You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1441 lines
46 KiB
1441 lines
46 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
#if CLI_ENABLED == ENABLED |
|
|
|
// Functions called from the setup menu |
|
static int8_t setup_radio (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_motors (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_accel (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_accel_scale (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_frame (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_factory (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_erase (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_flightmodes (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_batt_monitor (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_sonar (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_compass (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_compassmot (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_tune (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_range (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_declination (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_optflow (uint8_t argc, const Menu::arg *argv); |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
static int8_t setup_heli (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_gyro (uint8_t argc, const Menu::arg *argv); |
|
#endif |
|
|
|
static int8_t setup_set (uint8_t argc, const Menu::arg *argv); |
|
|
|
// Command/function table for the setup menu |
|
const struct Menu::command setup_menu_commands[] PROGMEM = { |
|
// command function called |
|
// ======= =============== |
|
{"erase", setup_erase}, |
|
{"reset", setup_factory}, |
|
{"radio", setup_radio}, |
|
{"frame", setup_frame}, |
|
{"motors", setup_motors}, |
|
{"level", setup_accel}, |
|
{"accel", setup_accel_scale}, |
|
{"modes", setup_flightmodes}, |
|
{"battery", setup_batt_monitor}, |
|
{"sonar", setup_sonar}, |
|
{"compass", setup_compass}, |
|
{"compassmot", setup_compassmot}, |
|
{"tune", setup_tune}, |
|
{"range", setup_range}, |
|
{"declination", setup_declination}, |
|
{"optflow", setup_optflow}, |
|
#if FRAME_CONFIG == HELI_FRAME |
|
{"heli", setup_heli}, |
|
{"gyro", setup_gyro}, |
|
#endif |
|
{"show", setup_show}, |
|
{"set", setup_set} |
|
}; |
|
|
|
// Create the setup menu object. |
|
MENU(setup_menu, "setup", setup_menu_commands); |
|
|
|
// Called from the top-level menu to run the setup menu. |
|
static int8_t |
|
setup_mode(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
// Give the user some guidance |
|
cliSerial->printf_P(PSTR("Setup Mode\n\n\n")); |
|
|
|
if(g.rc_1.radio_min >= 1300) { |
|
delay(1000); |
|
cliSerial->printf_P(PSTR("\n!Warning, radio not configured!")); |
|
delay(1000); |
|
cliSerial->printf_P(PSTR("\n Type 'radio' now.\n\n")); |
|
} |
|
|
|
// Run the setup menu. When the menu exits, we will return to the main menu. |
|
setup_menu.run(); |
|
return 0; |
|
} |
|
|
|
// Print the current configuration. |
|
// Called by the setup menu 'show' command. |
|
static int8_t |
|
setup_show(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
AP_Param *param; |
|
ap_var_type type; |
|
|
|
//If a parameter name is given as an argument to show, print only that parameter |
|
if(argc>=2) |
|
{ |
|
|
|
param=AP_Param::find(argv[1].str, &type); |
|
|
|
if(!param) |
|
{ |
|
cliSerial->printf_P(PSTR("Parameter not found: '%s'\n"), argv[1]); |
|
return 0; |
|
} |
|
AP_Param::show(param, argv[1].str, type, cliSerial); |
|
return 0; |
|
} |
|
|
|
// clear the area |
|
print_blanks(8); |
|
|
|
report_version(); |
|
report_radio(); |
|
report_frame(); |
|
report_batt_monitor(); |
|
report_sonar(); |
|
report_flight_modes(); |
|
report_ins(); |
|
report_compass(); |
|
report_optflow(); |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
report_heli(); |
|
report_gyro(); |
|
#endif |
|
|
|
AP_Param::show_all(cliSerial); |
|
|
|
return(0); |
|
} |
|
|
|
// Initialise the EEPROM to 'factory' settings (mostly defined in APM_Config.h or via defaults). |
|
// Called by the setup menu 'factoryreset' command. |
|
static int8_t |
|
setup_factory(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
int16_t c; |
|
|
|
cliSerial->printf_P(PSTR("\n'Y' = factory reset, any other key to abort:\n")); |
|
|
|
do { |
|
c = cliSerial->read(); |
|
} while (-1 == c); |
|
|
|
if (('y' != c) && ('Y' != c)) |
|
return(-1); |
|
|
|
AP_Param::erase_all(); |
|
cliSerial->printf_P(PSTR("\nReboot APM")); |
|
|
|
delay(1000); |
|
|
|
for (;; ) { |
|
} |
|
// note, cannot actually return here |
|
return(0); |
|
} |
|
|
|
// Perform radio setup. |
|
// Called by the setup menu 'radio' command. |
|
static int8_t |
|
setup_radio(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
cliSerial->println_P(PSTR("\n\nRadio Setup:")); |
|
uint8_t i; |
|
|
|
for(i = 0; i < 100; i++) { |
|
delay(20); |
|
read_radio(); |
|
} |
|
|
|
if(g.rc_1.radio_in < 500) { |
|
while(1) { |
|
//cliSerial->printf_P(PSTR("\nNo radio; Check connectors.")); |
|
delay(1000); |
|
// stop here |
|
} |
|
} |
|
|
|
g.rc_1.radio_min = g.rc_1.radio_in; |
|
g.rc_2.radio_min = g.rc_2.radio_in; |
|
g.rc_3.radio_min = g.rc_3.radio_in; |
|
g.rc_4.radio_min = g.rc_4.radio_in; |
|
g.rc_5.radio_min = g.rc_5.radio_in; |
|
g.rc_6.radio_min = g.rc_6.radio_in; |
|
g.rc_7.radio_min = g.rc_7.radio_in; |
|
g.rc_8.radio_min = g.rc_8.radio_in; |
|
|
|
g.rc_1.radio_max = g.rc_1.radio_in; |
|
g.rc_2.radio_max = g.rc_2.radio_in; |
|
g.rc_3.radio_max = g.rc_3.radio_in; |
|
g.rc_4.radio_max = g.rc_4.radio_in; |
|
g.rc_5.radio_max = g.rc_5.radio_in; |
|
g.rc_6.radio_max = g.rc_6.radio_in; |
|
g.rc_7.radio_max = g.rc_7.radio_in; |
|
g.rc_8.radio_max = g.rc_8.radio_in; |
|
|
|
g.rc_1.radio_trim = g.rc_1.radio_in; |
|
g.rc_2.radio_trim = g.rc_2.radio_in; |
|
g.rc_4.radio_trim = g.rc_4.radio_in; |
|
// 3 is not trimed |
|
g.rc_5.radio_trim = 1500; |
|
g.rc_6.radio_trim = 1500; |
|
g.rc_7.radio_trim = 1500; |
|
g.rc_8.radio_trim = 1500; |
|
|
|
|
|
cliSerial->printf_P(PSTR("\nMove all controls to extremes. Enter to save: ")); |
|
while(1) { |
|
|
|
delay(20); |
|
// Filters radio input - adjust filters in the radio.pde file |
|
// ---------------------------------------------------------- |
|
read_radio(); |
|
|
|
g.rc_1.update_min_max(); |
|
g.rc_2.update_min_max(); |
|
g.rc_3.update_min_max(); |
|
g.rc_4.update_min_max(); |
|
g.rc_5.update_min_max(); |
|
g.rc_6.update_min_max(); |
|
g.rc_7.update_min_max(); |
|
g.rc_8.update_min_max(); |
|
|
|
if(cliSerial->available() > 0) { |
|
delay(20); |
|
while (cliSerial->read() != -1); /* flush */ |
|
|
|
g.rc_1.save_eeprom(); |
|
g.rc_2.save_eeprom(); |
|
g.rc_3.save_eeprom(); |
|
g.rc_4.save_eeprom(); |
|
g.rc_5.save_eeprom(); |
|
g.rc_6.save_eeprom(); |
|
g.rc_7.save_eeprom(); |
|
g.rc_8.save_eeprom(); |
|
|
|
print_done(); |
|
break; |
|
} |
|
} |
|
report_radio(); |
|
return(0); |
|
} |
|
|
|
static int8_t |
|
setup_motors(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
cliSerial->printf_P(PSTR( |
|
"Connect battery for this test.\n" |
|
"Motors will not spin in channel order (1,2,3,4) but by frame position order.\n" |
|
"Front (& right of centerline) motor first, then in clockwise order around frame.\n" |
|
"http://code.google.com/p/arducopter/wiki/AC2_Props_2 for demo video.\n" |
|
"Remember to disconnect battery after this test.\n" |
|
"Any key to exit.\n")); |
|
while(1) { |
|
delay(20); |
|
read_radio(); |
|
motors.output_test(); |
|
if(cliSerial->available() > 0) { |
|
g.esc_calibrate.set_and_save(0); |
|
return(0); |
|
} |
|
} |
|
} |
|
|
|
static int8_t |
|
setup_accel(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
ahrs.init(); |
|
ins.init(AP_InertialSensor::COLD_START, |
|
ins_sample_rate, |
|
flash_leds); |
|
ins.init_accel(flash_leds); |
|
ahrs.set_trim(Vector3f(0,0,0)); // clear out saved trim |
|
report_ins(); |
|
return(0); |
|
} |
|
|
|
static int8_t |
|
setup_accel_scale(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
float trim_roll, trim_pitch; |
|
|
|
cliSerial->println_P(PSTR("Initialising gyros")); |
|
ahrs.init(); |
|
ins.init(AP_InertialSensor::COLD_START, |
|
ins_sample_rate, |
|
flash_leds); |
|
AP_InertialSensor_UserInteractStream interact(hal.console); |
|
if(ins.calibrate_accel(flash_leds, &interact, trim_roll, trim_pitch)) { |
|
// reset ahrs's trim to suggested values from calibration routine |
|
ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0)); |
|
} |
|
report_ins(); |
|
return(0); |
|
} |
|
|
|
static int8_t |
|
setup_frame(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
if (!strcmp_P(argv[1].str, PSTR("x"))) { |
|
g.frame_orientation.set_and_save(X_FRAME); |
|
} else if (!strcmp_P(argv[1].str, PSTR("p"))) { |
|
g.frame_orientation.set_and_save(PLUS_FRAME); |
|
} else if (!strcmp_P(argv[1].str, PSTR("+"))) { |
|
g.frame_orientation.set_and_save(PLUS_FRAME); |
|
} else if (!strcmp_P(argv[1].str, PSTR("v"))) { |
|
g.frame_orientation.set_and_save(V_FRAME); |
|
}else{ |
|
cliSerial->printf_P(PSTR("\nOp:[x,+,v]\n")); |
|
report_frame(); |
|
return 0; |
|
} |
|
|
|
report_frame(); |
|
return 0; |
|
} |
|
|
|
static int8_t |
|
setup_flightmodes(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
uint8_t _switchPosition = 0; |
|
uint8_t _oldSwitchPosition = 0; |
|
int8_t mode = 0; |
|
|
|
cliSerial->printf_P(PSTR("\nMode switch to edit, aileron: select modes, rudder: Simple on/off\n")); |
|
print_hit_enter(); |
|
|
|
while(1) { |
|
delay(20); |
|
read_radio(); |
|
_switchPosition = readSwitch(); |
|
|
|
|
|
// look for control switch change |
|
if (_oldSwitchPosition != _switchPosition) { |
|
|
|
mode = flight_modes[_switchPosition]; |
|
mode = constrain_int16(mode, 0, NUM_MODES-1); |
|
|
|
// update the user |
|
print_switch(_switchPosition, mode, BIT_IS_SET(g.simple_modes, _switchPosition)); |
|
|
|
// Remember switch position |
|
_oldSwitchPosition = _switchPosition; |
|
} |
|
|
|
// look for stick input |
|
if (abs(g.rc_1.control_in) > 3000) { |
|
mode++; |
|
if(mode >= NUM_MODES) |
|
mode = 0; |
|
|
|
// save new mode |
|
flight_modes[_switchPosition] = mode; |
|
|
|
// print new mode |
|
print_switch(_switchPosition, mode, BIT_IS_SET(g.simple_modes, _switchPosition)); |
|
delay(500); |
|
} |
|
|
|
// look for stick input |
|
if (g.rc_4.control_in > 3000) { |
|
g.simple_modes |= (1<<_switchPosition); |
|
// print new mode |
|
print_switch(_switchPosition, mode, BIT_IS_SET(g.simple_modes, _switchPosition)); |
|
delay(500); |
|
} |
|
|
|
// look for stick input |
|
if (g.rc_4.control_in < -3000) { |
|
g.simple_modes &= ~(1<<_switchPosition); |
|
// print new mode |
|
print_switch(_switchPosition, mode, BIT_IS_SET(g.simple_modes, _switchPosition)); |
|
delay(500); |
|
} |
|
|
|
// escape hatch |
|
if(cliSerial->available() > 0) { |
|
for (mode = 0; mode < 6; mode++) |
|
flight_modes[mode].save(); |
|
|
|
g.simple_modes.save(); |
|
print_done(); |
|
report_flight_modes(); |
|
return (0); |
|
} |
|
} |
|
} |
|
|
|
static int8_t |
|
setup_declination(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
compass.set_declination(radians(argv[1].f)); |
|
report_compass(); |
|
return 0; |
|
} |
|
|
|
static int8_t |
|
setup_tune(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
g.radio_tuning.set_and_save(argv[1].i); |
|
report_tuning(); |
|
return 0; |
|
} |
|
|
|
static int8_t |
|
setup_range(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
cliSerial->printf_P(PSTR("\nCH 6 Ranges are divided by 1000: [low, high]\n")); |
|
|
|
g.radio_tuning_low.set_and_save(argv[1].i); |
|
g.radio_tuning_high.set_and_save(argv[2].i); |
|
report_tuning(); |
|
return 0; |
|
} |
|
|
|
|
|
|
|
static int8_t |
|
setup_erase(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
zero_eeprom(); |
|
return 0; |
|
} |
|
|
|
static int8_t |
|
setup_compass(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
if (!strcmp_P(argv[1].str, PSTR("on"))) { |
|
g.compass_enabled.set_and_save(true); |
|
init_compass(); |
|
|
|
} else if (!strcmp_P(argv[1].str, PSTR("off"))) { |
|
clear_offsets(); |
|
g.compass_enabled.set_and_save(false); |
|
|
|
}else{ |
|
cliSerial->printf_P(PSTR("\nOp:[on,off]\n")); |
|
report_compass(); |
|
return 0; |
|
} |
|
|
|
g.compass_enabled.save(); |
|
report_compass(); |
|
return 0; |
|
} |
|
|
|
// setup_compassmot - sets compass's motor interference parameters |
|
static int8_t |
|
setup_compassmot(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
int8_t comp_type; // throttle or current based compensation |
|
Vector3f compass_base; // compass vector when throttle is zero |
|
Vector3f motor_impact; // impact of motors on compass vector |
|
Vector3f motor_impact_scaled; // impact of motors on compass vector scaled with throttle |
|
Vector3f motor_compensation; // final compensation to be stored to eeprom |
|
float throttle_pct; // throttle as a percentage 0.0 ~ 1.0 |
|
float throttle_pct_max = 0.0f; // maximum throttle reached (as a percentage 0~1.0) |
|
float current_amps_max = 0.0f; // maximum current reached |
|
float interference_pct; // interference as a percentage of total mag field (for reporting purposes only) |
|
uint32_t last_run_time; |
|
uint8_t print_counter = 49; |
|
bool updated = false; // have we updated the compensation vector at least once |
|
|
|
// default compensation type to use current if possible |
|
if( g.battery_monitoring == BATT_MONITOR_VOLTAGE_AND_CURRENT ) { |
|
comp_type = AP_COMPASS_MOT_COMP_CURRENT; |
|
}else{ |
|
comp_type = AP_COMPASS_MOT_COMP_THROTTLE; |
|
} |
|
|
|
// check if user wants throttle compensation |
|
if( !strcmp_P(argv[1].str, PSTR("t")) || !strcmp_P(argv[1].str, PSTR("T")) ) { |
|
comp_type = AP_COMPASS_MOT_COMP_THROTTLE; |
|
} |
|
|
|
// check if user wants current compensation |
|
if( !strcmp_P(argv[1].str, PSTR("c")) || !strcmp_P(argv[1].str, PSTR("C")) ) { |
|
comp_type = AP_COMPASS_MOT_COMP_CURRENT; |
|
} |
|
|
|
// check if radio is calibration |
|
pre_arm_rc_checks(); |
|
if(!ap.pre_arm_rc_check) { |
|
cliSerial->print_P(PSTR("radio not calibrated, exiting")); |
|
return 0; |
|
} |
|
|
|
// check compass is enabled |
|
if( !g.compass_enabled ) { |
|
cliSerial->print_P(PSTR("compass disabled, exiting")); |
|
return 0; |
|
} |
|
|
|
// check if we have a current monitor |
|
if( comp_type == AP_COMPASS_MOT_COMP_CURRENT && g.battery_monitoring != BATT_MONITOR_VOLTAGE_AND_CURRENT ) { |
|
cliSerial->print_P(PSTR("current monitor disabled, exiting")); |
|
return 0; |
|
} |
|
|
|
// initialise compass |
|
init_compass(); |
|
|
|
// disable motor compensation |
|
compass.motor_compensation_type(AP_COMPASS_MOT_COMP_DISABLED); |
|
compass.set_motor_compensation(Vector3f(0,0,0)); |
|
|
|
// print warning that motors will spin |
|
// ask user to raise throttle |
|
// inform how to stop test |
|
cliSerial->print_P(PSTR("This records the impact on the compass of running the motors. The motors will spin!\nHold throttle low, then raise to mid for 5 sec, then quickly back to low.\nAt any time you may press any key to exit.\n\nmeasuring compass vs ")); |
|
|
|
// inform what type of compensation we are attempting |
|
if( comp_type == AP_COMPASS_MOT_COMP_CURRENT ) { |
|
cliSerial->print_P(PSTR("CURRENT\n")); |
|
}else{ |
|
cliSerial->print_P(PSTR("THROTTLE\n")); |
|
} |
|
|
|
// clear out user input |
|
while( cliSerial->available() ) { |
|
cliSerial->read(); |
|
} |
|
|
|
// disable throttle and battery failsafe |
|
g.failsafe_throttle = FS_THR_DISABLED; |
|
g.failsafe_battery_enabled = false; |
|
|
|
// read radio |
|
read_radio(); |
|
|
|
// exit immediately if throttle is not zero |
|
if( g.rc_3.control_in != 0 ) { |
|
cliSerial->print_P(PSTR("throttle not zero, exiting\n")); |
|
return 0; |
|
} |
|
|
|
// get some initial compass readings |
|
last_run_time = millis(); |
|
while( millis() - last_run_time < 2000 ) { |
|
compass.accumulate(); |
|
} |
|
compass.read(); |
|
|
|
// exit immediately if the compass is not healthy |
|
if( !compass.healthy ) { |
|
cliSerial->print_P(PSTR("compass not healthy, exiting\n")); |
|
return 0; |
|
} |
|
|
|
// store initial x,y,z compass values |
|
compass_base.x = compass.mag_x; |
|
compass_base.y = compass.mag_y; |
|
compass_base.z = compass.mag_z; |
|
|
|
// initialise motor compensation |
|
motor_compensation = Vector3f(0,0,0); |
|
|
|
// clear out any user input |
|
while( cliSerial->available() ) { |
|
cliSerial->read(); |
|
} |
|
|
|
// enable motors and pass through throttle |
|
init_rc_out(); |
|
output_min(); |
|
motors.armed(true); |
|
|
|
// initialise run time |
|
last_run_time = millis(); |
|
|
|
// main run while there is no user input and the compass is healthy |
|
while(!cliSerial->available() && compass.healthy) { |
|
|
|
// 50hz loop |
|
if( millis() - last_run_time > 20 ) { |
|
last_run_time = millis(); |
|
|
|
// read radio input |
|
read_radio(); |
|
|
|
// pass through throttle to motors |
|
motors.throttle_pass_through(); |
|
|
|
// read some compass values |
|
compass.read(); |
|
|
|
// read current |
|
read_battery(); |
|
|
|
// calculate scaling for throttle |
|
throttle_pct = (float)g.rc_3.control_in / 1000.0f; |
|
throttle_pct = constrain_float(throttle_pct,0.0f,1.0f); |
|
|
|
// if throttle is zero, update base x,y,z values |
|
if( throttle_pct == 0.0f ) { |
|
compass_base.x = compass_base.x * 0.99f + (float)compass.mag_x * 0.01f; |
|
compass_base.y = compass_base.y * 0.99f + (float)compass.mag_y * 0.01f; |
|
compass_base.z = compass_base.z * 0.99f + (float)compass.mag_z * 0.01f; |
|
|
|
// causing printing to happen as soon as throttle is lifted |
|
print_counter = 49; |
|
}else{ |
|
|
|
// calculate diff from compass base and scale with throttle |
|
motor_impact.x = compass.mag_x - compass_base.x; |
|
motor_impact.y = compass.mag_y - compass_base.y; |
|
motor_impact.z = compass.mag_z - compass_base.z; |
|
|
|
// throttle based compensation |
|
if( comp_type == AP_COMPASS_MOT_COMP_THROTTLE ) { |
|
// scale by throttle |
|
motor_impact_scaled = motor_impact / throttle_pct; |
|
|
|
// adjust the motor compensation to negate the impact |
|
motor_compensation = motor_compensation * 0.99f - motor_impact_scaled * 0.01f; |
|
updated = true; |
|
}else{ |
|
// current based compensation if more than 3amps being drawn |
|
motor_impact_scaled = motor_impact / current_amps1; |
|
|
|
// adjust the motor compensation to negate the impact if drawing over 3amps |
|
if( current_amps1 >= 3.0f ) { |
|
motor_compensation = motor_compensation * 0.99f - motor_impact_scaled * 0.01f; |
|
updated = true; |
|
} |
|
} |
|
|
|
// record maximum throttle and current |
|
throttle_pct_max = max(throttle_pct_max, throttle_pct); |
|
current_amps_max = max(current_amps_max, current_amps1); |
|
|
|
// display output at 1hz if throttle is above zero |
|
print_counter++; |
|
if(print_counter >= 50) { |
|
print_counter = 0; |
|
cliSerial->printf_P(PSTR("thr:%d cur:%4.2f mot x:%4.1f y:%4.1f z:%4.1f comp x:%4.2f y:%4.2f z:%4.2f\n"),(int)g.rc_3.control_in, (float)current_amps1, (float)motor_impact.x, (float)motor_impact.y, (float)motor_impact.z, (float)motor_compensation.x, (float)motor_compensation.y, (float)motor_compensation.z); |
|
} |
|
} |
|
}else{ |
|
// grab some compass values |
|
compass.accumulate(); |
|
} |
|
} |
|
|
|
// stop motors |
|
motors.output_min(); |
|
motors.armed(false); |
|
|
|
// clear out any user input |
|
while( cliSerial->available() ) { |
|
cliSerial->read(); |
|
} |
|
|
|
// print one more time so the last thing printed matches what appears in the report_compass |
|
cliSerial->printf_P(PSTR("thr:%d cur:%4.2f mot x:%4.1f y:%4.1f z:%4.1f comp x:%4.2f y:%4.2f z:%4.2f\n"),(int)g.rc_3.control_in, (float)current_amps1, (float)motor_impact.x, (float)motor_impact.y, (float)motor_impact.z, (float)motor_compensation.x, (float)motor_compensation.y, (float)motor_compensation.z); |
|
|
|
// set and save motor compensation |
|
if( updated ) { |
|
compass.motor_compensation_type(comp_type); |
|
compass.set_motor_compensation(motor_compensation); |
|
compass.save_motor_compensation(); |
|
|
|
// calculate and display interference compensation at full throttle as % of total mag field |
|
if (comp_type == AP_COMPASS_MOT_COMP_THROTTLE) { |
|
// interference is impact@fullthrottle / mag field * 100 |
|
interference_pct = motor_compensation.length() / (float)COMPASS_MAGFIELD_EXPECTED * 100.0f; |
|
}else{ |
|
// interference is impact/amp * (max current seen / max throttle seen) / mag field * 100 |
|
interference_pct = motor_compensation.length() * (current_amps_max/throttle_pct_max) / 330.0f * 100.0f; |
|
} |
|
cliSerial->printf_P(PSTR("\nInterference at full throttle is %d%% of mag field\n\n"),(int)interference_pct); |
|
}else{ |
|
// compensation vector never updated, report failure |
|
cliSerial->printf_P(PSTR("Failed! Compensation disabled. Did you forget to raise the throttle high enough?")); |
|
compass.motor_compensation_type(AP_COMPASS_MOT_COMP_DISABLED); |
|
} |
|
|
|
// display new motor offsets and save |
|
report_compass(); |
|
|
|
return 0; |
|
} |
|
|
|
static int8_t |
|
setup_batt_monitor(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
if (!strcmp_P(argv[1].str, PSTR("off"))) { |
|
g.battery_monitoring.set_and_save(0); |
|
|
|
} else if(argv[1].i > 0 && argv[1].i <= 4) { |
|
g.battery_monitoring.set_and_save(argv[1].i); |
|
|
|
} else { |
|
cliSerial->printf_P(PSTR("\nOp: off, 3-4")); |
|
} |
|
|
|
report_batt_monitor(); |
|
return 0; |
|
} |
|
|
|
static int8_t |
|
setup_sonar(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
if (!strcmp_P(argv[1].str, PSTR("on"))) { |
|
g.sonar_enabled.set_and_save(true); |
|
|
|
} else if (!strcmp_P(argv[1].str, PSTR("off"))) { |
|
g.sonar_enabled.set_and_save(false); |
|
|
|
} else if (argc > 1 && (argv[1].i >= 0 && argv[1].i <= 3)) { |
|
g.sonar_enabled.set_and_save(true); // if you set the sonar type, surely you want it on |
|
g.sonar_type.set_and_save(argv[1].i); |
|
|
|
}else{ |
|
cliSerial->printf_P(PSTR("\nOp:[on, off, 0-3]\n")); |
|
report_sonar(); |
|
return 0; |
|
} |
|
|
|
report_sonar(); |
|
return 0; |
|
} |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
|
|
// Perform heli setup. |
|
// Called by the setup menu 'radio' command. |
|
static int8_t |
|
setup_heli(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
|
|
uint8_t active_servo = 0; |
|
int16_t value = 0; |
|
int16_t temp; |
|
int16_t state = 0; // 0 = set rev+pos, 1 = capture min/max |
|
int16_t max_roll=0, max_pitch=0, min_collective=0, max_collective=0, min_tail=0, max_tail=0; |
|
|
|
// initialise swash plate |
|
motors.init_swash(); |
|
|
|
// source swash plate movements directly from radio |
|
motors.servo_manual = true; |
|
|
|
// display initial settings |
|
report_heli(); |
|
|
|
// display help |
|
cliSerial->printf_P(PSTR("Instructions:")); |
|
print_divider(); |
|
cliSerial->printf_P(PSTR("\td\t\tdisplay settings\n")); |
|
cliSerial->printf_P(PSTR("\t1~4\t\tselect servo\n")); |
|
cliSerial->printf_P(PSTR("\ta or z\t\tmove mid up/down\n")); |
|
cliSerial->printf_P(PSTR("\tc\t\tset coll when blade pitch zero\n")); |
|
cliSerial->printf_P(PSTR("\tm\t\tset roll, pitch, coll min/max\n")); |
|
cliSerial->printf_P(PSTR("\tp<angle>\tset pos (i.e. p0 = front, p90 = right)\n")); |
|
cliSerial->printf_P(PSTR("\tr\t\treverse servo\n")); |
|
cliSerial->printf_P(PSTR("\tu a|d\t\tupdate rate (a=analog servo, d=digital)\n")); |
|
cliSerial->printf_P(PSTR("\tt<angle>\tset trim (-500 ~ 500)\n")); |
|
cliSerial->printf_P(PSTR("\tx\t\texit & save\n")); |
|
|
|
// start capturing |
|
while( value != 'x' ) { |
|
|
|
// read radio although we don't use it yet |
|
read_radio(); |
|
|
|
// allow swash plate to move |
|
motors.output_armed(); |
|
|
|
// record min/max |
|
if( state == 1 ) { |
|
if( abs(g.rc_1.control_in) > max_roll ) |
|
max_roll = abs(g.rc_1.control_in); |
|
if( abs(g.rc_2.control_in) > max_pitch ) |
|
max_pitch = abs(g.rc_2.control_in); |
|
if( g.rc_3.radio_out < min_collective ) |
|
min_collective = g.rc_3.radio_out; |
|
if( g.rc_3.radio_out > max_collective ) |
|
max_collective = g.rc_3.radio_out; |
|
min_tail = min(g.rc_4.radio_out, min_tail); |
|
max_tail = max(g.rc_4.radio_out, max_tail); |
|
} |
|
|
|
if( cliSerial->available() ) { |
|
value = cliSerial->read(); |
|
|
|
// process the user's input |
|
switch( value ) { |
|
case '1': |
|
active_servo = CH_1; |
|
break; |
|
case '2': |
|
active_servo = CH_2; |
|
break; |
|
case '3': |
|
active_servo = CH_3; |
|
break; |
|
case '4': |
|
active_servo = CH_4; |
|
break; |
|
case 'a': |
|
case 'A': |
|
heli_get_servo(active_servo)->radio_trim += 10; |
|
break; |
|
case 'c': |
|
case 'C': |
|
if( g.rc_3.radio_out >= 900 && g.rc_3.radio_out <= 2100 ) { |
|
motors.collective_mid = g.rc_3.radio_out; |
|
cliSerial->printf_P(PSTR("Collective when blade pitch at zero: %d\n"),(int)motors.collective_mid); |
|
} |
|
break; |
|
case 'd': |
|
case 'D': |
|
// display settings |
|
report_heli(); |
|
break; |
|
case 'm': |
|
case 'M': |
|
if( state == 0 ) { |
|
state = 1; // switch to capture min/max mode |
|
cliSerial->printf_P(PSTR("Move coll, roll, pitch and tail to extremes, press 'm' when done\n")); |
|
|
|
// reset servo ranges |
|
motors.roll_max = motors.pitch_max = 4500; |
|
motors.collective_min = 1000; |
|
motors.collective_max = 2000; |
|
motors._servo_4->radio_min = 1000; |
|
motors._servo_4->radio_max = 2000; |
|
|
|
// set sensible values in temp variables |
|
max_roll = abs(g.rc_1.control_in); |
|
max_pitch = abs(g.rc_2.control_in); |
|
min_collective = 2000; |
|
max_collective = 1000; |
|
min_tail = max_tail = abs(g.rc_4.radio_out); |
|
}else{ |
|
state = 0; // switch back to normal mode |
|
// double check values aren't totally terrible |
|
if( max_roll <= 1000 || max_pitch <= 1000 || (max_collective - min_collective < 200) || (max_tail - min_tail < 200) || min_tail < 1000 || max_tail > 2000 ) |
|
cliSerial->printf_P(PSTR("Invalid min/max captured roll:%d, pitch:%d, collective min: %d max: %d, tail min:%d max:%d\n"),max_roll,max_pitch,min_collective,max_collective,min_tail,max_tail); |
|
else{ |
|
motors.roll_max = max_roll; |
|
motors.pitch_max = max_pitch; |
|
motors.collective_min = min_collective; |
|
motors.collective_max = max_collective; |
|
motors._servo_4->radio_min = min_tail; |
|
motors._servo_4->radio_max = max_tail; |
|
|
|
// reinitialise swash |
|
motors.init_swash(); |
|
|
|
// display settings |
|
report_heli(); |
|
} |
|
} |
|
break; |
|
case 'p': |
|
case 'P': |
|
temp = read_num_from_serial(); |
|
if( temp >= -360 && temp <= 360 ) { |
|
if( active_servo == CH_1 ) |
|
motors.servo1_pos = temp; |
|
if( active_servo == CH_2 ) |
|
motors.servo2_pos = temp; |
|
if( active_servo == CH_3 ) |
|
motors.servo3_pos = temp; |
|
motors.init_swash(); |
|
cliSerial->printf_P(PSTR("Servo %d\t\tpos:%d\n"),active_servo+1, temp); |
|
} |
|
break; |
|
case 'r': |
|
case 'R': |
|
heli_get_servo(active_servo)->set_reverse(!heli_get_servo(active_servo)->get_reverse()); |
|
break; |
|
case 't': |
|
case 'T': |
|
temp = read_num_from_serial(); |
|
if( temp > 1000 ) |
|
temp -= 1500; |
|
if( temp > -500 && temp < 500 ) { |
|
heli_get_servo(active_servo)->radio_trim = 1500 + temp; |
|
motors.init_swash(); |
|
cliSerial->printf_P(PSTR("Servo %d\t\ttrim:%d\n"),active_servo+1, 1500 + temp); |
|
} |
|
break; |
|
case 'u': |
|
case 'U': |
|
temp = 0; |
|
// delay up to 2 seconds for servo type from user |
|
while( !cliSerial->available() && temp < 20 ) { |
|
temp++; |
|
delay(100); |
|
} |
|
if( cliSerial->available() ) { |
|
value = cliSerial->read(); |
|
if( value == 'a' || value == 'A' ) { |
|
g.rc_speed.set_and_save(AP_MOTORS_HELI_SPEED_ANALOG_SERVOS); |
|
//motors._speed_hz = AP_MOTORS_HELI_SPEED_ANALOG_SERVOS; // need to force this update to take effect immediately |
|
cliSerial->printf_P(PSTR("Analog Servo %dhz\n"),(int)g.rc_speed); |
|
} |
|
if( value == 'd' || value == 'D' ) { |
|
g.rc_speed.set_and_save(AP_MOTORS_HELI_SPEED_ANALOG_SERVOS); |
|
//motors._speed_hz = AP_MOTORS_HELI_SPEED_ANALOG_SERVOS; // need to force this update to take effect immediately |
|
cliSerial->printf_P(PSTR("Digital Servo %dhz\n"),(int)g.rc_speed); |
|
} |
|
} |
|
break; |
|
case 'z': |
|
case 'Z': |
|
heli_get_servo(active_servo)->radio_trim -= 10; |
|
break; |
|
} |
|
} |
|
|
|
delay(20); |
|
} |
|
|
|
// display final settings |
|
report_heli(); |
|
|
|
// save to eeprom |
|
motors._servo_1->save_eeprom(); |
|
motors._servo_2->save_eeprom(); |
|
motors._servo_3->save_eeprom(); |
|
motors._servo_4->save_eeprom(); |
|
motors.servo1_pos.save(); |
|
motors.servo2_pos.save(); |
|
motors.servo3_pos.save(); |
|
motors.roll_max.save(); |
|
motors.pitch_max.save(); |
|
motors.collective_min.save(); |
|
motors.collective_max.save(); |
|
motors.collective_mid.save(); |
|
|
|
// return swash plate movements to attitude controller |
|
motors.servo_manual = false; |
|
|
|
return(0); |
|
} |
|
|
|
// setup for external tail gyro (for heli only) |
|
static int8_t |
|
setup_gyro(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
if (!strcmp_P(argv[1].str, PSTR("on"))) { |
|
motors.ext_gyro_enabled.set_and_save(true); |
|
|
|
// optionally capture the gain |
|
if( argc >= 2 && argv[2].i >= 1000 && argv[2].i <= 2000 ) { |
|
motors.ext_gyro_gain = argv[2].i; |
|
motors.ext_gyro_gain.save(); |
|
} |
|
|
|
} else if (!strcmp_P(argv[1].str, PSTR("off"))) { |
|
motors.ext_gyro_enabled.set_and_save(false); |
|
|
|
// capture gain if user simply provides a number |
|
} else if( argv[1].i >= 1000 && argv[1].i <= 2000 ) { |
|
motors.ext_gyro_enabled.set_and_save(true); |
|
motors.ext_gyro_gain = argv[1].i; |
|
motors.ext_gyro_gain.save(); |
|
|
|
}else{ |
|
cliSerial->printf_P(PSTR("\nOp:[on, off] gain\n")); |
|
} |
|
|
|
report_gyro(); |
|
return 0; |
|
} |
|
|
|
#endif // FRAME_CONFIG == HELI |
|
|
|
static void clear_offsets() |
|
{ |
|
Vector3f _offsets(0.0,0.0,0.0); |
|
compass.set_offsets(_offsets); |
|
compass.save_offsets(); |
|
} |
|
|
|
static int8_t |
|
setup_optflow(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
#if OPTFLOW == ENABLED |
|
if (!strcmp_P(argv[1].str, PSTR("on"))) { |
|
g.optflow_enabled = true; |
|
init_optflow(); |
|
|
|
} else if (!strcmp_P(argv[1].str, PSTR("off"))) { |
|
g.optflow_enabled = false; |
|
|
|
}else{ |
|
cliSerial->printf_P(PSTR("\nOp:[on, off]\n")); |
|
report_optflow(); |
|
return 0; |
|
} |
|
|
|
g.optflow_enabled.save(); |
|
report_optflow(); |
|
#endif // OPTFLOW == ENABLED |
|
return 0; |
|
} |
|
|
|
//Set a parameter to a specified value. It will cast the value to the current type of the |
|
//parameter and make sure it fits in case of INT8 and INT16 |
|
static int8_t setup_set(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
int8_t value_int8; |
|
int16_t value_int16; |
|
|
|
AP_Param *param; |
|
enum ap_var_type p_type; |
|
|
|
if(argc!=3) |
|
{ |
|
cliSerial->printf_P(PSTR("Invalid command. Usage: set <name> <value>\n")); |
|
return 0; |
|
} |
|
|
|
param = AP_Param::find(argv[1].str, &p_type); |
|
if(!param) |
|
{ |
|
cliSerial->printf_P(PSTR("Param not found: %s\n"), argv[1].str); |
|
return 0; |
|
} |
|
|
|
switch(p_type) |
|
{ |
|
case AP_PARAM_INT8: |
|
value_int8 = (int8_t)(argv[2].i); |
|
if(argv[2].i!=value_int8) |
|
{ |
|
cliSerial->printf_P(PSTR("Value out of range for type INT8\n")); |
|
return 0; |
|
} |
|
((AP_Int8*)param)->set_and_save(value_int8); |
|
break; |
|
case AP_PARAM_INT16: |
|
value_int16 = (int16_t)(argv[2].i); |
|
if(argv[2].i!=value_int16) |
|
{ |
|
cliSerial->printf_P(PSTR("Value out of range for type INT16\n")); |
|
return 0; |
|
} |
|
((AP_Int16*)param)->set_and_save(value_int16); |
|
break; |
|
|
|
//int32 and float don't need bounds checking, just use the value provoded by Menu::arg |
|
case AP_PARAM_INT32: |
|
((AP_Int32*)param)->set_and_save(argv[2].i); |
|
break; |
|
case AP_PARAM_FLOAT: |
|
((AP_Float*)param)->set_and_save(argv[2].f); |
|
break; |
|
default: |
|
cliSerial->printf_P(PSTR("Cannot set parameter of type %d.\n"), p_type); |
|
break; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/***************************************************************************/ |
|
// CLI reports |
|
/***************************************************************************/ |
|
|
|
static void report_batt_monitor() |
|
{ |
|
cliSerial->printf_P(PSTR("\nBatt Mon:\n")); |
|
print_divider(); |
|
if(g.battery_monitoring == BATT_MONITOR_DISABLED) print_enabled(false); |
|
if(g.battery_monitoring == BATT_MONITOR_VOLTAGE_ONLY) cliSerial->printf_P(PSTR("volts")); |
|
if(g.battery_monitoring == BATT_MONITOR_VOLTAGE_AND_CURRENT) cliSerial->printf_P(PSTR("volts and cur")); |
|
print_blanks(2); |
|
} |
|
|
|
static void report_wp(uint8_t index = 255) |
|
{ |
|
if(index == 255) { |
|
for(uint8_t i = 0; i < g.command_total; i++) { |
|
struct Location temp = get_cmd_with_index(i); |
|
print_wp(&temp, i); |
|
} |
|
}else{ |
|
struct Location temp = get_cmd_with_index(index); |
|
print_wp(&temp, index); |
|
} |
|
} |
|
|
|
static void report_sonar() |
|
{ |
|
cliSerial->printf_P(PSTR("Sonar\n")); |
|
print_divider(); |
|
print_enabled(g.sonar_enabled.get()); |
|
cliSerial->printf_P(PSTR("Type: %d (0=XL, 1=LV, 2=XLL, 3=HRLV)"), (int)g.sonar_type); |
|
print_blanks(2); |
|
} |
|
|
|
static void report_frame() |
|
{ |
|
cliSerial->printf_P(PSTR("Frame\n")); |
|
print_divider(); |
|
|
|
#if FRAME_CONFIG == QUAD_FRAME |
|
cliSerial->printf_P(PSTR("Quad frame\n")); |
|
#elif FRAME_CONFIG == TRI_FRAME |
|
cliSerial->printf_P(PSTR("TRI frame\n")); |
|
#elif FRAME_CONFIG == HEXA_FRAME |
|
cliSerial->printf_P(PSTR("Hexa frame\n")); |
|
#elif FRAME_CONFIG == Y6_FRAME |
|
cliSerial->printf_P(PSTR("Y6 frame\n")); |
|
#elif FRAME_CONFIG == OCTA_FRAME |
|
cliSerial->printf_P(PSTR("Octa frame\n")); |
|
#elif FRAME_CONFIG == HELI_FRAME |
|
cliSerial->printf_P(PSTR("Heli frame\n")); |
|
#endif |
|
|
|
#if FRAME_CONFIG != HELI_FRAME |
|
if(g.frame_orientation == X_FRAME) |
|
cliSerial->printf_P(PSTR("X mode\n")); |
|
else if(g.frame_orientation == PLUS_FRAME) |
|
cliSerial->printf_P(PSTR("+ mode\n")); |
|
else if(g.frame_orientation == V_FRAME) |
|
cliSerial->printf_P(PSTR("V mode\n")); |
|
#endif |
|
|
|
print_blanks(2); |
|
} |
|
|
|
static void report_radio() |
|
{ |
|
cliSerial->printf_P(PSTR("Radio\n")); |
|
print_divider(); |
|
// radio |
|
print_radio_values(); |
|
print_blanks(2); |
|
} |
|
|
|
static void report_ins() |
|
{ |
|
cliSerial->printf_P(PSTR("INS\n")); |
|
print_divider(); |
|
|
|
print_gyro_offsets(); |
|
print_accel_offsets_and_scaling(); |
|
print_blanks(2); |
|
} |
|
|
|
static void report_compass() |
|
{ |
|
cliSerial->printf_P(PSTR("Compass\n")); |
|
print_divider(); |
|
|
|
print_enabled(g.compass_enabled); |
|
|
|
// mag declination |
|
cliSerial->printf_P(PSTR("Mag Dec: %4.4f\n"), |
|
degrees(compass.get_declination())); |
|
|
|
Vector3f offsets = compass.get_offsets(); |
|
|
|
// mag offsets |
|
cliSerial->printf_P(PSTR("Mag off: %4.4f, %4.4f, %4.4f\n"), |
|
offsets.x, |
|
offsets.y, |
|
offsets.z); |
|
|
|
// motor compensation |
|
cliSerial->print_P(PSTR("Motor Comp: ")); |
|
if( compass.motor_compensation_type() == AP_COMPASS_MOT_COMP_DISABLED ) { |
|
cliSerial->print_P(PSTR("Off\n")); |
|
}else{ |
|
if( compass.motor_compensation_type() == AP_COMPASS_MOT_COMP_THROTTLE ) { |
|
cliSerial->print_P(PSTR("Throttle")); |
|
} |
|
if( compass.motor_compensation_type() == AP_COMPASS_MOT_COMP_CURRENT ) { |
|
cliSerial->print_P(PSTR("Current")); |
|
} |
|
Vector3f motor_compensation = compass.get_motor_compensation(); |
|
cliSerial->printf_P(PSTR("\nComp Vec: %4.2f, %4.2f, %4.2f\n"), |
|
motor_compensation.x, |
|
motor_compensation.y, |
|
motor_compensation.z); |
|
} |
|
print_blanks(1); |
|
} |
|
|
|
static void report_flight_modes() |
|
{ |
|
cliSerial->printf_P(PSTR("Flight modes\n")); |
|
print_divider(); |
|
|
|
for(int16_t i = 0; i < 6; i++ ) { |
|
print_switch(i, flight_modes[i], BIT_IS_SET(g.simple_modes, i)); |
|
} |
|
print_blanks(2); |
|
} |
|
|
|
void report_optflow() |
|
{ |
|
#if OPTFLOW == ENABLED |
|
cliSerial->printf_P(PSTR("OptFlow\n")); |
|
print_divider(); |
|
|
|
print_enabled(g.optflow_enabled); |
|
|
|
print_blanks(2); |
|
#endif // OPTFLOW == ENABLED |
|
} |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
static void report_heli() |
|
{ |
|
cliSerial->printf_P(PSTR("Heli\n")); |
|
print_divider(); |
|
|
|
// main servo settings |
|
cliSerial->printf_P(PSTR("Servo \tpos \tmin \tmax \trev\n")); |
|
cliSerial->printf_P(PSTR("1:\t%d \t%d \t%d \t%d\n"),(int)motors.servo1_pos, (int)motors._servo_1->radio_min, (int)motors._servo_1->radio_max, (int)motors._servo_1->get_reverse()); |
|
cliSerial->printf_P(PSTR("2:\t%d \t%d \t%d \t%d\n"),(int)motors.servo2_pos, (int)motors._servo_2->radio_min, (int)motors._servo_2->radio_max, (int)motors._servo_2->get_reverse()); |
|
cliSerial->printf_P(PSTR("3:\t%d \t%d \t%d \t%d\n"),(int)motors.servo3_pos, (int)motors._servo_3->radio_min, (int)motors._servo_3->radio_max, (int)motors._servo_3->get_reverse()); |
|
cliSerial->printf_P(PSTR("tail:\t\t%d \t%d \t%d\n"), (int)motors._servo_4->radio_min, (int)motors._servo_4->radio_max, (int)motors._servo_4->get_reverse()); |
|
|
|
cliSerial->printf_P(PSTR("roll max: \t%d\n"), (int)motors.roll_max); |
|
cliSerial->printf_P(PSTR("pitch max: \t%d\n"), (int)motors.pitch_max); |
|
cliSerial->printf_P(PSTR("coll min:\t%d\t mid:%d\t max:%d\n"),(int)motors.collective_min, (int)motors.collective_mid, (int)motors.collective_max); |
|
|
|
// calculate and print servo rate |
|
cliSerial->printf_P(PSTR("servo rate:\t%d hz\n"),(int)g.rc_speed); |
|
|
|
print_blanks(2); |
|
} |
|
|
|
static void report_gyro() |
|
{ |
|
|
|
cliSerial->printf_P(PSTR("Gyro:\n")); |
|
print_divider(); |
|
|
|
print_enabled( motors.ext_gyro_enabled ); |
|
if( motors.ext_gyro_enabled ) |
|
cliSerial->printf_P(PSTR("gain: %d"),(int)motors.ext_gyro_gain); |
|
|
|
print_blanks(2); |
|
} |
|
|
|
#endif // FRAME_CONFIG == HELI_FRAME |
|
|
|
/***************************************************************************/ |
|
// CLI utilities |
|
/***************************************************************************/ |
|
|
|
/*static void |
|
* print_PID(PI * pid) |
|
* { |
|
* cliSerial->printf_P(PSTR("P: %4.2f, I:%4.2f, IMAX:%ld\n"), |
|
* pid->kP(), |
|
* pid->kI(), |
|
* (long)pid->imax()); |
|
* } |
|
*/ |
|
|
|
static void |
|
print_radio_values() |
|
{ |
|
cliSerial->printf_P(PSTR("CH1: %d | %d\n"), (int)g.rc_1.radio_min, (int)g.rc_1.radio_max); |
|
cliSerial->printf_P(PSTR("CH2: %d | %d\n"), (int)g.rc_2.radio_min, (int)g.rc_2.radio_max); |
|
cliSerial->printf_P(PSTR("CH3: %d | %d\n"), (int)g.rc_3.radio_min, (int)g.rc_3.radio_max); |
|
cliSerial->printf_P(PSTR("CH4: %d | %d\n"), (int)g.rc_4.radio_min, (int)g.rc_4.radio_max); |
|
cliSerial->printf_P(PSTR("CH5: %d | %d\n"), (int)g.rc_5.radio_min, (int)g.rc_5.radio_max); |
|
cliSerial->printf_P(PSTR("CH6: %d | %d\n"), (int)g.rc_6.radio_min, (int)g.rc_6.radio_max); |
|
cliSerial->printf_P(PSTR("CH7: %d | %d\n"), (int)g.rc_7.radio_min, (int)g.rc_7.radio_max); |
|
//cliSerial->printf_P(PSTR("CH8: %d | %d\n"), (int)g.rc_8.radio_min, (int)g.rc_8.radio_max); |
|
} |
|
|
|
static void |
|
print_switch(uint8_t p, uint8_t m, bool b) |
|
{ |
|
cliSerial->printf_P(PSTR("Pos %d:\t"),p); |
|
print_flight_mode(cliSerial, m); |
|
cliSerial->printf_P(PSTR(",\t\tSimple: ")); |
|
if(b) |
|
cliSerial->printf_P(PSTR("ON\n")); |
|
else |
|
cliSerial->printf_P(PSTR("OFF\n")); |
|
} |
|
|
|
static void |
|
print_done() |
|
{ |
|
cliSerial->printf_P(PSTR("\nSaved\n")); |
|
} |
|
|
|
|
|
static void zero_eeprom(void) |
|
{ |
|
cliSerial->printf_P(PSTR("\nErasing EEPROM\n")); |
|
|
|
for (uint16_t i = 0; i < EEPROM_MAX_ADDR; i++) { |
|
hal.storage->write_byte(i, 0); |
|
} |
|
|
|
cliSerial->printf_P(PSTR("done\n")); |
|
} |
|
|
|
static void |
|
print_accel_offsets_and_scaling(void) |
|
{ |
|
Vector3f accel_offsets = ins.get_accel_offsets(); |
|
Vector3f accel_scale = ins.get_accel_scale(); |
|
cliSerial->printf_P(PSTR("A_off: %4.2f, %4.2f, %4.2f\nA_scale: %4.2f, %4.2f, %4.2f\n"), |
|
(float)accel_offsets.x, // Pitch |
|
(float)accel_offsets.y, // Roll |
|
(float)accel_offsets.z, // YAW |
|
(float)accel_scale.x, // Pitch |
|
(float)accel_scale.y, // Roll |
|
(float)accel_scale.z); // YAW |
|
} |
|
|
|
static void |
|
print_gyro_offsets(void) |
|
{ |
|
Vector3f gyro_offsets = ins.get_gyro_offsets(); |
|
cliSerial->printf_P(PSTR("G_off: %4.2f, %4.2f, %4.2f\n"), |
|
(float)gyro_offsets.x, |
|
(float)gyro_offsets.y, |
|
(float)gyro_offsets.z); |
|
} |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
|
|
static RC_Channel * |
|
heli_get_servo(int16_t servo_num){ |
|
if( servo_num == CH_1 ) |
|
return motors._servo_1; |
|
if( servo_num == CH_2 ) |
|
return motors._servo_2; |
|
if( servo_num == CH_3 ) |
|
return motors._servo_3; |
|
if( servo_num == CH_4 ) |
|
return motors._servo_4; |
|
return NULL; |
|
} |
|
|
|
// Used to read integer values from the serial port |
|
static int16_t read_num_from_serial() { |
|
uint8_t index = 0; |
|
uint8_t timeout = 0; |
|
char data[5] = ""; |
|
|
|
do { |
|
if (cliSerial->available() == 0) { |
|
delay(10); |
|
timeout++; |
|
}else{ |
|
data[index] = cliSerial->read(); |
|
timeout = 0; |
|
index++; |
|
} |
|
} while (timeout < 5 && index < 5); |
|
|
|
return atoi(data); |
|
} |
|
#endif |
|
|
|
#endif // CLI_ENABLED |
|
|
|
static void |
|
print_blanks(int16_t num) |
|
{ |
|
while(num > 0) { |
|
num--; |
|
cliSerial->println(""); |
|
} |
|
} |
|
|
|
static void |
|
print_divider(void) |
|
{ |
|
for (int i = 0; i < 40; i++) { |
|
cliSerial->print_P(PSTR("-")); |
|
} |
|
cliSerial->println(); |
|
} |
|
|
|
static void print_enabled(bool b) |
|
{ |
|
if(b) |
|
cliSerial->print_P(PSTR("en")); |
|
else |
|
cliSerial->print_P(PSTR("dis")); |
|
cliSerial->print_P(PSTR("abled\n")); |
|
} |
|
|
|
|
|
static void |
|
init_esc() |
|
{ |
|
// reduce update rate to motors to 50Hz |
|
motors.set_update_rate(50); |
|
|
|
// we enable the motors directly here instead of calling output_min because output_min would send a low signal to the ESC and disrupt the calibration process |
|
motors.enable(); |
|
motors.armed(true); |
|
while(1) { |
|
read_radio(); |
|
delay(100); |
|
dancing_light(); |
|
motors.throttle_pass_through(); |
|
} |
|
} |
|
|
|
static void print_wp(const struct Location *cmd, uint8_t index) |
|
{ |
|
cliSerial->printf_P(PSTR("cmd#: %d | %d, %d, %d, %ld, %ld, %ld\n"), |
|
index, |
|
cmd->id, |
|
cmd->options, |
|
cmd->p1, |
|
cmd->alt, |
|
cmd->lat, |
|
cmd->lng); |
|
} |
|
|
|
static void report_version() |
|
{ |
|
cliSerial->printf_P(PSTR("FW Ver: %d\n"),(int)g.k_format_version); |
|
print_divider(); |
|
print_blanks(2); |
|
} |
|
|
|
|
|
static void report_tuning() |
|
{ |
|
cliSerial->printf_P(PSTR("\nTUNE:\n")); |
|
print_divider(); |
|
if (g.radio_tuning == 0) { |
|
print_enabled(g.radio_tuning.get()); |
|
}else{ |
|
float low = (float)g.radio_tuning_low.get() / 1000; |
|
float high = (float)g.radio_tuning_high.get() / 1000; |
|
cliSerial->printf_P(PSTR(" %d, Low:%1.4f, High:%1.4f\n"),(int)g.radio_tuning.get(), low, high); |
|
} |
|
print_blanks(2); |
|
}
|
|
|