You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
469 lines
18 KiB
469 lines
18 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
/* |
|
* AP_MotorsMatrix.cpp - ArduCopter motors library |
|
* Code by RandyMackay. DIYDrones.com |
|
* |
|
*/ |
|
#include <AP_HAL.h> |
|
#include "AP_MotorsMatrix.h" |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
// Init |
|
void AP_MotorsMatrix::Init() |
|
{ |
|
// call parent Init function to set-up throttle curve |
|
AP_Motors::Init(); |
|
|
|
// setup the motors |
|
setup_motors(); |
|
|
|
// enable fast channels or instant pwm |
|
set_update_rate(_speed_hz); |
|
} |
|
|
|
// set update rate to motors - a value in hertz |
|
void AP_MotorsMatrix::set_update_rate( uint16_t speed_hz ) |
|
{ |
|
int8_t i; |
|
|
|
// record requested speed |
|
_speed_hz = speed_hz; |
|
|
|
// check each enabled motor |
|
uint32_t mask = 0; |
|
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) { |
|
if( motor_enabled[i] ) { |
|
mask |= 1U << pgm_read_byte(&_motor_to_channel_map[i]); |
|
} |
|
} |
|
hal.rcout->set_freq( mask, _speed_hz ); |
|
} |
|
|
|
// set frame orientation (normally + or X) |
|
void AP_MotorsMatrix::set_frame_orientation( uint8_t new_orientation ) |
|
{ |
|
// return if nothing has changed |
|
if( new_orientation == _flags.frame_orientation ) { |
|
return; |
|
} |
|
|
|
// call parent |
|
AP_Motors::set_frame_orientation( new_orientation ); |
|
|
|
// setup the motors |
|
setup_motors(); |
|
|
|
// enable fast channels or instant pwm |
|
set_update_rate(_speed_hz); |
|
} |
|
|
|
// enable - starts allowing signals to be sent to motors |
|
void AP_MotorsMatrix::enable() |
|
{ |
|
int8_t i; |
|
|
|
// enable output channels |
|
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) { |
|
if( motor_enabled[i] ) { |
|
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[i])); |
|
} |
|
} |
|
} |
|
|
|
// output_min - sends minimum values out to the motors |
|
void AP_MotorsMatrix::output_min() |
|
{ |
|
int8_t i; |
|
|
|
// set limits flags |
|
limit.roll_pitch = true; |
|
limit.yaw = true; |
|
limit.throttle_lower = true; |
|
limit.throttle_upper = false; |
|
|
|
// fill the motor_out[] array for HIL use and send minimum value to each motor |
|
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) { |
|
if( motor_enabled[i] ) { |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[i]), _rc_throttle.radio_min); |
|
} |
|
} |
|
} |
|
|
|
// get_motor_mask - returns a bitmask of which outputs are being used for motors (1 means being used) |
|
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict |
|
uint16_t AP_MotorsMatrix::get_motor_mask() |
|
{ |
|
uint16_t mask = 0; |
|
for (uint8_t i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
mask |= 1U << i; |
|
} |
|
} |
|
return mask; |
|
} |
|
|
|
// output_armed - sends commands to the motors |
|
// includes new scaling stability patch |
|
void AP_MotorsMatrix::output_armed() |
|
{ |
|
int8_t i; |
|
int16_t out_min_pwm = _rc_throttle.radio_min + _min_throttle; // minimum pwm value we can send to the motors |
|
int16_t out_max_pwm = _rc_throttle.radio_max; // maximum pwm value we can send to the motors |
|
int16_t out_mid_pwm = (out_min_pwm+out_max_pwm)/2; // mid pwm value we can send to the motors |
|
int16_t out_best_thr_pwm; // the is the best throttle we can come up which provides good control without climbing |
|
float rpy_scale = 1.0; // this is used to scale the roll, pitch and yaw to fit within the motor limits |
|
|
|
int16_t rpy_out[AP_MOTORS_MAX_NUM_MOTORS]; // buffer so we don't have to multiply coefficients multiple times. |
|
int16_t motor_out[AP_MOTORS_MAX_NUM_MOTORS]; // final outputs sent to the motors |
|
|
|
int16_t rpy_low = 0; // lowest motor value |
|
int16_t rpy_high = 0; // highest motor value |
|
int16_t yaw_allowed; // amount of yaw we can fit in |
|
int16_t thr_adj; // the difference between the pilot's desired throttle and out_best_thr_pwm (the throttle that is actually provided) |
|
|
|
// initialize limits flag |
|
limit.roll_pitch = false; |
|
limit.yaw = false; |
|
limit.throttle_lower = false; |
|
limit.throttle_upper = false; |
|
|
|
// Throttle is 0 to 1000 only |
|
// To-Do: we should not really be limiting this here because we don't "own" this _rc_throttle object |
|
if (_rc_throttle.servo_out <= 0) { |
|
_rc_throttle.servo_out = 0; |
|
limit.throttle_lower = true; |
|
} |
|
if (_rc_throttle.servo_out >= _max_throttle) { |
|
_rc_throttle.servo_out = _max_throttle; |
|
limit.throttle_upper = true; |
|
} |
|
|
|
// capture desired roll, pitch, yaw and throttle from receiver |
|
_rc_roll.calc_pwm(); |
|
_rc_pitch.calc_pwm(); |
|
_rc_throttle.calc_pwm(); |
|
_rc_yaw.calc_pwm(); |
|
|
|
if(_throttle_curve_enabled && _batt_voltage_max > 0 && _batt_voltage_min < _batt_voltage_max) { |
|
float batt_voltage = _batt_voltage + _batt_current * _batt_resistance; |
|
batt_voltage = constrain_float(batt_voltage, _batt_voltage_min, _batt_voltage_max); |
|
// filter at 0.5 Hz |
|
// todo: replace with filter object |
|
_batt_voltage_filt = _batt_voltage_filt + 0.007792f*(batt_voltage/_batt_voltage_max-_batt_voltage_filt); // ratio of current battery voltage to maximum battery voltage |
|
_lift_max = _batt_voltage_filt*(1-_thrust_curve_expo) + _thrust_curve_expo*_batt_voltage_filt*_batt_voltage_filt; |
|
} else { |
|
_batt_voltage_filt = 1; |
|
_lift_max = 1; |
|
} |
|
|
|
// if we are not sending a throttle output, we cut the motors |
|
if (_rc_throttle.servo_out == 0) { |
|
// range check spin_when_armed |
|
if (_spin_when_armed_ramped < 0) { |
|
_spin_when_armed_ramped = 0; |
|
} |
|
if (_spin_when_armed_ramped > _min_throttle) { |
|
_spin_when_armed_ramped = _min_throttle; |
|
} |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
// spin motors at minimum |
|
if (motor_enabled[i]) { |
|
motor_out[i] = _rc_throttle.radio_min + _spin_when_armed_ramped; |
|
} |
|
} |
|
|
|
// Every thing is limited |
|
limit.roll_pitch = true; |
|
limit.yaw = true; |
|
_batt_voltage_resting = _batt_voltage; |
|
_batt_current_resting = _batt_current; |
|
_batt_timer = 0; |
|
|
|
} else { |
|
|
|
// check if throttle is below limit |
|
if (_rc_throttle.servo_out <= _min_throttle) { // perhaps being at min throttle itself is not a problem, only being under is |
|
limit.throttle_lower = true; |
|
} |
|
|
|
// limit throttle if over current |
|
if(_batt_current_max > 0){ |
|
if(_batt_current > _batt_current_max*1.25f){ |
|
// Fast drop for extreme over current (1 second) |
|
_throttle_limit -= 1.0f/_speed_hz; |
|
}else if(_batt_current > _batt_current_max){ |
|
// Slow drop for extreme over current (2 second) |
|
_throttle_limit -= 0.5f/_speed_hz; |
|
}else{ |
|
// Increase throttle limit (2 second) |
|
_throttle_limit += 0.5f/_speed_hz; |
|
} |
|
} else { |
|
_throttle_limit = 1.0f; |
|
} |
|
// throttle limit drops to 20% between hover and full throttle |
|
_throttle_limit = constrain_float(_throttle_limit, 0.2f, 1.0f); |
|
|
|
int16_t throttle_radio_out = min(_rc_throttle.radio_out, (_hover_out + (out_max_pwm-_hover_out)*_throttle_limit)); |
|
|
|
// calculate battery resistance |
|
if (_batt_timer < 400 && _rc_throttle.radio_out >= _hover_out && ((_batt_current_resting*2.0f) < _batt_current)) { |
|
// filter reaches 90% in 1/4 the test time |
|
_batt_resistance += 0.05*(( (_batt_voltage_resting-_batt_voltage)/(_batt_current-_batt_current_resting) ) - _batt_resistance); |
|
_batt_timer += 1; |
|
} |
|
|
|
// calculate roll and pitch for each motor |
|
// set rpy_low and rpy_high to the lowest and highest values of the motors |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
rpy_out[i] = _rc_roll.pwm_out * _roll_factor[i]/_lift_max + |
|
_rc_pitch.pwm_out * _pitch_factor[i]/_lift_max; |
|
|
|
// record lowest roll pitch command |
|
if (rpy_out[i] < rpy_low) { |
|
rpy_low = rpy_out[i]; |
|
} |
|
// record highest roll pich command |
|
if (rpy_out[i] > rpy_high) { |
|
rpy_high = rpy_out[i]; |
|
} |
|
} |
|
} |
|
|
|
// calculate throttle that gives most possible room for yaw (range 1000 ~ 2000) which is the lower of: |
|
// 1. mid throttle - average of highest and lowest motor (this would give the maximum possible room margin above the highest motor and below the lowest) |
|
// 2. the higher of: |
|
// a) the pilot's throttle input |
|
// b) the mid point between the pilot's input throttle and hover-throttle |
|
// Situation #2 ensure we never increase the throttle above hover throttle unless the pilot has commanded this. |
|
// Situation #2b allows us to raise the throttle above what the pilot commanded but not so far that it would actually cause the copter to rise. |
|
// We will choose #1 (the best throttle for yaw control) if that means reducing throttle to the motors (i.e. we favour reducing throttle *because* it provides better yaw control) |
|
// We will choose #2 (a mix of pilot and hover throttle) only when the throttle is quite low. We favour reducing throttle instead of better yaw control because the pilot has commanded it |
|
int16_t motor_mid = (rpy_low+rpy_high)/2; |
|
out_best_thr_pwm = min(out_mid_pwm - motor_mid, max(throttle_radio_out, throttle_radio_out*max(0,1.0f-_throttle_low_comp)+_hover_out*_throttle_low_comp)); |
|
|
|
// calculate amount of yaw we can fit into the throttle range |
|
// this is always equal to or less than the requested yaw from the pilot or rate controller |
|
yaw_allowed = min(out_max_pwm - out_best_thr_pwm, out_best_thr_pwm - out_min_pwm) - (rpy_high-rpy_low)/2; |
|
yaw_allowed = max(yaw_allowed, _yaw_headroom); |
|
|
|
if (_rc_yaw.pwm_out >= 0) { |
|
// if yawing right |
|
if (yaw_allowed > _rc_yaw.pwm_out/_lift_max) { |
|
yaw_allowed = _rc_yaw.pwm_out/_lift_max; // to-do: this is bad form for yaw_allows to change meaning to become the amount that we are going to output |
|
}else{ |
|
limit.yaw = true; |
|
} |
|
}else{ |
|
// if yawing left |
|
yaw_allowed = -yaw_allowed; |
|
if( yaw_allowed < _rc_yaw.pwm_out/_lift_max ) { |
|
yaw_allowed = _rc_yaw.pwm_out/_lift_max; // to-do: this is bad form for yaw_allows to change meaning to become the amount that we are going to output |
|
}else{ |
|
limit.yaw = true; |
|
} |
|
} |
|
|
|
// add yaw to intermediate numbers for each motor |
|
rpy_low = 0; |
|
rpy_high = 0; |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
rpy_out[i] = rpy_out[i] + |
|
yaw_allowed * _yaw_factor[i]; |
|
|
|
// record lowest roll+pitch+yaw command |
|
if( rpy_out[i] < rpy_low ) { |
|
rpy_low = rpy_out[i]; |
|
} |
|
// record highest roll+pitch+yaw command |
|
if( rpy_out[i] > rpy_high) { |
|
rpy_high = rpy_out[i]; |
|
} |
|
} |
|
} |
|
|
|
// check everything fits |
|
thr_adj = throttle_radio_out - out_best_thr_pwm; |
|
|
|
// calculate upper and lower limits of thr_adj |
|
int16_t thr_adj_max = max(out_max_pwm-(out_best_thr_pwm+rpy_high),0); |
|
|
|
// if we are increasing the throttle (situation #2 above).. |
|
if (thr_adj > 0) { |
|
// increase throttle as close as possible to requested throttle |
|
// without going over out_max_pwm |
|
if (thr_adj > thr_adj_max){ |
|
thr_adj = thr_adj_max; |
|
// we haven't even been able to apply full throttle command |
|
limit.throttle_upper = true; |
|
} |
|
}else if(thr_adj < 0){ |
|
// decrease throttle as close as possible to requested throttle |
|
// without going under out_min_pwm or over out_max_pwm |
|
// earlier code ensures we can't break both boundaries |
|
int16_t thr_adj_min = min(out_min_pwm-(out_best_thr_pwm+rpy_low),0); |
|
if (thr_adj > thr_adj_max) { |
|
thr_adj = thr_adj_max; |
|
limit.throttle_upper = true; |
|
} |
|
if (thr_adj < thr_adj_min) { |
|
thr_adj = thr_adj_min; |
|
limit.throttle_lower = true; |
|
} |
|
} |
|
|
|
// do we need to reduce roll, pitch, yaw command |
|
// earlier code does not allow both limit's to be passed simultaneously with abs(_yaw_factor)<1 |
|
if ((rpy_low+out_best_thr_pwm)+thr_adj < out_min_pwm){ |
|
rpy_scale = (float)(out_min_pwm-thr_adj-out_best_thr_pwm)/rpy_low; |
|
// we haven't even been able to apply full roll, pitch and minimal yaw without scaling |
|
limit.roll_pitch = true; |
|
limit.yaw = true; |
|
}else if((rpy_high+out_best_thr_pwm)+thr_adj > out_max_pwm){ |
|
rpy_scale = (float)(out_max_pwm-thr_adj-out_best_thr_pwm)/rpy_high; |
|
// we haven't even been able to apply full roll, pitch and minimal yaw without scaling |
|
limit.roll_pitch = true; |
|
limit.yaw = true; |
|
} |
|
|
|
// add scaled roll, pitch, constrained yaw and throttle for each motor |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
motor_out[i] = out_best_thr_pwm+thr_adj + |
|
rpy_scale*rpy_out[i]; |
|
} |
|
} |
|
|
|
// adjust for throttle curve |
|
if (_throttle_curve_enabled) { |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
float temp_out = ((float)(motor_out[i]-out_min_pwm))/((float)(out_max_pwm-out_min_pwm)); |
|
if (_thrust_curve_expo > 0.0f){ |
|
temp_out = ((_thrust_curve_expo-1.0f) + safe_sqrt((1.0f-_thrust_curve_expo)*(1.0f-_thrust_curve_expo) + 4.0f*_thrust_curve_expo*_lift_max*temp_out))/(2.0f*_thrust_curve_expo*_batt_voltage_filt); |
|
} |
|
motor_out[i] = temp_out*(_thrust_curve_max*out_max_pwm-out_min_pwm)+out_min_pwm; |
|
} |
|
} |
|
} |
|
// clip motor output if required (shouldn't be) |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
motor_out[i] = constrain_int16(motor_out[i], out_min_pwm, out_max_pwm); |
|
} |
|
} |
|
} |
|
|
|
// send output to each motor |
|
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) { |
|
if( motor_enabled[i] ) { |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[i]), motor_out[i]); |
|
} |
|
} |
|
} |
|
|
|
// output_disarmed - sends commands to the motors |
|
void AP_MotorsMatrix::output_disarmed() |
|
{ |
|
// Send minimum values to all motors |
|
output_min(); |
|
} |
|
|
|
// output_test - spin a motor at the pwm value specified |
|
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame |
|
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 |
|
void AP_MotorsMatrix::output_test(uint8_t motor_seq, int16_t pwm) |
|
{ |
|
// exit immediately if not armed |
|
if (!_flags.armed) { |
|
return; |
|
} |
|
|
|
// loop through all the possible orders spinning any motors that match that description |
|
for (uint8_t i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i] && _test_order[i] == motor_seq) { |
|
// turn on this motor |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[i]), pwm); |
|
} |
|
} |
|
} |
|
|
|
// add_motor |
|
void AP_MotorsMatrix::add_motor_raw(int8_t motor_num, float roll_fac, float pitch_fac, float yaw_fac, uint8_t testing_order) |
|
{ |
|
// ensure valid motor number is provided |
|
if( motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS ) { |
|
|
|
// increment number of motors if this motor is being newly motor_enabled |
|
if( !motor_enabled[motor_num] ) { |
|
motor_enabled[motor_num] = true; |
|
} |
|
|
|
// set roll, pitch, thottle factors and opposite motor (for stability patch) |
|
_roll_factor[motor_num] = roll_fac; |
|
_pitch_factor[motor_num] = pitch_fac; |
|
_yaw_factor[motor_num] = yaw_fac; |
|
|
|
// set order that motor appears in test |
|
_test_order[motor_num] = testing_order; |
|
|
|
// disable this channel from being used by RC_Channel_aux |
|
RC_Channel_aux::disable_aux_channel(_motor_to_channel_map[motor_num]); |
|
} |
|
} |
|
|
|
// add_motor using just position and prop direction - assumes that for each motor, roll and pitch factors are equal |
|
void AP_MotorsMatrix::add_motor(int8_t motor_num, float angle_degrees, float yaw_factor, uint8_t testing_order) |
|
{ |
|
add_motor(motor_num, angle_degrees, angle_degrees, yaw_factor, testing_order); |
|
} |
|
|
|
// add_motor using position and prop direction. Roll and Pitch factors can differ (for asymmetrical frames) |
|
void AP_MotorsMatrix::add_motor(int8_t motor_num, float roll_factor_in_degrees, float pitch_factor_in_degrees, float yaw_factor, uint8_t testing_order) |
|
{ |
|
add_motor_raw( |
|
motor_num, |
|
cosf(radians(roll_factor_in_degrees + 90)), |
|
cosf(radians(pitch_factor_in_degrees)), |
|
yaw_factor, |
|
testing_order); |
|
} |
|
|
|
// remove_motor - disabled motor and clears all roll, pitch, throttle factors for this motor |
|
void AP_MotorsMatrix::remove_motor(int8_t motor_num) |
|
{ |
|
// ensure valid motor number is provided |
|
if( motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS ) { |
|
// disable the motor, set all factors to zero |
|
motor_enabled[motor_num] = false; |
|
_roll_factor[motor_num] = 0; |
|
_pitch_factor[motor_num] = 0; |
|
_yaw_factor[motor_num] = 0; |
|
} |
|
} |
|
|
|
// remove_all_motors - removes all motor definitions |
|
void AP_MotorsMatrix::remove_all_motors() |
|
{ |
|
for( int8_t i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) { |
|
remove_motor(i); |
|
} |
|
}
|
|
|