You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2199 lines
73 KiB
2199 lines
73 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
#define THISFIRMWARE "ArduCopter V2.8.1a" |
|
/* |
|
* ArduCopter Version 2.8 |
|
* Lead author: Jason Short |
|
* Based on code and ideas from the Arducopter team: Randy Mackay, Pat Hickey, Jose Julio, Jani Hirvinen, Andrew Tridgell, Justin Beech, Adam Rivera, Jean-Louis Naudin, Roberto Navoni |
|
* Thanks to: Chris Anderson, Mike Smith, Jordi Munoz, Doug Weibel, James Goppert, Benjamin Pelletier, Robert Lefebvre, Marco Robustini |
|
* |
|
* This firmware is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* Special Thanks for Contributors: |
|
* |
|
* Hein Hollander :Octo Support |
|
* Dani Saez :V Ocoto Support |
|
* Max Levine :Tri Support, Graphics |
|
* Jose Julio :Stabilization Control laws |
|
* Randy MacKay :Heli Support |
|
* Jani Hiriven :Testing feedback |
|
* Andrew Tridgell :Mavlink Support |
|
* James Goppert :Mavlink Support |
|
* Doug Weibel :Libraries |
|
* Mike Smith :Libraries, Coding support |
|
* HappyKillmore :Mavlink GCS |
|
* Michael Oborne :Mavlink GCS |
|
* Jack Dunkle :Alpha testing |
|
* Christof Schmid :Alpha testing |
|
* Oliver :Piezo support |
|
* Guntars :Arming safety suggestion |
|
* Igor van Airde :Control Law optimization |
|
* Jean-Louis Naudin :Auto Landing |
|
* Sandro Benigno :Camera support |
|
* Olivier Adler :PPM Encoder |
|
* John Arne Birkeland :PPM Encoder |
|
* Adam M Rivera :Auto Compass Declination |
|
* Marco Robustini :Alpha testing |
|
* Angel Fernandez :Alpha testing |
|
* Robert Lefebvre :Heli Support & LEDs |
|
* Amilcar Lucas :mount and camera configuration |
|
* Gregory Fletcher :mount orientation math |
|
* |
|
* And much more so PLEASE PM me on DIYDRONES to add your contribution to the List |
|
* |
|
* Requires modified "mrelax" version of Arduino, which can be found here: |
|
* http://code.google.com/p/ardupilot-mega/downloads/list |
|
* |
|
*/ |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Header includes |
|
//////////////////////////////////////////////////////////////////////////////// |
|
|
|
// AVR runtime |
|
#include <avr/io.h> |
|
#include <avr/eeprom.h> |
|
#include <avr/pgmspace.h> |
|
#include <math.h> |
|
|
|
// Libraries |
|
#include <FastSerial.h> |
|
#include <AP_Common.h> |
|
#include <AP_Menu.h> |
|
#include <Arduino_Mega_ISR_Registry.h> |
|
#include <APM_RC.h> // ArduPilot Mega RC Library |
|
#include <AP_GPS.h> // ArduPilot GPS library |
|
#include <I2C.h> // Arduino I2C lib |
|
#include <SPI.h> // Arduino SPI lib |
|
#include <SPI3.h> // SPI3 library |
|
#include <AP_Semaphore.h> // for removing conflict between optical flow and dataflash on SPI3 bus |
|
#include <DataFlash.h> // ArduPilot Mega Flash Memory Library |
|
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library |
|
#include <AP_AnalogSource.h> |
|
#include <AP_Baro.h> |
|
#include <AP_Compass.h> // ArduPilot Mega Magnetometer Library |
|
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library |
|
#include <AP_Curve.h> // Curve used to linearlise throttle pwm to thrust |
|
#include <AP_InertialSensor.h> // ArduPilot Mega Inertial Sensor (accel & gyro) Library |
|
#include <AP_PeriodicProcess.h> // Parent header of Timer |
|
// (only included for makefile libpath to work) |
|
#include <AP_TimerProcess.h> // TimerProcess is the scheduler for MPU6000 reads. |
|
#include <AP_AHRS.h> |
|
#include <APM_PI.h> // PI library |
|
#include <AC_PID.h> // PID library |
|
#include <RC_Channel.h> // RC Channel Library |
|
#include <AP_Motors.h> // AP Motors library |
|
#include <AP_MotorsQuad.h> // AP Motors library for Quad |
|
#include <AP_MotorsTri.h> // AP Motors library for Tri |
|
#include <AP_MotorsHexa.h> // AP Motors library for Hexa |
|
#include <AP_MotorsY6.h> // AP Motors library for Y6 |
|
#include <AP_MotorsOcta.h> // AP Motors library for Octa |
|
#include <AP_MotorsOctaQuad.h> // AP Motors library for OctaQuad |
|
#include <AP_MotorsHeli.h> // AP Motors library for Heli |
|
#include <AP_MotorsMatrix.h> // AP Motors library for Heli |
|
#include <AP_RangeFinder.h> // Range finder library |
|
#include <AP_OpticalFlow.h> // Optical Flow library |
|
#include <Filter.h> // Filter library |
|
#include <AP_Buffer.h> // APM FIFO Buffer |
|
#include <ModeFilter.h> // Mode Filter from Filter library |
|
#include <AverageFilter.h> // Mode Filter from Filter library |
|
#include <AP_LeadFilter.h> // GPS Lead filter |
|
#include <AP_Relay.h> // APM relay |
|
#include <AP_Camera.h> // Photo or video camera |
|
#include <AP_Mount.h> // Camera/Antenna mount |
|
#include <AP_Airspeed.h> // needed for AHRS build |
|
#include <AP_InertialNav.h> // ArduPilot Mega inertial navigation library |
|
#include <ThirdOrderCompFilter.h> // Complementary filter for combining barometer altitude with accelerometers |
|
#include <memcheck.h> |
|
|
|
// Configuration |
|
#include "defines.h" |
|
#include "config.h" |
|
#include "config_channels.h" |
|
|
|
#include <GCS_MAVLink.h> // MAVLink GCS definitions |
|
|
|
// Local modules |
|
#include "Parameters.h" |
|
#include "GCS.h" |
|
|
|
#include <AP_Declination.h> // ArduPilot Mega Declination Helper Library |
|
|
|
// Limits library - Puts limits on the vehicle, and takes recovery actions |
|
#include <AP_Limits.h> |
|
#include <AP_Limit_GPSLock.h> // a limits library module |
|
#include <AP_Limit_Geofence.h> // a limits library module |
|
#include <AP_Limit_Altitude.h> // a limits library module |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Serial ports |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// Note that FastSerial port buffers are allocated at ::begin time, |
|
// so there is not much of a penalty to defining ports that we don't |
|
// use. |
|
// |
|
FastSerialPort0(Serial); // FTDI/console |
|
FastSerialPort1(Serial1); // GPS port |
|
FastSerialPort3(Serial3); // Telemetry port |
|
|
|
// this sets up the parameter table, and sets the default values. This |
|
// must be the first AP_Param variable declared to ensure its |
|
// constructor runs before the constructors of the other AP_Param |
|
// variables |
|
AP_Param param_loader(var_info, WP_START_BYTE); |
|
|
|
Arduino_Mega_ISR_Registry isr_registry; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Parameters |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// Global parameters are all contained within the 'g' class. |
|
// |
|
static Parameters g; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// prototypes |
|
static void update_events(void); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// RC Hardware |
|
//////////////////////////////////////////////////////////////////////////////// |
|
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 |
|
APM_RC_APM2 APM_RC; |
|
#else |
|
APM_RC_APM1 APM_RC; |
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Dataflash |
|
//////////////////////////////////////////////////////////////////////////////// |
|
AP_Semaphore spi_semaphore; |
|
AP_Semaphore spi3_semaphore; |
|
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 |
|
DataFlash_APM2 DataFlash(&spi3_semaphore); |
|
#else |
|
DataFlash_APM1 DataFlash(&spi_semaphore); |
|
#endif |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Sensors |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// There are three basic options related to flight sensor selection. |
|
// |
|
// - Normal flight mode. Real sensors are used. |
|
// - HIL Attitude mode. Most sensors are disabled, as the HIL |
|
// protocol supplies attitude information directly. |
|
// - HIL Sensors mode. Synthetic sensors are configured that |
|
// supply data from the simulation. |
|
// |
|
|
|
// All GPS access should be through this pointer. |
|
static GPS *g_gps; |
|
|
|
// flight modes convenience array |
|
static AP_Int8 *flight_modes = &g.flight_mode1; |
|
|
|
#if HIL_MODE == HIL_MODE_DISABLED |
|
|
|
// real sensors |
|
#if CONFIG_ADC == ENABLED |
|
AP_ADC_ADS7844 adc; |
|
#endif |
|
|
|
#ifdef DESKTOP_BUILD |
|
AP_Baro_BMP085_HIL barometer; |
|
AP_Compass_HIL compass; |
|
#include <SITL.h> |
|
SITL sitl; |
|
#else |
|
|
|
#if CONFIG_BARO == AP_BARO_BMP085 |
|
# if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 |
|
AP_Baro_BMP085 barometer(true); |
|
# else |
|
AP_Baro_BMP085 barometer(false); |
|
# endif |
|
#elif CONFIG_BARO == AP_BARO_MS5611 |
|
AP_Baro_MS5611 barometer; |
|
#endif |
|
|
|
AP_Compass_HMC5843 compass; |
|
#endif |
|
|
|
#ifdef OPTFLOW_ENABLED |
|
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 |
|
AP_OpticalFlow_ADNS3080 optflow(OPTFLOW_CS_PIN); |
|
#else |
|
AP_OpticalFlow_ADNS3080 optflow(OPTFLOW_CS_PIN); |
|
#endif |
|
#else |
|
AP_OpticalFlow optflow; |
|
#endif |
|
|
|
// real GPS selection |
|
#if GPS_PROTOCOL == GPS_PROTOCOL_AUTO |
|
AP_GPS_Auto g_gps_driver(&Serial1, &g_gps); |
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA |
|
AP_GPS_NMEA g_gps_driver(&Serial1); |
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF |
|
AP_GPS_SIRF g_gps_driver(&Serial1); |
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX |
|
AP_GPS_UBLOX g_gps_driver(&Serial1); |
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK |
|
AP_GPS_MTK g_gps_driver(&Serial1); |
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK16 |
|
AP_GPS_MTK16 g_gps_driver(&Serial1); |
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_NONE |
|
AP_GPS_None g_gps_driver(NULL); |
|
|
|
#else |
|
#error Unrecognised GPS_PROTOCOL setting. |
|
#endif // GPS PROTOCOL |
|
|
|
#if CONFIG_IMU_TYPE == CONFIG_IMU_MPU6000 |
|
AP_InertialSensor_MPU6000 ins; |
|
#else |
|
AP_InertialSensor_Oilpan ins(&adc); |
|
#endif |
|
|
|
// we don't want to use gps for yaw correction on ArduCopter, so pass |
|
// a NULL GPS object pointer |
|
static GPS *g_gps_null; |
|
|
|
#if DMP_ENABLED == ENABLED && CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 |
|
AP_AHRS_MPU6000 ahrs(&ins, g_gps); // only works with APM2 |
|
#else |
|
AP_AHRS_DCM ahrs(&ins, g_gps); |
|
#endif |
|
|
|
// ahrs2 object is the secondary ahrs to allow running DMP in parallel with DCM |
|
#if SECONDARY_DMP_ENABLED == ENABLED && CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 |
|
AP_AHRS_MPU6000 ahrs2(&ins, g_gps); // only works with APM2 |
|
#endif |
|
|
|
#elif HIL_MODE == HIL_MODE_SENSORS |
|
// sensor emulators |
|
AP_ADC_HIL adc; |
|
AP_Baro_BMP085_HIL barometer; |
|
AP_Compass_HIL compass; |
|
AP_GPS_HIL g_gps_driver(NULL); |
|
AP_InertialSensor_Stub ins; |
|
AP_AHRS_DCM ahrs(&ins, g_gps); |
|
|
|
|
|
static int32_t gps_base_alt; |
|
|
|
#elif HIL_MODE == HIL_MODE_ATTITUDE |
|
AP_ADC_HIL adc; |
|
AP_InertialSensor_Stub ins; |
|
AP_AHRS_HIL ahrs(&ins, g_gps); |
|
AP_GPS_HIL g_gps_driver(NULL); |
|
AP_Compass_HIL compass; // never used |
|
AP_Baro_BMP085_HIL barometer; |
|
|
|
#ifdef OPTFLOW_ENABLED |
|
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 |
|
AP_OpticalFlow_ADNS3080 optflow(OPTFLOW_CS_PIN); |
|
#else |
|
AP_OpticalFlow_ADNS3080 optflow(OPTFLOW_CS_PIN); |
|
#endif |
|
#endif |
|
#ifdef DESKTOP_BUILD |
|
#include <SITL.h> |
|
SITL sitl; |
|
#endif |
|
static int32_t gps_base_alt; |
|
#else |
|
#error Unrecognised HIL_MODE setting. |
|
#endif // HIL MODE |
|
|
|
// we always have a timer scheduler |
|
AP_TimerProcess timer_scheduler; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// GCS selection |
|
//////////////////////////////////////////////////////////////////////////////// |
|
GCS_MAVLINK gcs0; |
|
GCS_MAVLINK gcs3; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// SONAR selection |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// |
|
ModeFilterInt16_Size5 sonar_mode_filter(2); |
|
#if CONFIG_SONAR == ENABLED |
|
#if CONFIG_SONAR_SOURCE == SONAR_SOURCE_ADC |
|
AP_AnalogSource_ADC sonar_analog_source( &adc, CONFIG_SONAR_SOURCE_ADC_CHANNEL, 0.25); |
|
#elif CONFIG_SONAR_SOURCE == SONAR_SOURCE_ANALOG_PIN |
|
AP_AnalogSource_Arduino sonar_analog_source(CONFIG_SONAR_SOURCE_ANALOG_PIN); |
|
#endif |
|
AP_RangeFinder_MaxsonarXL sonar(&sonar_analog_source, &sonar_mode_filter); |
|
#endif |
|
|
|
// agmatthews USERHOOKS |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// User variables |
|
//////////////////////////////////////////////////////////////////////////////// |
|
#ifdef USERHOOK_VARIABLES |
|
#include USERHOOK_VARIABLES |
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Global variables |
|
//////////////////////////////////////////////////////////////////////////////// |
|
|
|
/* Radio values |
|
* Channel assignments |
|
* 1 Ailerons (rudder if no ailerons) |
|
* 2 Elevator |
|
* 3 Throttle |
|
* 4 Rudder (if we have ailerons) |
|
* 5 Mode - 3 position switch |
|
* 6 User assignable |
|
* 7 trainer switch - sets throttle nominal (toggle switch), sets accels to Level (hold > 1 second) |
|
* 8 TBD |
|
* Each Aux channel can be configured to have any of the available auxiliary functions assigned to it. |
|
* See libraries/RC_Channel/RC_Channel_aux.h for more information |
|
*/ |
|
|
|
//Documentation of GLobals: |
|
static union { |
|
struct { |
|
uint8_t home_is_set : 1; // 1 |
|
uint8_t simple_mode : 1; // 2 // This is the state of simple mode |
|
uint8_t manual_attitude : 1; // 3 |
|
uint8_t manual_throttle : 1; // 4 |
|
|
|
uint8_t low_battery : 1; // 5 // Used to track if the battery is low - LED output flashes when the batt is low |
|
uint8_t loiter_override : 1; // 6 // Are we navigating while holding a positon? This is set to false once the speed drops below 1m/s |
|
uint8_t armed : 1; // 7 |
|
uint8_t auto_armed : 1; // 8 |
|
|
|
uint8_t failsafe : 1; // 9 // A status flag for the failsafe state |
|
uint8_t do_flip : 1; // 10 // Used to enable flip code |
|
uint8_t takeoff_complete : 1; // 11 |
|
uint8_t rtl_reached_alt : 1; // 12 |
|
uint8_t land_complete : 1; // 13 |
|
uint8_t compass_status : 1; // 14 |
|
uint8_t gps_status : 1; // 15 |
|
uint8_t fast_corner : 1; // 16 // should we take the waypoint quickly or slow down? |
|
}; |
|
uint16_t value; |
|
} ap; |
|
|
|
|
|
static struct AP_System{ |
|
uint8_t GPS_light : 1; // 1 // Solid indicates we have full 3D lock and can navigate, flash = read |
|
uint8_t motor_light : 1; // 2 // Solid indicates Armed state |
|
uint8_t new_radio_frame : 1; // 3 // Set true if we have new PWM data to act on from the Radio |
|
uint8_t nav_ok : 1; // 4 // deprecated |
|
uint8_t CH7_flag : 1; // 5 // manages state of the ch7 toggle switch |
|
uint8_t usb_connected : 1; // 6 // true if APM is powered from USB connection |
|
uint8_t run_50hz_loop : 1; // 7 // toggles the 100hz loop for 50hz |
|
uint8_t alt_sensor_flag : 1; // 8 // used to track when to read sensors vs estimate alt |
|
uint8_t yaw_stopped : 1; // 9 // Used to manage the Yaw hold capabilities |
|
|
|
} ap_system; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// velocity in lon and lat directions calculated from GPS position and accelerometer data |
|
// updated after GPS read - 5-10hz |
|
static int16_t lon_speed; // expressed in cm/s. positive numbers mean moving east |
|
static int16_t lat_speed; // expressed in cm/s. positive numbers when moving north |
|
|
|
static int16_t desired_climb_rate; |
|
|
|
// The difference between the desired rate of travel and the actual rate of travel |
|
// updated after GPS read - 5-10hz |
|
static int16_t x_rate_error; |
|
static int16_t y_rate_error; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Radio |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// This is the state of the flight control system |
|
// There are multiple states defined such as STABILIZE, ACRO, |
|
static int8_t control_mode = STABILIZE; |
|
// Used to maintain the state of the previous control switch position |
|
// This is set to -1 when we need to re-read the switch |
|
static byte oldSwitchPosition; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Motor Output |
|
//////////////////////////////////////////////////////////////////////////////// |
|
#if FRAME_CONFIG == QUAD_FRAME |
|
#define MOTOR_CLASS AP_MotorsQuad |
|
#endif |
|
#if FRAME_CONFIG == TRI_FRAME |
|
#define MOTOR_CLASS AP_MotorsTri |
|
#endif |
|
#if FRAME_CONFIG == HEXA_FRAME |
|
#define MOTOR_CLASS AP_MotorsHexa |
|
#endif |
|
#if FRAME_CONFIG == Y6_FRAME |
|
#define MOTOR_CLASS AP_MotorsY6 |
|
#endif |
|
#if FRAME_CONFIG == OCTA_FRAME |
|
#define MOTOR_CLASS AP_MotorsOcta |
|
#endif |
|
#if FRAME_CONFIG == OCTA_QUAD_FRAME |
|
#define MOTOR_CLASS AP_MotorsOctaQuad |
|
#endif |
|
#if FRAME_CONFIG == HELI_FRAME |
|
#define MOTOR_CLASS AP_MotorsHeli |
|
#endif |
|
|
|
#if FRAME_CONFIG == HELI_FRAME // helicopter constructor requires more arguments |
|
MOTOR_CLASS motors(CONFIG_APM_HARDWARE, &APM_RC, &g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, &g.rc_8, &g.heli_servo_1, &g.heli_servo_2, &g.heli_servo_3, &g.heli_servo_4); |
|
#elif FRAME_CONFIG == TRI_FRAME // tri constructor requires additional rc_7 argument to allow tail servo reversing |
|
MOTOR_CLASS motors(CONFIG_APM_HARDWARE, &APM_RC, &g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, &g.rc_7); |
|
#else |
|
MOTOR_CLASS motors(CONFIG_APM_HARDWARE, &APM_RC, &g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4); |
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Mavlink/HIL control |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Used to track the GCS based control input |
|
// Allow override of RC channel values for HIL |
|
static int16_t rc_override[8] = {0,0,0,0,0,0,0,0}; |
|
// Status flag that tracks whether we are under GCS control |
|
static bool rc_override_active = false; |
|
// Status flag that tracks whether we are under GCS control |
|
static uint32_t rc_override_fs_timer; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// PIDs |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// This is a convienience accessor for the IMU roll rates. It's currently the raw IMU rates |
|
// and not the adjusted omega rates, but the name is stuck |
|
static Vector3f omega; |
|
// This is used to hold radio tuning values for in-flight CH6 tuning |
|
float tuning_value; |
|
// This will keep track of the percent of roll or pitch the user is applying |
|
//float roll_scale_d, pitch_scale_d; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// LED output |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// This is current status for the LED lights state machine |
|
// setting this value changes the output of the LEDs |
|
static byte led_mode = NORMAL_LEDS; |
|
// Blinking indicates GPS status |
|
static byte copter_leds_GPS_blink; |
|
// Blinking indicates battery status |
|
static byte copter_leds_motor_blink; |
|
// Navigation confirmation blinks |
|
static int8_t copter_leds_nav_blink; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// GPS variables |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// This is used to scale GPS values for EEPROM storage |
|
// 10^7 times Decimal GPS means 1 == 1cm |
|
// This approximation makes calculations integer and it's easy to read |
|
static const float t7 = 10000000.0; |
|
// We use atan2 and other trig techniques to calaculate angles |
|
// We need to scale the longitude up to make these calcs work |
|
// to account for decreasing distance between lines of longitude away from the equator |
|
static float scaleLongUp = 1; |
|
// Sometimes we need to remove the scaling for distance calcs |
|
static float scaleLongDown = 1; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Mavlink specific |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Used by Mavlink for unknow reasons |
|
static const float radius_of_earth = 6378100; // meters |
|
// Used by Mavlink for unknow reasons |
|
static const float gravity = 9.80665; // meters/ sec^2 |
|
|
|
// Unions for getting byte values |
|
union float_int { |
|
int32_t int_value; |
|
float float_value; |
|
} float_int; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Location & Navigation |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// This is the angle from the copter to the "next_WP" location in degrees * 100 |
|
static int32_t target_bearing; |
|
// Status of the Waypoint tracking mode. Options include: |
|
// NO_NAV_MODE, WP_MODE, LOITER_MODE, CIRCLE_MODE |
|
static byte wp_control; |
|
// Register containing the index of the current navigation command in the mission script |
|
static int16_t command_nav_index; |
|
// Register containing the index of the previous navigation command in the mission script |
|
// Used to manage the execution of conditional commands |
|
static uint8_t prev_nav_index; |
|
// Register containing the index of the current conditional command in the mission script |
|
static uint8_t command_cond_index; |
|
// Used to track the required WP navigation information |
|
// options include |
|
// NAV_ALTITUDE - have we reached the desired altitude? |
|
// NAV_LOCATION - have we reached the desired location? |
|
// NAV_DELAY - have we waited at the waypoint the desired time? |
|
static uint8_t wp_verify_byte; // used for tracking state of navigating waypoints |
|
// used to limit the speed ramp up of WP navigation |
|
// Acceleration is limited to 1m/s/s |
|
static int16_t max_speed_old; |
|
// Used to track how many cm we are from the "next_WP" location |
|
static int32_t long_error, lat_error; |
|
static int16_t control_roll; |
|
static int16_t control_pitch; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Orientation |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Convienience accessors for commonly used trig functions. These values are generated |
|
// by the DCM through a few simple equations. They are used throughout the code where cos and sin |
|
// would normally be used. |
|
// The cos values are defaulted to 1 to get a decent initial value for a level state |
|
static float cos_roll_x = 1; |
|
static float cos_pitch_x = 1; |
|
static float cos_yaw_x = 1; |
|
static float sin_yaw_y; |
|
static float sin_roll; |
|
static float sin_pitch; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// SIMPLE Mode |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Used to track the orientation of the copter for Simple mode. This value is reset at each arming |
|
// or in SuperSimple mode when the copter leaves a 20m radius from home. |
|
static int32_t initial_simple_bearing; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Rate contoller targets |
|
//////////////////////////////////////////////////////////////////////////////// |
|
static uint8_t rate_targets_frame = EARTH_FRAME; // indicates whether rate targets provided in earth or body frame |
|
static int32_t roll_rate_target_ef = 0; |
|
static int32_t pitch_rate_target_ef = 0; |
|
static int32_t yaw_rate_target_ef = 0; |
|
static int32_t roll_rate_target_bf = 0; // body frame roll rate target |
|
static int32_t pitch_rate_target_bf = 0; // body frame pitch rate target |
|
static int32_t yaw_rate_target_bf = 0; // body frame yaw rate target |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// ACRO Mode |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Used to control Axis lock |
|
int32_t roll_axis; |
|
int32_t pitch_axis; |
|
|
|
// Filters |
|
AP_LeadFilter xLeadFilter; // Long GPS lag filter |
|
AP_LeadFilter yLeadFilter; // Lat GPS lag filter |
|
|
|
// Barometer filter |
|
AverageFilterInt32_Size5 baro_filter; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Circle Mode / Loiter control |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// used to determin the desired location in Circle mode |
|
// increments at circle_rate / second |
|
static float circle_angle; |
|
// used to control the speed of Circle mode |
|
// units are in radians, default is 5° per second |
|
static const float circle_rate = 0.0872664625; |
|
// used to track the delat in Circle Mode |
|
static int32_t old_target_bearing; |
|
// deg : how many times to circle * 360 for Loiter/Circle Mission command |
|
static int16_t loiter_total; |
|
// deg : how far we have turned around a waypoint |
|
static int16_t loiter_sum; |
|
// How long we should stay in Loiter Mode for mission scripting |
|
static uint16_t loiter_time_max; |
|
// How long have we been loitering - The start time in millis |
|
static uint32_t loiter_time; |
|
// The synthetic location created to make the copter do circles around a WP |
|
static struct Location circle_WP; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// CH7 control |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// This register tracks the current Mission Command index when writing |
|
// a mission using CH7 in flight |
|
static int8_t CH7_wp_index; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Battery Sensors |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Battery Voltage of battery, initialized above threshold for filter |
|
static float battery_voltage1 = LOW_VOLTAGE * 1.05; |
|
// refers to the instant amp draw – based on an Attopilot Current sensor |
|
static float current_amps1; |
|
// refers to the total amps drawn – based on an Attopilot Current sensor |
|
static float current_total1; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Altitude |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// The cm we are off in altitude from next_WP.alt – Positive value means we are below the WP |
|
static int32_t altitude_error; |
|
// The cm/s we are moving up or down based on sensor data - Positive = UP |
|
static int16_t climb_rate_actual; |
|
// Used to dither our climb_rate over 50hz |
|
static int16_t climb_rate_error; |
|
// The cm/s we are moving up or down based on filtered data - Positive = UP |
|
static int16_t climb_rate; |
|
// The altitude as reported by Sonar in cm – Values are 20 to 700 generally. |
|
static int16_t sonar_alt; |
|
// The climb_rate as reported by sonar in cm/s |
|
static int16_t sonar_rate; |
|
// The altitude as reported by Baro in cm – Values can be quite high |
|
static int32_t baro_alt; |
|
// The climb_rate as reported by Baro in cm/s |
|
static int16_t baro_rate; |
|
// used to switch out of Manual Boost |
|
static uint8_t reset_throttle_counter; |
|
|
|
static int16_t saved_toy_throttle; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// flight modes |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Flight modes are combinations of Roll/Pitch, Yaw and Throttle control modes |
|
// Each Flight mode is a unique combination of these modes |
|
// |
|
// The current desired control scheme for Yaw |
|
static byte yaw_mode; |
|
// The current desired control scheme for roll and pitch / navigation |
|
static byte roll_pitch_mode; |
|
// The current desired control scheme for altitude hold |
|
static byte throttle_mode; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// flight specific |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// An additional throttle added to keep the copter at the same altitude when banking |
|
static int16_t angle_boost; |
|
// Push copter down for clean landing |
|
static int16_t landing_boost; |
|
// for controlling the landing throttle curve |
|
//verifies landings |
|
static int16_t ground_detector; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Navigation general |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// The location of the copter in relation to home, updated every GPS read |
|
static int32_t home_to_copter_bearing; |
|
// distance between plane and home in cm |
|
static int32_t home_distance; |
|
// distance between plane and next_WP in cm |
|
// is not static because AP_Camera uses it |
|
int32_t wp_distance; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// 3D Location vectors |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// home location is stored when we have a good GPS lock and arm the copter |
|
// Can be reset each the copter is re-armed |
|
static struct Location home; |
|
// Current location of the copter |
|
static struct Location current_loc; |
|
// Next WP is the desired location of the copter - the next waypoint or loiter location |
|
static struct Location next_WP; |
|
// Prev WP is used to get the optimum path from one WP to the next |
|
static struct Location prev_WP; |
|
// Holds the current loaded command from the EEPROM for navigation |
|
static struct Location command_nav_queue; |
|
// Holds the current loaded command from the EEPROM for conditional scripts |
|
static struct Location command_cond_queue; |
|
// Holds the current loaded command from the EEPROM for guided mode |
|
static struct Location guided_WP; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Crosstrack |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// deg * 100, The original angle to the next_WP when the next_WP was set |
|
// Also used to check when we pass a WP |
|
static int32_t original_target_bearing; |
|
// The amount of angle correction applied to target_bearing to bring the copter back on its optimum path |
|
static int16_t crosstrack_error; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Navigation Roll/Pitch functions |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// all angles are deg * 100 : target yaw angle |
|
// The Commanded ROll from the autopilot. |
|
static int32_t nav_roll; |
|
// The Commanded pitch from the autopilot. negative Pitch means go forward. |
|
static int32_t nav_pitch; |
|
// The desired bank towards North (Positive) or South (Negative) |
|
static int32_t auto_roll; |
|
static int32_t auto_pitch; |
|
|
|
// Don't be fooled by the fact that Pitch is reversed from Roll in its sign! |
|
static int16_t nav_lat; |
|
// The desired bank towards East (Positive) or West (Negative) |
|
static int16_t nav_lon; |
|
// The Commanded ROll from the autopilot based on optical flow sensor. |
|
static int32_t of_roll; |
|
// The Commanded pitch from the autopilot based on optical flow sensor. negative Pitch means go forward. |
|
static int32_t of_pitch; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Navigation Throttle control |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// The Commanded Throttle from the autopilot. |
|
static int16_t nav_throttle; // 0-1000 for throttle control |
|
// This is a simple counter to track the amount of throttle used during flight |
|
// This could be useful later in determining and debuging current usage and predicting battery life |
|
static uint32_t throttle_integrator; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Climb rate control |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Time when we intiated command in millis - used for controlling decent rate |
|
// Used to track the altitude offset for climbrate control |
|
static int8_t alt_change_flag; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Navigation Yaw control |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// The Commanded Yaw from the autopilot. |
|
static int32_t nav_yaw; |
|
// A speed governer for Yaw control - limits the rate the quad can be turned by the autopilot |
|
static int32_t auto_yaw; |
|
static uint8_t yaw_timer; |
|
// Options include: no tracking, point at next wp, or at a target |
|
static byte yaw_tracking = MAV_ROI_WPNEXT; |
|
// In AP Mission scripting we have a fine level of control for Yaw |
|
// This is our initial angle for relative Yaw movements |
|
static int32_t command_yaw_start; |
|
// Timer values used to control the speed of Yaw movements |
|
static uint32_t command_yaw_start_time; |
|
static uint16_t command_yaw_time; // how long we are turning |
|
static int32_t command_yaw_end; // what angle are we trying to be |
|
// how many degrees will we turn |
|
static int32_t command_yaw_delta; |
|
// Deg/s we should turn |
|
static int16_t command_yaw_speed; |
|
// Direction we will turn – 1 = CW, 0 or -1 = CCW |
|
static byte command_yaw_dir; |
|
// Direction we will turn – 1 = relative, 0 = Absolute |
|
static byte command_yaw_relative; |
|
// Yaw will point at this location if yaw_tracking is set to MAV_ROI_LOCATION |
|
static struct Location target_WP; |
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Repeat Mission Scripting Command |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// The type of repeating event - Toggle a servo channel, Toggle the APM1 relay, etc |
|
static byte event_id; |
|
// Used to manage the timimng of repeating events |
|
static uint32_t event_timer; |
|
// How long to delay the next firing of event in millis |
|
static uint16_t event_delay; |
|
// how many times to fire : 0 = forever, 1 = do once, 2 = do twice |
|
static int16_t event_repeat; |
|
// per command value, such as PWM for servos |
|
static int16_t event_value; |
|
// the stored value used to undo commands - such as original PWM command |
|
static int16_t event_undo_value; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Delay Mission Scripting Command |
|
//////////////////////////////////////////////////////////////////////////////// |
|
static int32_t condition_value; // used in condition commands (eg delay, change alt, etc.) |
|
static uint32_t condition_start; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// IMU variables |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Integration time for the gyros (DCM algorithm) |
|
// Updated with the fast loop |
|
static float G_Dt = 0.02; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Inertial Navigation |
|
//////////////////////////////////////////////////////////////////////////////// |
|
#if INERTIAL_NAV == ENABLED |
|
AP_InertialNav inertial_nav(&ahrs, &ins, &barometer, &g_gps); |
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Performance monitoring |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Used to manage the rate of performance logging messages |
|
static int16_t perf_mon_counter; |
|
// The number of GPS fixes we have had |
|
static int16_t gps_fix_count; |
|
|
|
// System Timers |
|
// -------------- |
|
// Time in microseconds of main control loop |
|
static uint32_t fast_loopTimer; |
|
// Time in microseconds of 50hz control loop |
|
static uint32_t fiftyhz_loopTimer = 0; |
|
// Counters for branching from 10 hz control loop |
|
static byte medium_loopCounter; |
|
// Counters for branching from 3 1/3hz control loop |
|
static byte slow_loopCounter; |
|
// Counters for branching at 1 hz |
|
static byte counter_one_herz; |
|
// Counter of main loop executions. Used for performance monitoring and failsafe processing |
|
static uint16_t mainLoop_count; |
|
// Delta Time in milliseconds for navigation computations, updated with every good GPS read |
|
static float dTnav; |
|
// Counters for branching from 4 minute control loop used to save Compass offsets |
|
static int16_t superslow_loopCounter; |
|
// Loiter timer - Records how long we have been in loiter |
|
static uint32_t loiter_timer; |
|
// disarms the copter while in Acro or Stabilize mode after 30 seconds of no flight |
|
static uint8_t auto_disarming_counter; |
|
// prevents duplicate GPS messages from entering system |
|
static uint32_t last_gps_time; |
|
|
|
// Used to auto exit the roll_pitch_trim saving function |
|
static uint8_t save_trim_counter; |
|
|
|
// Reference to the AP relay object - APM1 only |
|
AP_Relay relay; |
|
|
|
#if CLI_ENABLED == ENABLED |
|
static int8_t setup_show (uint8_t argc, const Menu::arg *argv); |
|
#endif |
|
|
|
// Camera/Antenna mount tracking and stabilisation stuff |
|
// -------------------------------------- |
|
#if MOUNT == ENABLED |
|
// current_loc uses the baro/gps soloution for altitude rather than gps only. |
|
// mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether? |
|
AP_Mount camera_mount(¤t_loc, g_gps, &ahrs, 0); |
|
#endif |
|
|
|
#if MOUNT2 == ENABLED |
|
// current_loc uses the baro/gps soloution for altitude rather than gps only. |
|
// mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether? |
|
AP_Mount camera_mount2(¤t_loc, g_gps, &ahrs, 1); |
|
#endif |
|
|
|
#if CAMERA == ENABLED |
|
//pinMode(camtrig, OUTPUT); // these are free pins PE3(5), PH3(15), PH6(18), PB4(23), PB5(24), PL1(36), PL3(38), PA6(72), PA7(71), PK0(89), PK1(88), PK2(87), PK3(86), PK4(83), PK5(84), PK6(83), PK7(82) |
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Experimental AP_Limits library - set constraints, limits, fences, minima, maxima on various parameters |
|
//////////////////////////////////////////////////////////////////////////////// |
|
#ifdef AP_LIMITS |
|
AP_Limits limits; |
|
AP_Limit_GPSLock gpslock_limit(g_gps); |
|
AP_Limit_Geofence geofence_limit(FENCE_START_BYTE, FENCE_WP_SIZE, MAX_FENCEPOINTS, g_gps, &home, ¤t_loc); |
|
AP_Limit_Altitude altitude_limit(¤t_loc); |
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Top-level logic |
|
//////////////////////////////////////////////////////////////////////////////// |
|
|
|
void setup() { |
|
memcheck_init(); |
|
init_ardupilot(); |
|
} |
|
|
|
void loop() |
|
{ |
|
uint32_t timer = micros(); |
|
uint16_t num_samples; |
|
|
|
// We want this to execute fast |
|
// ---------------------------- |
|
num_samples = ins.num_samples_available(); |
|
if (num_samples >= NUM_IMU_SAMPLES_FOR_100HZ) { |
|
|
|
#if DEBUG_FAST_LOOP == ENABLED |
|
Log_Write_Data(DATA_FAST_LOOP, (int32_t)(timer - fast_loopTimer)); |
|
#endif |
|
|
|
//PORTK |= B00010000; |
|
G_Dt = (float)(timer - fast_loopTimer) / 1000000.f; // used by PI Loops |
|
fast_loopTimer = timer; |
|
|
|
// for mainloop failure monitoring |
|
mainLoop_count++; |
|
|
|
// Execute the fast loop |
|
// --------------------- |
|
fast_loop(); |
|
|
|
// run the 50hz loop 1/2 the time |
|
ap_system.run_50hz_loop = !ap_system.run_50hz_loop; |
|
|
|
if(ap_system.run_50hz_loop) { |
|
|
|
#if DEBUG_MED_LOOP == ENABLED |
|
Log_Write_Data(DATA_MED_LOOP, (int32_t)(timer - fiftyhz_loopTimer)); |
|
#endif |
|
|
|
// store the micros for the 50 hz timer |
|
fiftyhz_loopTimer = timer; |
|
|
|
// port manipulation for external timing of main loops |
|
//PORTK |= B01000000; |
|
|
|
// check for new GPS messages |
|
// -------------------------- |
|
update_GPS(); |
|
|
|
// run navigation routines |
|
update_navigation(); |
|
|
|
// perform 10hz tasks |
|
// ------------------ |
|
medium_loop(); |
|
|
|
// Stuff to run at full 50hz, but after the med loops |
|
// -------------------------------------------------- |
|
fifty_hz_loop(); |
|
|
|
counter_one_herz++; |
|
|
|
// trgger our 1 hz loop |
|
if(counter_one_herz >= 50) { |
|
super_slow_loop(); |
|
counter_one_herz = 0; |
|
} |
|
perf_mon_counter++; |
|
if (perf_mon_counter > 600 ) { |
|
if (g.log_bitmask & MASK_LOG_PM) |
|
Log_Write_Performance(); |
|
|
|
gps_fix_count = 0; |
|
perf_mon_counter = 0; |
|
} |
|
//PORTK &= B10111111; |
|
} |
|
} else { |
|
#ifdef DESKTOP_BUILD |
|
usleep(1000); |
|
#endif |
|
if (num_samples < NUM_IMU_SAMPLES_FOR_100HZ-1) { |
|
// we have some spare cycles available |
|
// less than 20ms has passed. We have at least one millisecond |
|
// of free time. The most useful thing to do with that time is |
|
// to accumulate some sensor readings, specifically the |
|
// compass, which is often very noisy but is not interrupt |
|
// driven, so it can't accumulate readings by itself |
|
if (g.compass_enabled) { |
|
compass.accumulate(); |
|
} |
|
} |
|
} |
|
|
|
// port manipulation for external timing of main loops |
|
//PORTK &= B11101111; |
|
|
|
} |
|
// PORTK |= B01000000; |
|
// PORTK &= B10111111; |
|
|
|
// Main loop - 100hz |
|
static void fast_loop() |
|
{ |
|
// try to send any deferred messages if the serial port now has |
|
// some space available |
|
gcs_send_message(MSG_RETRY_DEFERRED); |
|
|
|
// run low level rate controllers that only require IMU data |
|
run_rate_controllers(); |
|
|
|
// write out the servo PWM values |
|
// ------------------------------ |
|
set_servos_4(); |
|
|
|
// IMU DCM Algorithm |
|
// -------------------- |
|
read_AHRS(); |
|
|
|
// reads all of the necessary trig functions for cameras, throttle, etc. |
|
// -------------------------------------------------------------------- |
|
update_trig(); |
|
|
|
// Inertial Nav |
|
// -------------------- |
|
read_inertia(); |
|
|
|
// optical flow |
|
// -------------------- |
|
#ifdef OPTFLOW_ENABLED |
|
if(g.optflow_enabled) { |
|
update_optical_flow(); |
|
} |
|
#endif |
|
|
|
// Read radio and 3-position switch on radio |
|
// ----------------------------------------- |
|
read_radio(); |
|
read_control_switch(); |
|
|
|
// custom code/exceptions for flight modes |
|
// --------------------------------------- |
|
update_yaw_mode(); |
|
update_roll_pitch_mode(); |
|
|
|
// update targets to rate controllers |
|
update_rate_contoller_targets(); |
|
|
|
// agmatthews - USERHOOKS |
|
#ifdef USERHOOK_FASTLOOP |
|
USERHOOK_FASTLOOP |
|
#endif |
|
|
|
} |
|
|
|
static void medium_loop() |
|
{ |
|
// This is the start of the medium (10 Hz) loop pieces |
|
// ----------------------------------------- |
|
switch(medium_loopCounter) { |
|
|
|
// This case deals with the GPS and Compass |
|
//----------------------------------------- |
|
case 0: |
|
medium_loopCounter++; |
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE // don't execute in HIL mode |
|
if(g.compass_enabled) { |
|
if (compass.read()) { |
|
compass.null_offsets(); |
|
} |
|
} |
|
#endif |
|
|
|
// save_trim - stores roll and pitch radio inputs to ahrs |
|
save_trim(); |
|
|
|
// record throttle output |
|
// ------------------------------ |
|
throttle_integrator += g.rc_3.servo_out; |
|
break; |
|
|
|
// This case performs some navigation computations |
|
//------------------------------------------------ |
|
case 1: |
|
medium_loopCounter++; |
|
|
|
break; |
|
|
|
// command processing |
|
//------------------- |
|
case 2: |
|
medium_loopCounter++; |
|
|
|
if(control_mode == TOY_A) { |
|
update_toy_throttle(); |
|
|
|
if(throttle_mode == THROTTLE_AUTO) { |
|
update_toy_altitude(); |
|
} |
|
} |
|
|
|
ap_system.alt_sensor_flag = true; |
|
break; |
|
|
|
// This case deals with sending high rate telemetry |
|
//------------------------------------------------- |
|
case 3: |
|
medium_loopCounter++; |
|
|
|
// perform next command |
|
// -------------------- |
|
if(control_mode == AUTO) { |
|
if(ap.home_is_set && g.command_total > 1) { |
|
update_commands(); |
|
} |
|
} |
|
|
|
if(motors.armed()) { |
|
if (g.log_bitmask & MASK_LOG_ATTITUDE_MED) { |
|
Log_Write_Attitude(); |
|
#if SECONDARY_DMP_ENABLED == ENABLED |
|
Log_Write_DMP(); |
|
#endif |
|
} |
|
|
|
if (g.log_bitmask & MASK_LOG_MOTORS) |
|
Log_Write_Motors(); |
|
} |
|
break; |
|
|
|
// This case controls the slow loop |
|
//--------------------------------- |
|
case 4: |
|
medium_loopCounter = 0; |
|
|
|
if (g.battery_monitoring != 0) { |
|
read_battery(); |
|
} |
|
|
|
// Accel trims = hold > 2 seconds |
|
// Throttle cruise = switch less than 1 second |
|
// -------------------------------------------- |
|
read_trim_switch(); |
|
|
|
// Check for engine arming |
|
// ----------------------- |
|
arm_motors(); |
|
|
|
// agmatthews - USERHOOKS |
|
#ifdef USERHOOK_MEDIUMLOOP |
|
USERHOOK_MEDIUMLOOP |
|
#endif |
|
|
|
#if COPTER_LEDS == ENABLED |
|
update_copter_leds(); |
|
#endif |
|
|
|
slow_loop(); |
|
break; |
|
|
|
default: |
|
// this is just a catch all |
|
// ------------------------ |
|
medium_loopCounter = 0; |
|
break; |
|
} |
|
} |
|
|
|
// stuff that happens at 50 hz |
|
// --------------------------- |
|
static void fifty_hz_loop() |
|
{ |
|
// read altitude sensors or estimate altitude |
|
// ------------------------------------------ |
|
update_altitude_est(); |
|
|
|
// Update the throttle ouput |
|
// ------------------------- |
|
update_throttle_mode(); |
|
|
|
// Read Sonar |
|
// ---------- |
|
# if CONFIG_SONAR == ENABLED |
|
if(g.sonar_enabled) { |
|
sonar_alt = sonar.read(); |
|
} |
|
#endif |
|
|
|
#if TOY_EDF == ENABLED |
|
edf_toy(); |
|
#endif |
|
|
|
#ifdef USERHOOK_50HZLOOP |
|
USERHOOK_50HZLOOP |
|
#endif |
|
|
|
|
|
#if HIL_MODE != HIL_MODE_DISABLED && FRAME_CONFIG != HELI_FRAME |
|
// HIL for a copter needs very fast update of the servo values |
|
gcs_send_message(MSG_RADIO_OUT); |
|
#endif |
|
|
|
#if MOUNT == ENABLED |
|
// update camera mount's position |
|
camera_mount.update_mount_position(); |
|
#endif |
|
|
|
#if MOUNT2 == ENABLED |
|
// update camera mount's position |
|
camera_mount2.update_mount_position(); |
|
#endif |
|
|
|
#if CAMERA == ENABLED |
|
g.camera.trigger_pic_cleanup(); |
|
#endif |
|
|
|
# if HIL_MODE == HIL_MODE_DISABLED |
|
if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST && motors.armed()) { |
|
Log_Write_Attitude(); |
|
#if SECONDARY_DMP_ENABLED == ENABLED |
|
Log_Write_DMP(); |
|
#endif |
|
} |
|
|
|
if (g.log_bitmask & MASK_LOG_RAW && motors.armed()) |
|
Log_Write_Raw(); |
|
#endif |
|
|
|
// kick the GCS to process uplink data |
|
gcs_update(); |
|
gcs_data_stream_send(); |
|
} |
|
|
|
|
|
static void slow_loop() |
|
{ |
|
|
|
#if AP_LIMITS == ENABLED |
|
|
|
// Run the AP_Limits main loop |
|
limits_loop(); |
|
|
|
#endif // AP_LIMITS_ENABLED |
|
|
|
// This is the slow (3 1/3 Hz) loop pieces |
|
//---------------------------------------- |
|
switch (slow_loopCounter) { |
|
case 0: |
|
slow_loopCounter++; |
|
superslow_loopCounter++; |
|
|
|
// record if the compass is healthy |
|
set_compass_healthy(compass.healthy); |
|
|
|
if(superslow_loopCounter > 1200) { |
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
if(g.rc_3.control_in == 0 && control_mode == STABILIZE && g.compass_enabled) { |
|
compass.save_offsets(); |
|
superslow_loopCounter = 0; |
|
} |
|
#endif |
|
} |
|
|
|
|
|
if(motors.armed()) { |
|
if (g.log_bitmask & MASK_LOG_ITERM) |
|
Log_Write_Iterm(); |
|
}else{ |
|
// check the user hasn't updated the frame orientation |
|
motors.set_frame_orientation(g.frame_orientation); |
|
} |
|
|
|
break; |
|
|
|
case 1: |
|
slow_loopCounter++; |
|
|
|
#if MOUNT == ENABLED |
|
update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8, &g.rc_10, &g.rc_11); |
|
#endif |
|
enable_aux_servos(); |
|
|
|
#if MOUNT == ENABLED |
|
camera_mount.update_mount_type(); |
|
#endif |
|
|
|
#if MOUNT2 == ENABLED |
|
camera_mount2.update_mount_type(); |
|
#endif |
|
|
|
// agmatthews - USERHOOKS |
|
#ifdef USERHOOK_SLOWLOOP |
|
USERHOOK_SLOWLOOP |
|
#endif |
|
|
|
break; |
|
|
|
case 2: |
|
slow_loopCounter = 0; |
|
update_events(); |
|
|
|
// blink if we are armed |
|
update_lights(); |
|
|
|
if(g.radio_tuning > 0) |
|
tuning(); |
|
|
|
#if USB_MUX_PIN > 0 |
|
check_usb_mux(); |
|
#endif |
|
break; |
|
|
|
default: |
|
slow_loopCounter = 0; |
|
break; |
|
} |
|
} |
|
|
|
#define AUTO_DISARMING_DELAY 25 |
|
// 1Hz loop |
|
static void super_slow_loop() |
|
{ |
|
Log_Write_Data(DATA_AP_STATE, ap.value); |
|
|
|
if (g.log_bitmask & MASK_LOG_CUR && motors.armed()) |
|
Log_Write_Current(); |
|
|
|
|
|
#if 0 //CENTER_THROTTLE == 1 |
|
// recalibrate the throttle_cruise to center on the sticks |
|
g.rc_3.set_range((g.throttle_cruise - (MAXIMUM_THROTTLE - g.throttle_cruise)), MAXIMUM_THROTTLE); |
|
g.rc_3.set_range_out(0,1000); |
|
#endif |
|
|
|
// this function disarms the copter if it has been sitting on the ground for any moment of time greater than 25 seconds |
|
// but only of the control mode is manual |
|
if((control_mode <= ACRO) && (g.rc_3.control_in == 0)) { |
|
auto_disarming_counter++; |
|
|
|
if(auto_disarming_counter == AUTO_DISARMING_DELAY) { |
|
init_disarm_motors(); |
|
}else if (auto_disarming_counter > AUTO_DISARMING_DELAY) { |
|
auto_disarming_counter = AUTO_DISARMING_DELAY + 1; |
|
} |
|
}else{ |
|
auto_disarming_counter = 0; |
|
} |
|
|
|
gcs_send_message(MSG_HEARTBEAT); |
|
|
|
// agmatthews - USERHOOKS |
|
#ifdef USERHOOK_SUPERSLOWLOOP |
|
USERHOOK_SUPERSLOWLOOP |
|
#endif |
|
|
|
/* |
|
* //Serial.printf("alt %d, next.alt %d, alt_err: %d, cruise: %d, Alt_I:%1.2f, wp_dist %d, tar_bear %d, home_d %d, homebear %d\n", |
|
* current_loc.alt, |
|
* next_WP.alt, |
|
* altitude_error, |
|
* g.throttle_cruise.get(), |
|
* g.pi_alt_hold.get_integrator(), |
|
* wp_distance, |
|
* target_bearing, |
|
* home_distance, |
|
* home_to_copter_bearing); |
|
*/ |
|
|
|
// debug |
|
//dump_state(); |
|
} |
|
|
|
// called at 100hz but data from sensor only arrives at 20 Hz |
|
#ifdef OPTFLOW_ENABLED |
|
static void update_optical_flow(void) |
|
{ |
|
static uint32_t last_of_update = 0; |
|
static int log_counter = 0; |
|
|
|
// if new data has arrived, process it |
|
if( optflow.last_update != last_of_update ) { |
|
last_of_update = optflow.last_update; |
|
optflow.update_position(ahrs.roll, ahrs.pitch, cos_yaw_x, sin_yaw_y, current_loc.alt); // updates internal lon and lat with estimation based on optical flow |
|
|
|
// write to log at 5hz |
|
log_counter++; |
|
if( log_counter >= 4 ) { |
|
log_counter = 0; |
|
if (g.log_bitmask & MASK_LOG_OPTFLOW) { |
|
Log_Write_Optflow(); |
|
} |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
// called at 50hz |
|
static void update_GPS(void) |
|
{ |
|
// A counter that is used to grab at least 10 reads before commiting the Home location |
|
static byte ground_start_count = 10; |
|
|
|
g_gps->update(); |
|
update_GPS_light(); |
|
|
|
set_gps_healthy(g_gps->status() == g_gps->GPS_OK); |
|
|
|
if (g_gps->new_data && g_gps->fix) { |
|
// clear new data flag |
|
g_gps->new_data = false; |
|
|
|
// check for duiplicate GPS messages |
|
if(last_gps_time != g_gps->time) { |
|
|
|
// for performance monitoring |
|
// -------------------------- |
|
gps_fix_count++; |
|
|
|
if(ground_start_count > 1) { |
|
ground_start_count--; |
|
|
|
} else if (ground_start_count == 1) { |
|
|
|
// We countdown N number of good GPS fixes |
|
// so that the altitude is more accurate |
|
// ------------------------------------- |
|
if (current_loc.lat == 0) { |
|
ground_start_count = 5; |
|
|
|
}else{ |
|
if (g.compass_enabled) { |
|
// Set compass declination automatically |
|
compass.set_initial_location(g_gps->latitude, g_gps->longitude); |
|
} |
|
// save home to eeprom (we must have a good fix to have reached this point) |
|
init_home(); |
|
ground_start_count = 0; |
|
} |
|
} |
|
|
|
if (g.log_bitmask & MASK_LOG_GPS && motors.armed()) { |
|
Log_Write_GPS(); |
|
} |
|
|
|
#if HIL_MODE == HIL_MODE_ATTITUDE // only execute in HIL mode |
|
//update_altitude(); |
|
ap_system.alt_sensor_flag = true; |
|
#endif |
|
} |
|
|
|
// save GPS time so we don't get duplicate reads |
|
last_gps_time = g_gps->time; |
|
} |
|
} |
|
|
|
void update_yaw_mode(void) |
|
{ |
|
switch(yaw_mode) { |
|
case YAW_ACRO: |
|
if(g.axis_enabled) { |
|
get_yaw_rate_stabilized_ef(g.rc_4.control_in); |
|
}else{ |
|
get_acro_yaw(g.rc_4.control_in); |
|
} |
|
return; |
|
break; |
|
|
|
// update to allow external roll/yaw mixing |
|
#if TOY_LOOKUP == TOY_EXTERNAL_MIXER |
|
case YAW_TOY: |
|
#endif |
|
|
|
case YAW_HOLD: |
|
get_yaw_rate_stabilized_ef(g.rc_4.control_in); |
|
break; |
|
|
|
case YAW_LOOK_AT_HOME: |
|
//nav_yaw updated in update_navigation() |
|
get_stabilize_yaw(nav_yaw); |
|
break; |
|
|
|
case YAW_AUTO: |
|
nav_yaw += constrain(wrap_180(auto_yaw - nav_yaw), -60, 60); // 40 deg a second |
|
//Serial.printf("nav_yaw %d ", nav_yaw); |
|
nav_yaw = wrap_360(nav_yaw); |
|
get_stabilize_yaw(nav_yaw); |
|
break; |
|
} |
|
} |
|
|
|
void update_roll_pitch_mode(void) |
|
{ |
|
if (ap.do_flip) { |
|
if(abs(g.rc_1.control_in) < 4000) { |
|
roll_flip(); |
|
return; |
|
}else{ |
|
// force an exit from the loop if we are not hands off sticks. |
|
ap.do_flip = false; |
|
Log_Write_Event(DATA_EXIT_FLIP); |
|
} |
|
} |
|
|
|
switch(roll_pitch_mode) { |
|
case ROLL_PITCH_ACRO: |
|
if(g.axis_enabled) { |
|
get_roll_rate_stabilized_ef(g.rc_1.control_in); |
|
get_pitch_rate_stabilized_ef(g.rc_2.control_in); |
|
}else{ |
|
// ACRO does not get SIMPLE mode ability |
|
#if FRAME_CONFIG == HELI_FRAME |
|
if (motors.flybar_mode == 1) { |
|
g.rc_1.servo_out = g.rc_1.control_in; |
|
g.rc_2.servo_out = g.rc_2.control_in; |
|
} else { |
|
get_acro_roll(g.rc_1.control_in); |
|
get_acro_pitch(g.rc_2.control_in); |
|
} |
|
#else |
|
get_acro_roll(g.rc_1.control_in); |
|
get_acro_pitch(g.rc_2.control_in); |
|
#endif |
|
} |
|
break; |
|
|
|
case ROLL_PITCH_STABLE: |
|
// apply SIMPLE mode transform |
|
if(ap.simple_mode && ap_system.new_radio_frame) { |
|
update_simple_mode(); |
|
} |
|
|
|
control_roll = g.rc_1.control_in; |
|
control_pitch = g.rc_2.control_in; |
|
|
|
get_stabilize_roll(control_roll); |
|
get_stabilize_pitch(control_pitch); |
|
|
|
break; |
|
|
|
case ROLL_PITCH_AUTO: |
|
// apply SIMPLE mode transform |
|
if(ap.simple_mode && ap_system.new_radio_frame) { |
|
update_simple_mode(); |
|
} |
|
// mix in user control with Nav control |
|
nav_roll += constrain(wrap_180(auto_roll - nav_roll), -g.auto_slew_rate.get(), g.auto_slew_rate.get()); // 40 deg a second |
|
nav_pitch += constrain(wrap_180(auto_pitch - nav_pitch), -g.auto_slew_rate.get(), g.auto_slew_rate.get()); // 40 deg a second |
|
|
|
control_roll = g.rc_1.control_mix(nav_roll); |
|
control_pitch = g.rc_2.control_mix(nav_pitch); |
|
|
|
get_stabilize_roll(control_roll); |
|
get_stabilize_pitch(control_pitch); |
|
break; |
|
|
|
case ROLL_PITCH_STABLE_OF: |
|
// apply SIMPLE mode transform |
|
if(ap.simple_mode && ap_system.new_radio_frame) { |
|
update_simple_mode(); |
|
} |
|
|
|
control_roll = g.rc_1.control_in; |
|
control_pitch = g.rc_2.control_in; |
|
|
|
// mix in user control with optical flow |
|
get_stabilize_roll(get_of_roll(control_roll)); |
|
get_stabilize_pitch(get_of_pitch(control_pitch)); |
|
break; |
|
|
|
// THOR |
|
// a call out to the main toy logic |
|
case ROLL_PITCH_TOY: |
|
roll_pitch_toy(); |
|
break; |
|
} |
|
|
|
if(g.rc_3.control_in == 0 && control_mode <= ACRO) { |
|
reset_rate_I(); |
|
reset_stability_I(); |
|
} |
|
|
|
//if(takeoff_complete == false){ |
|
// reset these I terms to prevent awkward tipping on takeoff |
|
//reset_rate_I(); |
|
//reset_stability_I(); |
|
//} |
|
|
|
if(ap_system.new_radio_frame) { |
|
// clear new radio frame info |
|
ap_system.new_radio_frame = false; |
|
|
|
// These values can be used to scale the PID gains |
|
// This allows for a simple gain scheduling implementation |
|
/* |
|
roll_scale_d = g.stabilize_d_schedule * (float)abs(g.rc_1.control_in); |
|
roll_scale_d = (1 - (roll_scale_d / 4500.0)); |
|
roll_scale_d = constrain(roll_scale_d, 0, 1) * g.stabilize_d; |
|
|
|
pitch_scale_d = g.stabilize_d_schedule * (float)abs(g.rc_2.control_in); |
|
pitch_scale_d = (1 - (pitch_scale_d / 4500.0)); |
|
pitch_scale_d = constrain(pitch_scale_d, 0, 1) * g.stabilize_d; |
|
*/ |
|
} |
|
} |
|
|
|
// new radio frame is used to make sure we only call this at 50hz |
|
void update_simple_mode(void) |
|
{ |
|
static byte simple_counter = 0; // State machine counter for Simple Mode |
|
static float simple_sin_y=0, simple_cos_x=0; |
|
|
|
// used to manage state machine |
|
// which improves speed of function |
|
simple_counter++; |
|
|
|
int16_t delta = wrap_360(ahrs.yaw_sensor - initial_simple_bearing)/100; |
|
|
|
if (simple_counter == 1) { |
|
// roll |
|
simple_cos_x = sin(radians(90 - delta)); |
|
|
|
}else if (simple_counter > 2) { |
|
// pitch |
|
simple_sin_y = cos(radians(90 - delta)); |
|
simple_counter = 0; |
|
} |
|
|
|
// Rotate input by the initial bearing |
|
int16_t _roll = g.rc_1.control_in * simple_cos_x + g.rc_2.control_in * simple_sin_y; |
|
int16_t _pitch = -(g.rc_1.control_in * simple_sin_y - g.rc_2.control_in * simple_cos_x); |
|
|
|
g.rc_1.control_in = _roll; |
|
g.rc_2.control_in = _pitch; |
|
} |
|
|
|
#define THROTTLE_FILTER_SIZE 2 |
|
|
|
// 50 hz update rate |
|
// controls all throttle behavior |
|
void update_throttle_mode(void) |
|
{ |
|
if(ap.do_flip) // this is pretty bad but needed to flip in AP modes. |
|
return; |
|
|
|
int16_t throttle_out; |
|
|
|
#if AUTO_THROTTLE_HOLD != 0 |
|
static float throttle_avg = 0; // this is initialised to g.throttle_cruise later |
|
#endif |
|
|
|
#if FRAME_CONFIG != HELI_FRAME |
|
// calculate angle boost |
|
if(throttle_mode == THROTTLE_MANUAL) { |
|
angle_boost = get_angle_boost(g.rc_3.control_in); |
|
}else{ |
|
angle_boost = get_angle_boost(g.throttle_cruise); |
|
} |
|
#endif |
|
|
|
switch(throttle_mode) { |
|
case THROTTLE_MANUAL: |
|
if (g.rc_3.control_in > 0) { |
|
#if FRAME_CONFIG == HELI_FRAME |
|
g.rc_3.servo_out = heli_get_angle_boost(g.rc_3.control_in); |
|
#else |
|
if (control_mode == ACRO) { |
|
g.rc_3.servo_out = g.rc_3.control_in; |
|
}else{ |
|
g.rc_3.servo_out = g.rc_3.control_in + angle_boost; |
|
} |
|
#endif |
|
|
|
#if AUTO_THROTTLE_HOLD != 0 |
|
// ensure throttle_avg has been initialised |
|
if( throttle_avg == 0 ) { |
|
throttle_avg = g.throttle_cruise; |
|
} |
|
// calc average throttle |
|
if ((g.rc_3.control_in > g.throttle_min) && (abs(climb_rate) < 60) && (g_gps->ground_speed < 200)) { |
|
throttle_avg = throttle_avg * .99 + (float)g.rc_3.control_in * .01; |
|
g.throttle_cruise = throttle_avg; |
|
} |
|
#endif |
|
|
|
if (false == ap.takeoff_complete && motors.armed()) { |
|
if (g.rc_3.control_in > g.throttle_cruise) { |
|
// we must be in the air by now |
|
set_takeoff_complete(true); |
|
} |
|
} |
|
|
|
}else{ |
|
|
|
// make sure we also request 0 throttle out |
|
// so the props stop ... properly |
|
// ---------------------------------------- |
|
g.rc_3.servo_out = 0; |
|
} |
|
break; |
|
|
|
case THROTTLE_HOLD: |
|
// allow interactive changing of atitude |
|
if(g.rc_3.radio_in < (g.rc_3.radio_min + 200)){ |
|
int16_t _rate = 180 - (((g.rc_3.radio_in - g.rc_3.radio_min) * 12) / 20); |
|
reset_throttle_counter = 150; |
|
nav_throttle = get_throttle_rate(-_rate); |
|
g.rc_3.servo_out = g.throttle_cruise + nav_throttle + angle_boost; |
|
break; |
|
}else if(g.rc_3.radio_in > (g.rc_3.radio_max - 200)){ |
|
int16_t _rate = 300 - ((g.rc_3.radio_max - g.rc_3.radio_in) * 18) / 20; |
|
reset_throttle_counter = 150; |
|
nav_throttle = get_throttle_rate(_rate); |
|
g.rc_3.servo_out = g.throttle_cruise + nav_throttle + angle_boost; |
|
break; |
|
} |
|
|
|
|
|
// allow 1 second of slow down after pilot moves throttle back into deadzone |
|
if(reset_throttle_counter > 0) { |
|
reset_throttle_counter--; |
|
// if 1 second has passed set the target altitude to the current altitude |
|
if(reset_throttle_counter == 0) { |
|
force_new_altitude(max(current_loc.alt, 100)); |
|
}else{ |
|
nav_throttle = get_throttle_rate(0); |
|
g.rc_3.servo_out = g.throttle_cruise + nav_throttle + angle_boost; |
|
break; |
|
} |
|
} |
|
|
|
// else fall through |
|
|
|
case THROTTLE_AUTO: |
|
|
|
if(motors.auto_armed() == true) { |
|
|
|
// how far off are we |
|
altitude_error = get_altitude_error(); |
|
|
|
//int16_t desired_climb_rate; |
|
if(alt_change_flag == REACHED_ALT) { // we are at or above the target alt |
|
desired_climb_rate = g.pi_alt_hold.get_p(altitude_error); // calculate desired speed from lon error |
|
update_throttle_cruise(g.pi_alt_hold.get_i(altitude_error, .02)); |
|
desired_climb_rate = constrain(desired_climb_rate, -250, 250); |
|
nav_throttle = get_throttle_rate(desired_climb_rate); |
|
}else{ |
|
desired_climb_rate = get_desired_climb_rate(); |
|
nav_throttle = get_throttle_rate(desired_climb_rate); |
|
} |
|
} |
|
|
|
// hack to remove the influence of the ground effect |
|
if(g.sonar_enabled && current_loc.alt < 100 && landing_boost != 0) { |
|
nav_throttle = min(nav_throttle, 0); |
|
} |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
throttle_out = heli_get_angle_boost(g.throttle_cruise + nav_throttle - landing_boost); |
|
#else |
|
throttle_out = g.throttle_cruise + nav_throttle + angle_boost - landing_boost; |
|
#endif |
|
|
|
g.rc_3.servo_out = throttle_out; |
|
break; |
|
} |
|
} |
|
|
|
static void read_AHRS(void) |
|
{ |
|
// Perform IMU calculations and get attitude info |
|
//----------------------------------------------- |
|
#if HIL_MODE != HIL_MODE_DISABLED |
|
// update hil before ahrs update |
|
gcs_update(); |
|
#endif |
|
|
|
ahrs.update(); |
|
omega = ins.get_gyro(); |
|
|
|
#if SECONDARY_DMP_ENABLED == ENABLED |
|
ahrs2.update(); |
|
#endif |
|
} |
|
|
|
static void update_trig(void){ |
|
Vector2f yawvector; |
|
Matrix3f temp = ahrs.get_dcm_matrix(); |
|
|
|
yawvector.x = temp.a.x; // sin |
|
yawvector.y = temp.b.x; // cos |
|
yawvector.normalize(); |
|
|
|
cos_pitch_x = safe_sqrt(1 - (temp.c.x * temp.c.x)); // level = 1 |
|
cos_roll_x = temp.c.z / cos_pitch_x; // level = 1 |
|
|
|
cos_pitch_x = constrain(cos_pitch_x, 0, 1.0); |
|
// this relies on constrain() of infinity doing the right thing, |
|
// which it does do in avr-libc |
|
cos_roll_x = constrain(cos_roll_x, -1.0, 1.0); |
|
|
|
sin_yaw_y = yawvector.x; // 1y = north |
|
cos_yaw_x = yawvector.y; // 0x = north |
|
|
|
// added to convert earth frame to body frame for rate controllers |
|
sin_pitch = -temp.c.x; |
|
sin_roll = temp.c.y / cos_pitch_x; |
|
|
|
//flat: |
|
// 0 ° = cos_yaw: 0.00, sin_yaw: 1.00, |
|
// 90° = cos_yaw: 1.00, sin_yaw: 0.00, |
|
// 180 = cos_yaw: 0.00, sin_yaw: -1.00, |
|
// 270 = cos_yaw: -1.00, sin_yaw: 0.00, |
|
} |
|
|
|
// updated at 10hz |
|
static void update_altitude() |
|
{ |
|
static int16_t old_sonar_alt = 0; |
|
static int32_t old_baro_alt = 0; |
|
|
|
#if HIL_MODE == HIL_MODE_ATTITUDE |
|
// we are in the SIM, fake out the baro and Sonar |
|
int16_t fake_relative_alt = g_gps->altitude - gps_base_alt; |
|
baro_alt = fake_relative_alt; |
|
sonar_alt = fake_relative_alt; |
|
|
|
baro_rate = (baro_alt - old_baro_alt) * 5; // 5hz |
|
old_baro_alt = baro_alt; |
|
|
|
#else |
|
// This is real life |
|
|
|
// read in Actual Baro Altitude |
|
baro_alt = read_barometer(); |
|
|
|
// calc the vertical accel rate |
|
|
|
// 2.6 way |
|
int16_t temp = (baro_alt - old_baro_alt) * 10; |
|
baro_rate = (temp + baro_rate) >> 1; |
|
baro_rate = constrain(baro_rate, -500, 500); |
|
old_baro_alt = baro_alt; |
|
|
|
// Using Tridge's new clamb rate calc |
|
/* |
|
int16_t temp = barometer.get_climb_rate() * 100; |
|
baro_rate = (temp + baro_rate) >> 1; |
|
baro_rate = constrain(baro_rate, -300, 300); |
|
*/ |
|
|
|
// Note: sonar_alt is calculated in a faster loop and filtered with a mode filter |
|
#endif |
|
|
|
if(g.sonar_enabled) { |
|
// filter out offset |
|
float scale; |
|
|
|
// calc rate of change for Sonar |
|
#if HIL_MODE == HIL_MODE_ATTITUDE |
|
// we are in the SIM, fake outthe Sonar rate |
|
sonar_rate = baro_rate; |
|
#else |
|
// This is real life |
|
// calc the vertical accel rate |
|
// positive = going up. |
|
sonar_rate = (sonar_alt - old_sonar_alt) * 10; |
|
sonar_rate = constrain(sonar_rate, -150, 150); |
|
old_sonar_alt = sonar_alt; |
|
#endif |
|
|
|
if(baro_alt < 800) { |
|
#if SONAR_TILT_CORRECTION == 1 |
|
// correct alt for angle of the sonar |
|
float temp = cos_pitch_x * cos_roll_x; |
|
temp = max(temp, 0.707); |
|
sonar_alt = (float)sonar_alt * temp; |
|
#endif |
|
|
|
scale = (float)(sonar_alt - 400) / 200.0; |
|
scale = constrain(scale, 0.0, 1.0); |
|
// solve for a blended altitude |
|
current_loc.alt = ((float)sonar_alt * (1.0 - scale)) + ((float)baro_alt * scale); |
|
|
|
// solve for a blended climb_rate |
|
climb_rate_actual = ((float)sonar_rate * (1.0 - scale)) + (float)baro_rate * scale; |
|
|
|
}else{ |
|
// we must be higher than sonar (>800), don't get tricked by bad sonar reads |
|
current_loc.alt = baro_alt; |
|
// dont blend, go straight baro |
|
|
|
climb_rate_actual = baro_rate; |
|
} |
|
|
|
}else{ |
|
// NO Sonar case |
|
current_loc.alt = baro_alt; |
|
climb_rate_actual = baro_rate; |
|
} |
|
|
|
// update the target altitude |
|
verify_altitude(); |
|
|
|
// calc error |
|
climb_rate_error = (climb_rate_actual - climb_rate) / 5; |
|
} |
|
|
|
static void update_altitude_est() |
|
{ |
|
if(ap_system.alt_sensor_flag) { |
|
update_altitude(); |
|
ap_system.alt_sensor_flag = false; |
|
|
|
if(g.log_bitmask & MASK_LOG_CTUN && motors.armed()) { |
|
Log_Write_Control_Tuning(); |
|
} |
|
|
|
}else{ |
|
// simple dithering of climb rate |
|
climb_rate += climb_rate_error; |
|
current_loc.alt += (climb_rate / 50); |
|
} |
|
//Serial.printf(" %d, %d, %d, %d\n", climb_rate_actual, climb_rate_error, climb_rate, current_loc.alt); |
|
} |
|
|
|
static void tuning(){ |
|
tuning_value = (float)g.rc_6.control_in / 1000.0; |
|
g.rc_6.set_range(g.radio_tuning_low,g.radio_tuning_high); // 0 to 1 |
|
|
|
switch(g.radio_tuning) { |
|
|
|
case CH6_RATE_KD: |
|
g.pid_rate_roll.kD(tuning_value); |
|
g.pid_rate_pitch.kD(tuning_value); |
|
break; |
|
|
|
case CH6_STABILIZE_KP: |
|
g.pi_stabilize_roll.kP(tuning_value); |
|
g.pi_stabilize_pitch.kP(tuning_value); |
|
break; |
|
|
|
case CH6_STABILIZE_KI: |
|
g.pi_stabilize_roll.kI(tuning_value); |
|
g.pi_stabilize_pitch.kI(tuning_value); |
|
break; |
|
|
|
//case CH6_DAMP: |
|
//case CH6_STABILIZE_KD: |
|
//g.stabilize_d = tuning_value; |
|
//break; |
|
|
|
case CH6_ACRO_KP: |
|
g.acro_p = tuning_value; |
|
break; |
|
|
|
case CH6_RATE_KP: |
|
g.pid_rate_roll.kP(tuning_value); |
|
g.pid_rate_pitch.kP(tuning_value); |
|
break; |
|
|
|
case CH6_RATE_KI: |
|
g.pid_rate_roll.kI(tuning_value); |
|
g.pid_rate_pitch.kI(tuning_value); |
|
break; |
|
|
|
case CH6_YAW_KP: |
|
g.pi_stabilize_yaw.kP(tuning_value); |
|
break; |
|
|
|
case CH6_YAW_KI: |
|
g.pi_stabilize_yaw.kI(tuning_value); |
|
break; |
|
|
|
case CH6_YAW_RATE_KP: |
|
g.pid_rate_yaw.kP(tuning_value); |
|
break; |
|
|
|
case CH6_YAW_RATE_KD: |
|
g.pid_rate_yaw.kD(tuning_value); |
|
break; |
|
|
|
case CH6_THROTTLE_KP: |
|
g.pid_throttle.kP(tuning_value); |
|
break; |
|
|
|
case CH6_TOP_BOTTOM_RATIO: |
|
motors.top_bottom_ratio = tuning_value; |
|
break; |
|
|
|
case CH6_RELAY: |
|
if (g.rc_6.control_in > 525) relay.on(); |
|
if (g.rc_6.control_in < 475) relay.off(); |
|
break; |
|
|
|
case CH6_TRAVERSE_SPEED: |
|
g.waypoint_speed_max = g.rc_6.control_in; |
|
break; |
|
|
|
case CH6_LOITER_KP: |
|
g.pi_loiter_lat.kP(tuning_value); |
|
g.pi_loiter_lon.kP(tuning_value); |
|
break; |
|
|
|
case CH6_LOITER_KI: |
|
g.pi_loiter_lat.kI(tuning_value); |
|
g.pi_loiter_lon.kI(tuning_value); |
|
break; |
|
|
|
case CH6_NAV_KP: |
|
g.pid_nav_lat.kP(tuning_value); |
|
g.pid_nav_lon.kP(tuning_value); |
|
break; |
|
|
|
case CH6_LOITER_RATE_KP: |
|
g.pid_loiter_rate_lon.kP(tuning_value); |
|
g.pid_loiter_rate_lat.kP(tuning_value); |
|
break; |
|
|
|
case CH6_LOITER_RATE_KI: |
|
g.pid_loiter_rate_lon.kI(tuning_value); |
|
g.pid_loiter_rate_lat.kI(tuning_value); |
|
break; |
|
|
|
case CH6_LOITER_RATE_KD: |
|
g.pid_loiter_rate_lon.kD(tuning_value); |
|
g.pid_loiter_rate_lat.kD(tuning_value); |
|
break; |
|
|
|
case CH6_NAV_I: |
|
g.pid_nav_lat.kI(tuning_value); |
|
g.pid_nav_lon.kI(tuning_value); |
|
break; |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
case CH6_HELI_EXTERNAL_GYRO: |
|
motors.ext_gyro_gain = tuning_value; |
|
break; |
|
#endif |
|
|
|
case CH6_THR_HOLD_KP: |
|
g.pi_alt_hold.kP(tuning_value); |
|
break; |
|
|
|
case CH6_OPTFLOW_KP: |
|
g.pid_optflow_roll.kP(tuning_value); |
|
g.pid_optflow_pitch.kP(tuning_value); |
|
break; |
|
|
|
case CH6_OPTFLOW_KI: |
|
g.pid_optflow_roll.kI(tuning_value); |
|
g.pid_optflow_pitch.kI(tuning_value); |
|
break; |
|
|
|
case CH6_OPTFLOW_KD: |
|
g.pid_optflow_roll.kD(tuning_value); |
|
g.pid_optflow_pitch.kD(tuning_value); |
|
break; |
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE // do not allow modifying _kp or _kp_yaw gains in HIL mode |
|
case CH6_AHRS_YAW_KP: |
|
ahrs._kp_yaw.set(tuning_value); |
|
break; |
|
|
|
case CH6_AHRS_KP: |
|
ahrs._kp.set(tuning_value); |
|
break; |
|
#endif |
|
|
|
#if INERTIAL_NAV == ENABLED |
|
case CH6_INAV_TC: |
|
inertial_nav.set_time_constant_xy(tuning_value); |
|
inertial_nav.set_time_constant_z(tuning_value); |
|
break; |
|
#endif |
|
} |
|
} |
|
|
|
// Outputs Nav_Pitch and Nav_Roll |
|
static void update_nav_wp() |
|
{ |
|
if(wp_control == LOITER_MODE) { |
|
|
|
// calc error to target |
|
calc_location_error(&next_WP); |
|
|
|
// use error as the desired rate towards the target |
|
calc_loiter(long_error, lat_error); |
|
|
|
}else if(wp_control == CIRCLE_MODE) { |
|
|
|
// check if we have missed the WP |
|
int16_t loiter_delta = (target_bearing - old_target_bearing)/100; |
|
|
|
// reset the old value |
|
old_target_bearing = target_bearing; |
|
|
|
// wrap values |
|
if (loiter_delta > 180) loiter_delta -= 360; |
|
if (loiter_delta < -180) loiter_delta += 360; |
|
|
|
// sum the angle around the WP |
|
loiter_sum += loiter_delta; |
|
|
|
// create a virtual waypoint that circles the next_WP |
|
// Count the degrees we have circulated the WP |
|
//int16_t circle_angle = wrap_360(target_bearing + 3000 + 18000) / 100; |
|
|
|
circle_angle += (circle_rate * dTnav); |
|
//1° = 0.0174532925 radians |
|
|
|
// wrap |
|
if (circle_angle > 6.28318531) |
|
circle_angle -= 6.28318531; |
|
|
|
next_WP.lng = circle_WP.lng + (g.loiter_radius * 100 * cos(1.57 - circle_angle) * scaleLongUp); |
|
next_WP.lat = circle_WP.lat + (g.loiter_radius * 100 * sin(1.57 - circle_angle)); |
|
|
|
// use error as the desired rate towards the target |
|
// nav_lon, nav_lat is calculated |
|
|
|
if(wp_distance > 400) { |
|
calc_nav_rate(get_desired_speed(g.waypoint_speed_max)); |
|
}else{ |
|
// calc the lat and long error to the target |
|
calc_location_error(&next_WP); |
|
|
|
calc_loiter(long_error, lat_error); |
|
} |
|
|
|
//CIRCLE: angle:29, dist:0, lat:400, lon:242 |
|
|
|
// debug |
|
//int16_t angleTest = degrees(circle_angle); |
|
//int16_t nroll = nav_roll; |
|
//int16_t npitch = nav_pitch; |
|
//Serial.printf("CIRCLE: angle:%d, dist:%d, X:%d, Y:%d, P:%d, R:%d \n", angleTest, (int)wp_distance , (int)long_error, (int)lat_error, npitch, nroll); |
|
|
|
}else if(wp_control == WP_MODE) { |
|
// calc error to target |
|
calc_location_error(&next_WP); |
|
|
|
int16_t speed = get_desired_speed(g.waypoint_speed_max); |
|
// use error as the desired rate towards the target |
|
calc_nav_rate(speed); |
|
|
|
}else if(wp_control == NO_NAV_MODE) { |
|
// clear out our nav so we can do things like land straight down |
|
// or change Loiter position |
|
|
|
// We bring copy over our Iterms for wind control, but we don't navigate |
|
nav_lon = g.pid_loiter_rate_lon.get_integrator(); |
|
nav_lat = g.pid_loiter_rate_lon.get_integrator(); |
|
|
|
nav_lon = constrain(nav_lon, -2000, 2000); // 20° |
|
nav_lat = constrain(nav_lat, -2000, 2000); // 20° |
|
} |
|
} |
|
|
|
static void update_auto_yaw() |
|
{ |
|
if(wp_control == CIRCLE_MODE) { |
|
auto_yaw = get_bearing_cd(¤t_loc, &circle_WP); |
|
|
|
}else if(wp_control == LOITER_MODE) { |
|
// just hold nav_yaw |
|
|
|
}else if(yaw_tracking == MAV_ROI_LOCATION) { |
|
auto_yaw = get_bearing_cd(¤t_loc, &target_WP); |
|
|
|
}else if(yaw_tracking == MAV_ROI_WPNEXT) { |
|
// Point towards next WP |
|
auto_yaw = original_target_bearing; |
|
} |
|
}
|
|
|