You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
305 lines
10 KiB
305 lines
10 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
#ifndef __AP_INERTIAL_SENSOR_H__ |
|
#define __AP_INERTIAL_SENSOR_H__ |
|
|
|
// Gyro and Accelerometer calibration criteria |
|
#define AP_INERTIAL_SENSOR_ACCEL_TOT_MAX_OFFSET_CHANGE 4.0f |
|
#define AP_INERTIAL_SENSOR_ACCEL_MAX_OFFSET 250.0f |
|
|
|
/** |
|
maximum number of INS instances available on this platform. If more |
|
than 1 then redundent sensors may be available |
|
*/ |
|
#if HAL_CPU_CLASS > HAL_CPU_CLASS_16 |
|
#define INS_MAX_INSTANCES 3 |
|
#define INS_MAX_BACKENDS 6 |
|
#else |
|
#define INS_MAX_INSTANCES 1 |
|
#define INS_MAX_BACKENDS 1 |
|
#endif |
|
|
|
|
|
#include <stdint.h> |
|
#include <AP_HAL.h> |
|
#include <AP_Math.h> |
|
#include "AP_InertialSensor_UserInteract.h" |
|
|
|
class AP_InertialSensor_Backend; |
|
|
|
/* AP_InertialSensor is an abstraction for gyro and accel measurements |
|
* which are correctly aligned to the body axes and scaled to SI units. |
|
* |
|
* Gauss-Newton accel calibration routines borrowed from Rolfe Schmidt |
|
* blog post describing the method: http://chionophilous.wordpress.com/2011/10/24/accelerometer-calibration-iv-1-implementing-gauss-newton-on-an-atmega/ |
|
* original sketch available at http://rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde |
|
*/ |
|
class AP_InertialSensor |
|
{ |
|
friend class AP_InertialSensor_Backend; |
|
|
|
public: |
|
AP_InertialSensor(); |
|
|
|
enum Start_style { |
|
COLD_START = 0, |
|
WARM_START |
|
}; |
|
|
|
// the rate that updates will be available to the application |
|
enum Sample_rate { |
|
RATE_50HZ, |
|
RATE_100HZ, |
|
RATE_200HZ, |
|
RATE_400HZ |
|
}; |
|
|
|
/// Perform startup initialisation. |
|
/// |
|
/// Called to initialise the state of the IMU. |
|
/// |
|
/// For COLD_START, implementations using real sensors can assume |
|
/// that the airframe is stationary and nominally oriented. |
|
/// |
|
/// For WARM_START, no assumptions should be made about the |
|
/// orientation or motion of the airframe. Calibration should be |
|
/// as for the previous COLD_START call. |
|
/// |
|
/// @param style The initialisation startup style. |
|
/// |
|
void init( Start_style style, |
|
Sample_rate sample_rate); |
|
|
|
/// Perform cold startup initialisation for just the accelerometers. |
|
/// |
|
/// @note This should not be called unless ::init has previously |
|
/// been called, as ::init may perform other work. |
|
/// |
|
void init_accel(); |
|
|
|
|
|
/// Register a new gyro/accel driver, allocating an instance |
|
/// number |
|
uint8_t register_gyro(void); |
|
uint8_t register_accel(void); |
|
|
|
#if !defined( __AVR_ATmega1280__ ) |
|
// perform accelerometer calibration including providing user instructions |
|
// and feedback |
|
bool calibrate_accel(AP_InertialSensor_UserInteract *interact, |
|
float& trim_roll, |
|
float& trim_pitch); |
|
#endif |
|
|
|
/// calibrated - returns true if the accelerometers have been calibrated |
|
/// |
|
/// @note this should not be called while flying because it reads from the eeprom which can be slow |
|
/// |
|
bool calibrated() const; |
|
|
|
/// Perform cold-start initialisation for just the gyros. |
|
/// |
|
/// @note This should not be called unless ::init has previously |
|
/// been called, as ::init may perform other work |
|
/// |
|
void init_gyro(void); |
|
|
|
/// Fetch the current gyro values |
|
/// |
|
/// @returns vector of rotational rates in radians/sec |
|
/// |
|
const Vector3f &get_gyro(uint8_t i) const { return _gyro[i]; } |
|
const Vector3f &get_gyro(void) const { return get_gyro(_primary_gyro); } |
|
void set_gyro(uint8_t instance, const Vector3f &gyro); |
|
|
|
// set gyro offsets in radians/sec |
|
const Vector3f &get_gyro_offsets(uint8_t i) const { return _gyro_offset[i]; } |
|
const Vector3f &get_gyro_offsets(void) const { return get_gyro_offsets(_primary_gyro); } |
|
|
|
/// Fetch the current accelerometer values |
|
/// |
|
/// @returns vector of current accelerations in m/s/s |
|
/// |
|
const Vector3f &get_accel(uint8_t i) const { return _accel[i]; } |
|
const Vector3f &get_accel(void) const { return get_accel(_primary_accel); } |
|
void set_accel(uint8_t instance, const Vector3f &accel); |
|
|
|
uint32_t get_gyro_error_count(uint8_t i) const { return _gyro_error_count[i]; } |
|
uint32_t get_accel_error_count(uint8_t i) const { return _accel_error_count[i]; } |
|
|
|
// multi-device interface |
|
bool get_gyro_health(uint8_t instance) const { return _gyro_healthy[instance]; } |
|
bool get_gyro_health(void) const { return get_gyro_health(_primary_gyro); } |
|
bool get_gyro_health_all(void) const; |
|
uint8_t get_gyro_count(void) const { return _gyro_count; } |
|
bool gyro_calibrated_ok(uint8_t instance) const { return _gyro_cal_ok[instance]; } |
|
bool gyro_calibrated_ok_all() const; |
|
|
|
bool get_accel_health(uint8_t instance) const { return _accel_healthy[instance]; } |
|
bool get_accel_health(void) const { return get_accel_health(_primary_accel); } |
|
bool get_accel_health_all(void) const; |
|
uint8_t get_accel_count(void) const { return _accel_count; }; |
|
|
|
// get accel offsets in m/s/s |
|
const Vector3f &get_accel_offsets(uint8_t i) const { return _accel_offset[i]; } |
|
const Vector3f &get_accel_offsets(void) const { return get_accel_offsets(_primary_accel); } |
|
|
|
// get accel scale |
|
const Vector3f &get_accel_scale(uint8_t i) const { return _accel_scale[i]; } |
|
const Vector3f &get_accel_scale(void) const { return get_accel_scale(_primary_accel); } |
|
|
|
/* get_delta_time returns the time period in seconds |
|
* overwhich the sensor data was collected |
|
*/ |
|
float get_delta_time() const { return _delta_time; } |
|
|
|
// return the maximum gyro drift rate in radians/s/s. This |
|
// depends on what gyro chips are being used |
|
float get_gyro_drift_rate(void) const { return ToRad(0.5f/60); } |
|
|
|
// update gyro and accel values from accumulated samples |
|
void update(void); |
|
|
|
// wait for a sample to be available |
|
void wait_for_sample(void); |
|
|
|
// class level parameters |
|
static const struct AP_Param::GroupInfo var_info[]; |
|
|
|
// set overall board orientation |
|
void set_board_orientation(enum Rotation orientation) { |
|
_board_orientation = orientation; |
|
} |
|
|
|
// override default filter frequency |
|
void set_default_filter(float filter_hz) { |
|
if (!_mpu6000_filter.load()) { |
|
_mpu6000_filter.set(filter_hz); |
|
} |
|
} |
|
|
|
// get_filter - return filter in hz |
|
uint8_t get_filter() const { return _mpu6000_filter.get(); } |
|
|
|
// return the selected sample rate |
|
Sample_rate get_sample_rate(void) const { return _sample_rate; } |
|
|
|
uint16_t error_count(void) const { return 0; } |
|
bool healthy(void) const { return get_gyro_health() && get_accel_health(); } |
|
|
|
uint8_t get_primary_accel(void) const { return 0; } |
|
|
|
// enable HIL mode |
|
void set_hil_mode(void) { _hil_mode = true; } |
|
|
|
private: |
|
|
|
// load backend drivers |
|
void _add_backend(AP_InertialSensor_Backend *(detect)(AP_InertialSensor &)); |
|
void _detect_backends(void); |
|
|
|
// accel and gyro initialisation |
|
void _init_accel(); |
|
void _init_gyro(); |
|
|
|
#if !defined( __AVR_ATmega1280__ ) |
|
// Calibration routines borrowed from Rolfe Schmidt |
|
// blog post describing the method: http://chionophilous.wordpress.com/2011/10/24/accelerometer-calibration-iv-1-implementing-gauss-newton-on-an-atmega/ |
|
// original sketch available at http://rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde |
|
|
|
// _calibrate_accel - perform low level accel calibration |
|
bool _calibrate_accel(Vector3f accel_sample[6], Vector3f& accel_offsets, Vector3f& accel_scale); |
|
void _calibrate_update_matrices(float dS[6], float JS[6][6], float beta[6], float data[3]); |
|
void _calibrate_reset_matrices(float dS[6], float JS[6][6]); |
|
void _calibrate_find_delta(float dS[6], float JS[6][6], float delta[6]); |
|
void _calculate_trim(Vector3f accel_sample, float& trim_roll, float& trim_pitch); |
|
#endif |
|
|
|
// check if we have 3D accel calibration |
|
void check_3D_calibration(void); |
|
|
|
// save parameters to eeprom |
|
void _save_parameters(); |
|
|
|
// backend objects |
|
AP_InertialSensor_Backend *_backends[INS_MAX_BACKENDS]; |
|
|
|
// number of gyros and accel drivers. Note that most backends |
|
// provide both accel and gyro data, so will increment both |
|
// counters on initialisation |
|
uint8_t _gyro_count; |
|
uint8_t _accel_count; |
|
uint8_t _backend_count; |
|
|
|
// the selected sample rate |
|
Sample_rate _sample_rate; |
|
|
|
// Most recent accelerometer reading |
|
Vector3f _accel[INS_MAX_INSTANCES]; |
|
|
|
// Most recent gyro reading |
|
Vector3f _gyro[INS_MAX_INSTANCES]; |
|
|
|
// product id |
|
AP_Int16 _product_id; |
|
|
|
// accelerometer scaling and offsets |
|
AP_Vector3f _accel_scale[INS_MAX_INSTANCES]; |
|
AP_Vector3f _accel_offset[INS_MAX_INSTANCES]; |
|
AP_Vector3f _gyro_offset[INS_MAX_INSTANCES]; |
|
|
|
// filtering frequency (0 means default) |
|
AP_Int8 _mpu6000_filter; |
|
|
|
// board orientation from AHRS |
|
enum Rotation _board_orientation; |
|
|
|
// calibrated_ok flags |
|
bool _gyro_cal_ok[INS_MAX_INSTANCES]; |
|
|
|
// primary accel and gyro |
|
uint8_t _primary_gyro; |
|
uint8_t _primary_accel; |
|
|
|
// has wait_for_sample() found a sample? |
|
bool _have_sample:1; |
|
|
|
// are we in HIL mode? |
|
bool _hil_mode:1; |
|
|
|
// do we have offsets/scaling from a 3D calibration? |
|
bool _have_3D_calibration:1; |
|
|
|
// the delta time in seconds for the last sample |
|
float _delta_time; |
|
|
|
// last time a wait_for_sample() returned a sample |
|
uint32_t _last_sample_usec; |
|
|
|
// target time for next wait_for_sample() return |
|
uint32_t _next_sample_usec; |
|
|
|
// time between samples in microseconds |
|
uint32_t _sample_period_usec; |
|
|
|
// health of gyros and accels |
|
bool _gyro_healthy[INS_MAX_INSTANCES]; |
|
bool _accel_healthy[INS_MAX_INSTANCES]; |
|
|
|
uint32_t _accel_error_count[INS_MAX_INSTANCES]; |
|
uint32_t _gyro_error_count[INS_MAX_INSTANCES]; |
|
}; |
|
|
|
#include "AP_InertialSensor_Backend.h" |
|
#include "AP_InertialSensor_MPU6000.h" |
|
#include "AP_InertialSensor_PX4.h" |
|
#include "AP_InertialSensor_Oilpan.h" |
|
#include "AP_InertialSensor_MPU9250.h" |
|
#include "AP_InertialSensor_L3G4200D.h" |
|
#include "AP_InertialSensor_Flymaple.h" |
|
#include "AP_InertialSensor_MPU9150.h" |
|
#include "AP_InertialSensor_HIL.h" |
|
#include "AP_InertialSensor_UserInteract_Stream.h" |
|
#include "AP_InertialSensor_UserInteract_MAVLink.h" |
|
|
|
#endif // __AP_INERTIAL_SENSOR_H__
|
|
|