You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
456 lines
17 KiB
456 lines
17 KiB
#include <AP_HAL/AP_HAL.h> |
|
#include <AP_Scheduler/AP_Scheduler.h> |
|
#include <AP_AHRS/AP_AHRS.h> |
|
#include "AC_PrecLand.h" |
|
#include "AC_PrecLand_Backend.h" |
|
#include "AC_PrecLand_Companion.h" |
|
#include "AC_PrecLand_IRLock.h" |
|
#include "AC_PrecLand_SITL_Gazebo.h" |
|
#include "AC_PrecLand_SITL.h" |
|
|
|
#include <AP_AHRS/AP_AHRS.h> |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
const AP_Param::GroupInfo AC_PrecLand::var_info[] = { |
|
// @Param: ENABLED |
|
// @DisplayName: Precision Land enabled/disabled and behaviour |
|
// @Description: Precision Land enabled/disabled and behaviour |
|
// @Values: 0:Disabled, 1:Enabled |
|
// @User: Advanced |
|
AP_GROUPINFO_FLAGS("ENABLED", 0, AC_PrecLand, _enabled, 0, AP_PARAM_FLAG_ENABLE), |
|
|
|
// @Param: TYPE |
|
// @DisplayName: Precision Land Type |
|
// @Description: Precision Land Type |
|
// @Values: 0:None, 1:CompanionComputer, 2:IRLock, 3:SITL_Gazebo, 4:SITL |
|
// @User: Advanced |
|
AP_GROUPINFO("TYPE", 1, AC_PrecLand, _type, 0), |
|
|
|
// @Param: YAW_ALIGN |
|
// @DisplayName: Sensor yaw alignment |
|
// @Description: Yaw angle from body x-axis to sensor x-axis. |
|
// @Range: 0 360 |
|
// @Increment: 1 |
|
// @User: Advanced |
|
// @Units: cdeg |
|
AP_GROUPINFO("YAW_ALIGN", 2, AC_PrecLand, _yaw_align, 0), |
|
|
|
// @Param: LAND_OFS_X |
|
// @DisplayName: Land offset forward |
|
// @Description: Desired landing position of the camera forward of the target in vehicle body frame |
|
// @Range: -20 20 |
|
// @Increment: 1 |
|
// @User: Advanced |
|
// @Units: cm |
|
AP_GROUPINFO("LAND_OFS_X", 3, AC_PrecLand, _land_ofs_cm_x, 0), |
|
|
|
// @Param: LAND_OFS_Y |
|
// @DisplayName: Land offset right |
|
// @Description: desired landing position of the camera right of the target in vehicle body frame |
|
// @Range: -20 20 |
|
// @Increment: 1 |
|
// @User: Advanced |
|
// @Units: cm |
|
AP_GROUPINFO("LAND_OFS_Y", 4, AC_PrecLand, _land_ofs_cm_y, 0), |
|
|
|
// @Param: EST_TYPE |
|
// @DisplayName: Precision Land Estimator Type |
|
// @Description: Specifies the estimation method to be used |
|
// @Values: 0:RawSensor, 1:KalmanFilter |
|
// @User: Advanced |
|
AP_GROUPINFO("EST_TYPE", 5, AC_PrecLand, _estimator_type, 1), |
|
|
|
// @Param: ACC_P_NSE |
|
// @DisplayName: Kalman Filter Accelerometer Noise |
|
// @Description: Kalman Filter Accelerometer Noise, higher values weight the input from the camera more, accels less |
|
// @Range: 0.5 5 |
|
// @User: Advanceds |
|
AP_GROUPINFO("ACC_P_NSE", 6, AC_PrecLand, _accel_noise, 2.5f), |
|
|
|
// @Param: CAM_POS_X |
|
// @DisplayName: Camera X position offset |
|
// @Description: X position of the camera in body frame. Positive X is forward of the origin. |
|
// @Units: m |
|
// @Range: -5 5 |
|
// @Increment: 0.01 |
|
// @User: Advanced |
|
|
|
// @Param: CAM_POS_Y |
|
// @DisplayName: Camera Y position offset |
|
// @Description: Y position of the camera in body frame. Positive Y is to the right of the origin. |
|
// @Units: m |
|
// @Range: -5 5 |
|
// @Increment: 0.01 |
|
// @User: Advanced |
|
|
|
// @Param: CAM_POS_Z |
|
// @DisplayName: Camera Z position offset |
|
// @Description: Z position of the camera in body frame. Positive Z is down from the origin. |
|
// @Units: m |
|
// @Range: -5 5 |
|
// @Increment: 0.01 |
|
// @User: Advanced |
|
AP_GROUPINFO("CAM_POS", 7, AC_PrecLand, _cam_offset, 0.0f), |
|
|
|
// @Param: BUS |
|
// @DisplayName: Sensor Bus |
|
// @Description: Precland sensor bus for I2C sensors. |
|
// @Values: -1:DefaultBus,0:InternalI2C,1:ExternalI2C |
|
// @User: Advanced |
|
AP_GROUPINFO("BUS", 8, AC_PrecLand, _bus, -1), |
|
|
|
// @Param: LAG |
|
// @DisplayName: Precision Landing sensor lag |
|
// @Description: Precision Landing sensor lag, to cope with variable landing_target latency |
|
// @Range: 0.02 0.250 |
|
// @Increment: 1 |
|
// @Units: s |
|
// @User: Advanced |
|
// @RebootRequired: True |
|
AP_GROUPINFO("LAG", 9, AC_PrecLand, _lag, 0.02f), // 20ms is the old default buffer size (8 frames @ 400hz/2.5ms) |
|
|
|
AP_GROUPEND |
|
}; |
|
|
|
// Default constructor. |
|
// Note that the Vector/Matrix constructors already implicitly zero |
|
// their values. |
|
// |
|
AC_PrecLand::AC_PrecLand() |
|
{ |
|
// set parameters to defaults |
|
AP_Param::setup_object_defaults(this, var_info); |
|
} |
|
|
|
// perform any required initialisation of landing controllers |
|
// update_rate_hz should be the rate at which the update method will be called in hz |
|
void AC_PrecLand::init(uint16_t update_rate_hz) |
|
{ |
|
// exit immediately if init has already been run |
|
if (_backend != nullptr) { |
|
return; |
|
} |
|
|
|
// default health to false |
|
_backend = nullptr; |
|
_backend_state.healthy = false; |
|
|
|
// create inertial history buffer |
|
// constrain lag parameter to be within bounds |
|
_lag = constrain_float(_lag, 0.02f, 0.25f); |
|
|
|
// calculate inertial buffer size from lag and minimum of main loop rate and update_rate_hz argument |
|
const uint16_t inertial_buffer_size = MAX((uint16_t)roundf(_lag * MIN(update_rate_hz, AP::scheduler().get_loop_rate_hz())), 1); |
|
|
|
// instantiate ring buffer to hold inertial history, return on failure so no backends are created |
|
_inertial_history = new ObjectArray<inertial_data_frame_s>(inertial_buffer_size); |
|
if (_inertial_history == nullptr) { |
|
return; |
|
} |
|
|
|
// instantiate backend based on type parameter |
|
switch ((enum PrecLandType)(_type.get())) { |
|
// no type defined |
|
case PRECLAND_TYPE_NONE: |
|
default: |
|
return; |
|
// companion computer |
|
case PRECLAND_TYPE_COMPANION: |
|
_backend = new AC_PrecLand_Companion(*this, _backend_state); |
|
break; |
|
// IR Lock |
|
case PRECLAND_TYPE_IRLOCK: |
|
_backend = new AC_PrecLand_IRLock(*this, _backend_state); |
|
break; |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL |
|
case PRECLAND_TYPE_SITL_GAZEBO: |
|
_backend = new AC_PrecLand_SITL_Gazebo(*this, _backend_state); |
|
break; |
|
case PRECLAND_TYPE_SITL: |
|
_backend = new AC_PrecLand_SITL(*this, _backend_state); |
|
break; |
|
#endif |
|
} |
|
|
|
// init backend |
|
if (_backend != nullptr) { |
|
_backend->init(); |
|
} |
|
} |
|
|
|
// update - give chance to driver to get updates from sensor |
|
void AC_PrecLand::update(float rangefinder_alt_cm, bool rangefinder_alt_valid) |
|
{ |
|
// exit immediately if not enabled |
|
if (_backend == nullptr || _inertial_history == nullptr) { |
|
return; |
|
} |
|
|
|
// append current velocity and attitude correction into history buffer |
|
struct inertial_data_frame_s inertial_data_newest; |
|
const AP_AHRS_NavEKF &_ahrs = AP::ahrs_navekf(); |
|
_ahrs.getCorrectedDeltaVelocityNED(inertial_data_newest.correctedVehicleDeltaVelocityNED, inertial_data_newest.dt); |
|
inertial_data_newest.Tbn = _ahrs.get_rotation_body_to_ned(); |
|
Vector3f curr_vel; |
|
nav_filter_status status; |
|
if (!_ahrs.get_velocity_NED(curr_vel) || !_ahrs.get_filter_status(status)) { |
|
inertial_data_newest.inertialNavVelocityValid = false; |
|
} else { |
|
inertial_data_newest.inertialNavVelocityValid = status.flags.horiz_vel; |
|
} |
|
curr_vel.z = -curr_vel.z; // NED to NEU |
|
inertial_data_newest.inertialNavVelocity = curr_vel; |
|
|
|
inertial_data_newest.time_usec = AP_HAL::micros64(); |
|
_inertial_history->push_force(inertial_data_newest); |
|
|
|
// update estimator of target position |
|
if (_backend != nullptr && _enabled) { |
|
_backend->update(); |
|
run_estimator(rangefinder_alt_cm*0.01f, rangefinder_alt_valid); |
|
} |
|
} |
|
|
|
bool AC_PrecLand::target_acquired() |
|
{ |
|
_target_acquired = _target_acquired && (AP_HAL::millis()-_last_update_ms) < 2000; |
|
return _target_acquired; |
|
} |
|
|
|
bool AC_PrecLand::get_target_position_cm(Vector2f& ret) |
|
{ |
|
if (!target_acquired()) { |
|
return false; |
|
} |
|
Vector2f curr_pos; |
|
if (!AP::ahrs().get_relative_position_NE_origin(curr_pos)) { |
|
return false; |
|
} |
|
ret.x = (_target_pos_rel_out_NE.x + curr_pos.x) * 100.0f; // m to cm |
|
ret.y = (_target_pos_rel_out_NE.y + curr_pos.y) * 100.0f; // m to cm |
|
return true; |
|
} |
|
|
|
void AC_PrecLand::get_target_position_measurement_cm(Vector3f& ret) |
|
{ |
|
ret = _target_pos_rel_meas_NED*100.0f; |
|
return; |
|
} |
|
|
|
bool AC_PrecLand::get_target_position_relative_cm(Vector2f& ret) |
|
{ |
|
if (!target_acquired()) { |
|
return false; |
|
} |
|
ret = _target_pos_rel_out_NE*100.0f; |
|
return true; |
|
} |
|
|
|
bool AC_PrecLand::get_target_velocity_relative_cms(Vector2f& ret) |
|
{ |
|
if (!target_acquired()) { |
|
return false; |
|
} |
|
ret = _target_vel_rel_out_NE*100.0f; |
|
return true; |
|
} |
|
|
|
// handle_msg - Process a LANDING_TARGET mavlink message |
|
void AC_PrecLand::handle_msg(const mavlink_message_t &msg) |
|
{ |
|
// run backend update |
|
if (_backend != nullptr) { |
|
_backend->handle_msg(msg); |
|
} |
|
} |
|
|
|
// |
|
// Private methods |
|
// |
|
|
|
void AC_PrecLand::run_estimator(float rangefinder_alt_m, bool rangefinder_alt_valid) |
|
{ |
|
const struct inertial_data_frame_s *inertial_data_delayed = (*_inertial_history)[0]; |
|
|
|
switch (_estimator_type) { |
|
case ESTIMATOR_TYPE_RAW_SENSOR: { |
|
// Return if there's any invalid velocity data |
|
for (uint8_t i=0; i<_inertial_history->available(); i++) { |
|
const struct inertial_data_frame_s *inertial_data = (*_inertial_history)[i]; |
|
if (!inertial_data->inertialNavVelocityValid) { |
|
_target_acquired = false; |
|
return; |
|
} |
|
} |
|
|
|
// Predict |
|
if (target_acquired()) { |
|
_target_pos_rel_est_NE.x -= inertial_data_delayed->inertialNavVelocity.x * inertial_data_delayed->dt; |
|
_target_pos_rel_est_NE.y -= inertial_data_delayed->inertialNavVelocity.y * inertial_data_delayed->dt; |
|
_target_vel_rel_est_NE.x = -inertial_data_delayed->inertialNavVelocity.x; |
|
_target_vel_rel_est_NE.y = -inertial_data_delayed->inertialNavVelocity.y; |
|
} |
|
|
|
// Update if a new Line-Of-Sight measurement is available |
|
if (construct_pos_meas_using_rangefinder(rangefinder_alt_m, rangefinder_alt_valid)) { |
|
_target_pos_rel_est_NE.x = _target_pos_rel_meas_NED.x; |
|
_target_pos_rel_est_NE.y = _target_pos_rel_meas_NED.y; |
|
_target_vel_rel_est_NE.x = -inertial_data_delayed->inertialNavVelocity.x; |
|
_target_vel_rel_est_NE.y = -inertial_data_delayed->inertialNavVelocity.y; |
|
|
|
_last_update_ms = AP_HAL::millis(); |
|
_target_acquired = true; |
|
} |
|
|
|
// Output prediction |
|
if (target_acquired()) { |
|
run_output_prediction(); |
|
} |
|
break; |
|
} |
|
case ESTIMATOR_TYPE_KALMAN_FILTER: { |
|
// Predict |
|
if (target_acquired()) { |
|
const float& dt = inertial_data_delayed->dt; |
|
const Vector3f& vehicleDelVel = inertial_data_delayed->correctedVehicleDeltaVelocityNED; |
|
|
|
_ekf_x.predict(dt, -vehicleDelVel.x, _accel_noise*dt); |
|
_ekf_y.predict(dt, -vehicleDelVel.y, _accel_noise*dt); |
|
} |
|
|
|
// Update if a new Line-Of-Sight measurement is available |
|
if (construct_pos_meas_using_rangefinder(rangefinder_alt_m, rangefinder_alt_valid)) { |
|
float xy_pos_var = sq(_target_pos_rel_meas_NED.z*(0.01f + 0.01f*AP::ahrs().get_gyro().length()) + 0.02f); |
|
if (!target_acquired()) { |
|
// reset filter state |
|
if (inertial_data_delayed->inertialNavVelocityValid) { |
|
_ekf_x.init(_target_pos_rel_meas_NED.x, xy_pos_var, -inertial_data_delayed->inertialNavVelocity.x, sq(2.0f)); |
|
_ekf_y.init(_target_pos_rel_meas_NED.y, xy_pos_var, -inertial_data_delayed->inertialNavVelocity.y, sq(2.0f)); |
|
} else { |
|
_ekf_x.init(_target_pos_rel_meas_NED.x, xy_pos_var, 0.0f, sq(10.0f)); |
|
_ekf_y.init(_target_pos_rel_meas_NED.y, xy_pos_var, 0.0f, sq(10.0f)); |
|
} |
|
_last_update_ms = AP_HAL::millis(); |
|
_target_acquired = true; |
|
} else { |
|
float NIS_x = _ekf_x.getPosNIS(_target_pos_rel_meas_NED.x, xy_pos_var); |
|
float NIS_y = _ekf_y.getPosNIS(_target_pos_rel_meas_NED.y, xy_pos_var); |
|
if (MAX(NIS_x, NIS_y) < 3.0f || _outlier_reject_count >= 3) { |
|
_outlier_reject_count = 0; |
|
_ekf_x.fusePos(_target_pos_rel_meas_NED.x, xy_pos_var); |
|
_ekf_y.fusePos(_target_pos_rel_meas_NED.y, xy_pos_var); |
|
_last_update_ms = AP_HAL::millis(); |
|
_target_acquired = true; |
|
} else { |
|
_outlier_reject_count++; |
|
} |
|
} |
|
} |
|
|
|
// Output prediction |
|
if (target_acquired()) { |
|
_target_pos_rel_est_NE.x = _ekf_x.getPos(); |
|
_target_pos_rel_est_NE.y = _ekf_y.getPos(); |
|
_target_vel_rel_est_NE.x = _ekf_x.getVel(); |
|
_target_vel_rel_est_NE.y = _ekf_y.getVel(); |
|
|
|
run_output_prediction(); |
|
} |
|
break; |
|
} |
|
} |
|
} |
|
|
|
bool AC_PrecLand::retrieve_los_meas(Vector3f& target_vec_unit_body) |
|
{ |
|
if (_backend->have_los_meas() && _backend->los_meas_time_ms() != _last_backend_los_meas_ms) { |
|
_last_backend_los_meas_ms = _backend->los_meas_time_ms(); |
|
_backend->get_los_body(target_vec_unit_body); |
|
|
|
// Apply sensor yaw alignment rotation |
|
float sin_yaw_align = sinf(radians(_yaw_align*0.01f)); |
|
float cos_yaw_align = cosf(radians(_yaw_align*0.01f)); |
|
Matrix3f Rz = Matrix3f( |
|
cos_yaw_align, -sin_yaw_align, 0, |
|
sin_yaw_align, cos_yaw_align, 0, |
|
0, 0, 1 |
|
); |
|
|
|
target_vec_unit_body = Rz*target_vec_unit_body; |
|
return true; |
|
} else { |
|
return false; |
|
} |
|
} |
|
|
|
bool AC_PrecLand::construct_pos_meas_using_rangefinder(float rangefinder_alt_m, bool rangefinder_alt_valid) |
|
{ |
|
Vector3f target_vec_unit_body; |
|
if (retrieve_los_meas(target_vec_unit_body)) { |
|
const struct inertial_data_frame_s *inertial_data_delayed = (*_inertial_history)[0]; |
|
|
|
Vector3f target_vec_unit_ned = inertial_data_delayed->Tbn * target_vec_unit_body; |
|
bool target_vec_valid = target_vec_unit_ned.z > 0.0f; |
|
bool alt_valid = (rangefinder_alt_valid && rangefinder_alt_m > 0.0f) || (_backend->distance_to_target() > 0.0f); |
|
if (target_vec_valid && alt_valid) { |
|
float dist, alt; |
|
if (_backend->distance_to_target() > 0.0f) { |
|
dist = _backend->distance_to_target(); |
|
alt = dist * target_vec_unit_ned.z; |
|
} else { |
|
alt = MAX(rangefinder_alt_m, 0.0f); |
|
dist = alt / target_vec_unit_ned.z; |
|
} |
|
|
|
// Compute camera position relative to IMU |
|
Vector3f accel_body_offset = AP::ins().get_imu_pos_offset(AP::ahrs().get_primary_accel_index()); |
|
Vector3f cam_pos_ned = inertial_data_delayed->Tbn * (_cam_offset.get() - accel_body_offset); |
|
|
|
// Compute target position relative to IMU |
|
_target_pos_rel_meas_NED = Vector3f(target_vec_unit_ned.x*dist, target_vec_unit_ned.y*dist, alt) + cam_pos_ned; |
|
return true; |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
void AC_PrecLand::run_output_prediction() |
|
{ |
|
_target_pos_rel_out_NE = _target_pos_rel_est_NE; |
|
_target_vel_rel_out_NE = _target_vel_rel_est_NE; |
|
|
|
// Predict forward from delayed time horizon |
|
for (uint8_t i=1; i<_inertial_history->available(); i++) { |
|
const struct inertial_data_frame_s *inertial_data = (*_inertial_history)[i]; |
|
_target_vel_rel_out_NE.x -= inertial_data->correctedVehicleDeltaVelocityNED.x; |
|
_target_vel_rel_out_NE.y -= inertial_data->correctedVehicleDeltaVelocityNED.y; |
|
_target_pos_rel_out_NE.x += _target_vel_rel_out_NE.x * inertial_data->dt; |
|
_target_pos_rel_out_NE.y += _target_vel_rel_out_NE.y * inertial_data->dt; |
|
} |
|
|
|
const AP_AHRS &_ahrs = AP::ahrs(); |
|
|
|
const Matrix3f& Tbn = (*_inertial_history)[_inertial_history->available()-1]->Tbn; |
|
Vector3f accel_body_offset = AP::ins().get_imu_pos_offset(_ahrs.get_primary_accel_index()); |
|
|
|
// Apply position correction for CG offset from IMU |
|
Vector3f imu_pos_ned = Tbn * accel_body_offset; |
|
_target_pos_rel_out_NE.x += imu_pos_ned.x; |
|
_target_pos_rel_out_NE.y += imu_pos_ned.y; |
|
|
|
// Apply position correction for body-frame horizontal camera offset from CG, so that vehicle lands lens-to-target |
|
Vector3f cam_pos_horizontal_ned = Tbn * Vector3f(_cam_offset.get().x, _cam_offset.get().y, 0); |
|
_target_pos_rel_out_NE.x -= cam_pos_horizontal_ned.x; |
|
_target_pos_rel_out_NE.y -= cam_pos_horizontal_ned.y; |
|
|
|
// Apply velocity correction for IMU offset from CG |
|
Vector3f vel_ned_rel_imu = Tbn * (_ahrs.get_gyro() % (-accel_body_offset)); |
|
_target_vel_rel_out_NE.x -= vel_ned_rel_imu.x; |
|
_target_vel_rel_out_NE.y -= vel_ned_rel_imu.y; |
|
|
|
// Apply land offset |
|
Vector3f land_ofs_ned_m = _ahrs.get_rotation_body_to_ned() * Vector3f(_land_ofs_cm_x,_land_ofs_cm_y,0) * 0.01f; |
|
_target_pos_rel_out_NE.x += land_ofs_ned_m.x; |
|
_target_pos_rel_out_NE.y += land_ofs_ned_m.y; |
|
}
|
|
|