new command |
|
target_bearing = 0; |
|
|
|
// Will be set by new command |
|
wp_distance = 0; |
|
|
|
// Will be set by new command, used by loiter |
|
long_error = 0; |
|
lat_error = 0; |
|
|
|
// make sure we stick to Nav yaw on takeoff |
|
auto_yaw = nav_yaw; |
|
} |
|
|
|
/* |
|
* reset all I integrators |
|
*/ |
|
static void reset_I_all(void) |
|
{ |
|
reset_rate_I(); |
|
reset_stability_I(); |
|
reset_wind_I(); |
|
reset_throttle_I(); |
|
reset_optflow_I(); |
|
|
|
// This is the only place we reset Yaw |
|
g.pi_stabilize_yaw.reset_I(); |
|
} |
|
|
|
static void reset_rate_I() |
|
{ |
|
g.pid_rate_roll.reset_I(); |
|
g.pid_rate_pitch.reset_I(); |
|
g.pid_rate_yaw.reset_I(); |
|
} |
|
|
|
static void reset_optflow_I(void) |
|
{ |
|
g.pid_optflow_roll.reset_I(); |
|
g.pid_optflow_pitch.reset_I(); |
|
of_roll = 0; |
|
of_pitch = 0; |
|
} |
|
|
|
static void reset_wind_I(void) |
|
{ |
|
// Wind Compensation |
|
// this i is not currently being used, but we reset it anyway |
|
// because someone may modify it and not realize it, causing a bug |
|
g.pi_loiter_lat.reset_I(); |
|
g.pi_loiter_lon.reset_I(); |
|
|
|
g.pid_loiter_rate_lat.reset_I(); |
|
g.pid_loiter_rate_lon.reset_I(); |
|
|
|
g.pid_nav_lat.reset_I(); |
|
g.pid_nav_lon.reset_I(); |
|
} |
|
|
|
static void reset_throttle_I(void) |
|
{ |
|
// For Altitude Hold |
|
g.pi_alt_hold.reset_I(); |
|
g.pid_throttle.reset_I(); |
|
} |
|
|
|
static void reset_stability_I(void) |
|
{ |
|
// Used to balance a quad |
|
// This only needs to be reset during Auto-leveling in flight |
|
g.pi_stabilize_roll.reset_I(); |
|
g.pi_stabilize_pitch.reset_I(); |
|
} |
|
|
|
|
|
/************************************************************* |
|
* throttle control |
|
****************************************************************/ |
|
|
|
static int16_t get_angle_boost(int16_t value) |
|
{ |
|
float temp = cos_pitch_x * cos_roll_x; |
|
temp = constrain(temp, .75, 1.0); |
|
return ((float)(value + 80) / temp) - (value + 80); |
|
} |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
// heli_angle_boost - adds a boost depending on roll/pitch values |
|
// equivalent of quad's angle_boost function |
|
// throttle value should be 0 ~ 1000 |
|
static int16_t heli_get_angle_boost(int16_t throttle) |
|
{ |
|
float angle_boost_factor = cos_pitch_x * cos_roll_x; |
|
angle_boost_factor = 1.0 - constrain(angle_boost_factor, .5, 1.0); |
|
int16_t throttle_above_mid = max(throttle - motors.throttle_mid,0); |
|
return throttle + throttle_above_mid*angle_boost_factor; |
|
|
|
} |
|
#endif // HELI_FRAME |
|
|
|
#define NUM_G_SAMPLES 40 |
|
|
|
#if ACCEL_ALT_HOLD == 2 |
|
// z -14.4306 = going up |
|
// z -6.4306 = going down |
|
static int16_t get_z_damping() |
|
{ |
|
int16_t output; |
|
|
|
Z_integrator += get_world_Z_accel() - Z_offset; |
|
output = Z_integrator * 3; |
|
Z_integrator = Z_integrator * .8; |
|
output = constrain(output, -100, 100); |
|
return output; |
|
} |
|
|
|
float get_world_Z_accel() |
|
{ |
|
accels_rot = ahrs.get_dcm_matrix() * imu.get_accel(); |
|
//Serial.printf("z %1.4f\n", accels_rot.z); |
|
return accels_rot.z; |
|
} |
|
|
|
static void init_z_damper() |
|
{ |
|
Z_offset = 0; |
|
for (int16_t i = 0; i < NUM_G_SAMPLES; i++) { |
|
delay(5); |
|
read_AHRS(); |
|
Z_offset += get_world_Z_accel(); |
|
} |
|
Z_offset /= (float)NUM_G_SAMPLES; |
|
} |
|
|
|
|
|
|
|
|
|
// Accelerometer Z dampening by Aurelio R. Ramos |
|
// --------------------------------------------- |
|
#elif ACCEL_ALT_HOLD == 1 |
|
|
|
// contains G and any other DC offset |
|
static float estimatedAccelOffset = 0; |
|
|
|
// state |
|
static float synVelo = 0; |
|
static float synPos = 0; |
|
static float synPosFiltered = 0; |
|
static float posError = 0; |
|
static float prevSensedPos = 0; |
|
|
|
// tuning for dead reckoning |
|
static const float dt_50hz = 0.02; |
|
static float synPosP = 10 * dt_50hz; |
|
static float synPosI = 15 * dt_50hz; |
|
static float synVeloP = 1.5 * dt_50hz; |
|
static float maxVeloCorrection = 5 * dt_50hz; |
|
static float maxSensedVelo = 1; |
|
static float synPosFilter = 0.5; |
|
|
|
|
|
// Z damping term. |
|
static float fullDampP = 0.100; |
|
|
|
float get_world_Z_accel() |
|
{ |
|
accels_rot = ahrs.get_dcm_matrix() * imu.get_accel(); |
|
return accels_rot.z; |
|
} |
|
|
|
static void init_z_damper() |
|
{ |
|
estimatedAccelOffset = 0; |
|
for (int16_t i = 0; i < NUM_G_SAMPLES; i++) { |
|
delay(5); |
|
read_AHRS(); |
|
estimatedAccelOffset += get_world_Z_accel(); |
|
} |
|
estimatedAccelOffset /= (float)NUM_G_SAMPLES; |
|
} |
|
|
|
float dead_reckon_Z(float sensedPos, float sensedAccel) |
|
{ |
|
// the following algorithm synthesizes position and velocity from |
|
// a noisy altitude and accelerometer data. |
|
|
|
// synthesize uncorrected velocity by integrating acceleration |
|
synVelo += (sensedAccel - estimatedAccelOffset) * dt_50hz; |
|
|
|
// synthesize uncorrected position by integrating uncorrected velocity |
|
synPos += synVelo * dt_50hz; |
|
|
|
// filter synPos, the better this filter matches the filtering and dead time |
|
// of the sensed position, the less the position estimate will lag. |
|
synPosFiltered = synPosFiltered * (1 - synPosFilter) + synPos * synPosFilter; |
|
|
|
// calculate error against sensor position |
|
posError = sensedPos - synPosFiltered; |
|
|
|
// correct altitude |
|
synPos += synPosP * posError; |
|
|
|
// correct integrated velocity by posError |
|
synVelo = synVelo + constrain(posError, -maxVeloCorrection, maxVeloCorrection) * synPosI; |
|
|
|
// correct integrated velocity by the sensed position delta in a small proportion |
|
// (i.e., the low frequency of the delta) |
|
float sensedVelo = (sensedPos - prevSensedPos) / dt_50hz; |
|
synVelo += constrain(sensedVelo - synVelo, -maxSensedVelo, maxSensedVelo) * synVeloP; |
|
|
|
prevSensedPos = sensedPos; |
|
return synVelo; |
|
} |
|
|
|
static int16_t get_z_damping() |
|
{ |
|
float sensedAccel = get_world_Z_accel(); |
|
float sensedPos = current_loc.alt / 100.0; |
|
|
|
float synVelo = dead_reckon_Z(sensedPos, sensedAccel); |
|
return constrain(fullDampP * synVelo * (-1), -300, 300); |
|
} |
|
|
|
#else |
|
|
|
static int16_t get_z_damping() |
|
{ |
|
return 0; |
|
} |
|
|
|
static void init_z_damper() |
|
{ |
|
} |
|
#endif |
|
|
|
// calculate modified roll/pitch depending upon optical flow calculated position |
|
static int32_t |
|
get_of_roll(int32_t input_roll) |
|
{ |
|
#ifdef OPTFLOW_ENABLED |
|
static float tot_x_cm = 0; // total distance from target |
|
static uint32_t last_of_roll_update = 0; |
|
int32_t new_roll = 0; |
|
int32_t p,i,d; |
|
|
|
// check if new optflow data available |
|
if( optflow.last_update != last_of_roll_update) { |
|
last_of_roll_update = optflow.last_update; |
|
|
|
// add new distance moved |
|
tot_x_cm += optflow.x_cm; |
|
|
|
// only stop roll if caller isn't modifying roll |
|
if( input_roll == 0 && current_loc.alt < 1500) { |
|
p = g.pid_optflow_roll.get_p(-tot_x_cm); |
|
i = g.pid_optflow_roll.get_i(-tot_x_cm,1.0); // we could use the last update time to calculate the time change |
|
d = g.pid_optflow_roll.get_d(-tot_x_cm,1.0); |
|
new_roll = p+i+d; |
|
}else{ |
|
g.pid_optflow_roll.reset_I(); |
|
tot_x_cm = 0; |
|
p = 0; // for logging |
|
i = 0; |
|
d = 0; |
|
} |
|
// limit amount of change and maximum angle |
|
of_roll = constrain(new_roll, (of_roll-20), (of_roll+20)); |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash |
|
// log output if PID logging is on and we are tuning the rate P, I or D gains |
|
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_OPTFLOW_KP || g.radio_tuning == CH6_OPTFLOW_KI || g.radio_tuning == CH6_OPTFLOW_KD) ) { |
|
log_counter++; |
|
if( log_counter >= 5 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 |
|
log_counter = 0; |
|
Log_Write_PID(CH6_OPTFLOW_KP, tot_x_cm, p, i, d, of_roll, tuning_value); |
|
} |
|
} |
|
#endif // LOGGING_ENABLED == ENABLED |
|
} |
|
|
|
// limit max angle |
|
of_roll = constrain(of_roll, -1000, 1000); |
|
|
|
return input_roll+of_roll; |
|
#else |
|
return input_roll; |
|
#endif |
|
} |
|
|
|
static int32_t |
|
get_of_pitch(int32_t input_pitch) |
|
{ |
|
#ifdef OPTFLOW_ENABLED |
|
static float tot_y_cm = 0; // total distance from target |
|
static uint32_t last_of_pitch_update = 0; |
|
int32_t new_pitch = 0; |
|
int32_t p,i,d; |
|
|
|
// check if new optflow data available |
|
if( optflow.last_update != last_of_pitch_update ) { |
|
last_of_pitch_update = optflow.last_update; |
|
|
|
// add new distance moved |
|
tot_y_cm += optflow.y_cm; |
|
|
|
// only stop roll if caller isn't modifying pitch |
|
if( input_pitch == 0 && current_loc.alt < 1500 ) { |
|
p = g.pid_optflow_pitch.get_p(tot_y_cm); |
|
i = g.pid_optflow_pitch.get_i(tot_y_cm, 1.0); // we could use the last update time to calculate the time change |
|
d = g.pid_optflow_pitch.get_d(tot_y_cm, 1.0); |
|
new_pitch = p + i + d; |
|
}else{ |
|
tot_y_cm = 0; |
|
g.pid_optflow_pitch.reset_I(); |
|
p = 0; // for logging |
|
i = 0; |
|
d = 0; |
|
} |
|
|
|
// limit amount of change |
|
of_pitch = constrain(new_pitch, (of_pitch-20), (of_pitch+20)); |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash |
|
// log output if PID logging is on and we are tuning the rate P, I or D gains |
|
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_OPTFLOW_KP || g.radio_tuning == CH6_OPTFLOW_KI || g.radio_tuning == CH6_OPTFLOW_KD) ) { |
|
log_counter++; |
|
if( log_counter >= 5 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 |
|
log_counter = 0; |
|
Log_Write_PID(CH6_OPTFLOW_KP+100, tot_y_cm, p, i, d, of_pitch, tuning_value); |
|
} |
|
} |
|
#endif // LOGGING_ENABLED == ENABLED |
|
} |
|
|
|
// limit max angle |
|
of_pitch = constrain(of_pitch, -1000, 1000); |
|
|
|
return input_pitch+of_pitch; |
|
#else |
|
return input_pitch; |
|
#endif |
|
}
|
|
|