You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
605 lines
17 KiB
605 lines
17 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
/***************************************************************************** |
|
* The init_ardupilot function processes everything we need for an in - air restart |
|
* We will determine later if we are actually on the ground and process a |
|
* ground start in that case. |
|
* |
|
*****************************************************************************/ |
|
|
|
#if CLI_ENABLED == ENABLED |
|
// Functions called from the top-level menu |
|
static int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde |
|
static int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde |
|
static int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp |
|
static int8_t reboot_board(uint8_t argc, const Menu::arg *argv); |
|
|
|
// This is the help function |
|
static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
cliSerial->printf_P(PSTR("Commands:\n" |
|
" logs\n" |
|
" setup\n" |
|
" test\n" |
|
" reboot\n" |
|
"\n")); |
|
return(0); |
|
} |
|
|
|
// Command/function table for the top-level menu. |
|
const struct Menu::command main_menu_commands[] PROGMEM = { |
|
// command function called |
|
// ======= =============== |
|
{"logs", process_logs}, |
|
{"setup", setup_mode}, |
|
{"test", test_mode}, |
|
{"reboot", reboot_board}, |
|
{"help", main_menu_help}, |
|
}; |
|
|
|
// Create the top-level menu object. |
|
MENU(main_menu, THISFIRMWARE, main_menu_commands); |
|
|
|
static int8_t reboot_board(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
hal.scheduler->reboot(false); |
|
return 0; |
|
} |
|
|
|
// the user wants the CLI. It never exits |
|
static void run_cli(AP_HAL::UARTDriver *port) |
|
{ |
|
cliSerial = port; |
|
Menu::set_port(port); |
|
port->set_blocking_writes(true); |
|
|
|
// disable the mavlink delay callback |
|
hal.scheduler->register_delay_callback(NULL, 5); |
|
|
|
// disable main_loop failsafe |
|
failsafe_disable(); |
|
|
|
// cut the engines |
|
if(motors.armed()) { |
|
motors.armed(false); |
|
motors.output(); |
|
} |
|
|
|
while (1) { |
|
main_menu.run(); |
|
} |
|
} |
|
|
|
#endif // CLI_ENABLED |
|
|
|
static void init_ardupilot() |
|
{ |
|
if (!hal.gpio->usb_connected()) { |
|
// USB is not connected, this means UART0 may be a Xbee, with |
|
// its darned bricking problem. We can't write to it for at |
|
// least one second after powering up. Simplest solution for |
|
// now is to delay for 1 second. Something more elegant may be |
|
// added later |
|
delay(1000); |
|
} |
|
|
|
// Console serial port |
|
// |
|
// The console port buffers are defined to be sufficiently large to support |
|
// the MAVLink protocol efficiently |
|
// |
|
#if HIL_MODE != HIL_MODE_DISABLED |
|
// we need more memory for HIL, as we get a much higher packet rate |
|
hal.uartA->begin(SERIAL0_BAUD, 256, 256); |
|
#else |
|
// use a bit less for non-HIL operation |
|
hal.uartA->begin(SERIAL0_BAUD, 512, 128); |
|
#endif |
|
|
|
// GPS serial port. |
|
// |
|
#if GPS_PROTOCOL != GPS_PROTOCOL_IMU |
|
// standard gps running. Note that we need a 256 byte buffer for some |
|
// GPS types (eg. UBLOX) |
|
hal.uartB->begin(38400, 256, 16); |
|
#endif |
|
|
|
cliSerial->printf_P(PSTR("\n\nInit " FIRMWARE_STRING |
|
"\n\nFree RAM: %u\n"), |
|
memcheck_available_memory()); |
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2 |
|
/* |
|
run the timer a bit slower on APM2 to reduce the interrupt load |
|
on the CPU |
|
*/ |
|
hal.scheduler->set_timer_speed(500); |
|
#endif |
|
|
|
// |
|
// Report firmware version code expect on console (check of actual EEPROM format version is done in load_parameters function) |
|
// |
|
report_version(); |
|
|
|
relay.init(); |
|
|
|
#if COPTER_LEDS == ENABLED |
|
copter_leds_init(); |
|
#endif |
|
|
|
// load parameters from EEPROM |
|
load_parameters(); |
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
barometer.init(); |
|
#endif |
|
|
|
// init the GCS |
|
gcs0.init(hal.uartA); |
|
|
|
// Register the mavlink service callback. This will run |
|
// anytime there are more than 5ms remaining in a call to |
|
// hal.scheduler->delay. |
|
hal.scheduler->register_delay_callback(mavlink_delay_cb, 5); |
|
|
|
// we start by assuming USB connected, as we initialed the serial |
|
// port with SERIAL0_BAUD. check_usb_mux() fixes this if need be. |
|
ap.usb_connected = true; |
|
check_usb_mux(); |
|
|
|
#if CONFIG_HAL_BOARD != HAL_BOARD_APM2 |
|
// we have a 2nd serial port for telemetry on all boards except |
|
// APM2. We actually do have one on APM2 but it isn't necessary as |
|
// a MUX is used |
|
hal.uartC->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD), 128, 128); |
|
gcs3.init(hal.uartC); |
|
#endif |
|
|
|
// identify ourselves correctly with the ground station |
|
mavlink_system.sysid = g.sysid_this_mav; |
|
mavlink_system.type = 2; //MAV_QUADROTOR; |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
DataFlash.Init(); |
|
if (!DataFlash.CardInserted()) { |
|
gcs_send_text_P(SEVERITY_LOW, PSTR("No dataflash inserted")); |
|
g.log_bitmask.set(0); |
|
} else if (DataFlash.NeedErase()) { |
|
gcs_send_text_P(SEVERITY_LOW, PSTR("ERASING LOGS")); |
|
do_erase_logs(); |
|
gcs0.reset_cli_timeout(); |
|
} |
|
#endif |
|
|
|
init_rc_in(); // sets up rc channels from radio |
|
init_rc_out(); // sets up motors and output to escs |
|
|
|
/* |
|
* setup the 'main loop is dead' check. Note that this relies on |
|
* the RC library being initialised. |
|
*/ |
|
hal.scheduler->register_timer_failsafe(failsafe_check, 1000); |
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
#if CONFIG_ADC == ENABLED |
|
// begin filtering the ADC Gyros |
|
adc.Init(); // APM ADC library initialization |
|
#endif // CONFIG_ADC |
|
#endif // HIL_MODE |
|
|
|
// Do GPS init |
|
g_gps = &g_gps_driver; |
|
// GPS Initialization |
|
g_gps->init(hal.uartB, GPS::GPS_ENGINE_AIRBORNE_1G); |
|
|
|
if(g.compass_enabled) |
|
init_compass(); |
|
|
|
// init the optical flow sensor |
|
if(g.optflow_enabled) { |
|
init_optflow(); |
|
} |
|
|
|
// initialise inertial nav |
|
inertial_nav.init(); |
|
|
|
#ifdef USERHOOK_INIT |
|
USERHOOK_INIT |
|
#endif |
|
|
|
#if CLI_ENABLED == ENABLED |
|
const prog_char_t *msg = PSTR("\nPress ENTER 3 times to start interactive setup\n"); |
|
cliSerial->println_P(msg); |
|
if (gcs3.initialised) { |
|
hal.uartC->println_P(msg); |
|
} |
|
#endif // CLI_ENABLED |
|
|
|
#if HIL_MODE != HIL_MODE_DISABLED |
|
while (!barometer.healthy) { |
|
// the barometer becomes healthy when we get the first |
|
// HIL_STATE message |
|
gcs_send_text_P(SEVERITY_LOW, PSTR("Waiting for first HIL_STATE message")); |
|
delay(1000); |
|
} |
|
#endif |
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
// read Baro pressure at ground |
|
//----------------------------- |
|
init_barometer(); |
|
#endif |
|
|
|
// initialise sonar |
|
#if CONFIG_SONAR == ENABLED |
|
init_sonar(); |
|
#endif |
|
|
|
// initialize commands |
|
// ------------------- |
|
init_commands(); |
|
|
|
// initialise the flight mode and aux switch |
|
// --------------------------- |
|
reset_control_switch(); |
|
init_aux_switches(); |
|
|
|
startup_ground(true); |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
Log_Write_Startup(); |
|
#endif |
|
|
|
cliSerial->print_P(PSTR("\nReady to FLY ")); |
|
} |
|
|
|
|
|
//****************************************************************************** |
|
//This function does all the calibrations, etc. that we need during a ground start |
|
//****************************************************************************** |
|
static void startup_ground(bool force_gyro_cal) |
|
{ |
|
gcs_send_text_P(SEVERITY_LOW,PSTR("GROUND START")); |
|
|
|
// initialise ahrs (may push imu calibration into the mpu6000 if using that device). |
|
ahrs.init(); |
|
|
|
// Warm up and read Gyro offsets |
|
// ----------------------------- |
|
ins.init(force_gyro_cal?AP_InertialSensor::COLD_START:AP_InertialSensor::WARM_START, |
|
ins_sample_rate); |
|
#if CLI_ENABLED == ENABLED |
|
report_ins(); |
|
#endif |
|
|
|
// setup fast AHRS gains to get right attitude |
|
ahrs.set_fast_gains(true); |
|
|
|
// set landed flag |
|
set_land_complete(true); |
|
} |
|
|
|
// returns true if the GPS is ok and home position is set |
|
static bool GPS_ok() |
|
{ |
|
if (g_gps != NULL && ap.home_is_set && g_gps->status() == GPS::GPS_OK_FIX_3D && !gps_glitch.glitching() && !failsafe.gps) { |
|
return true; |
|
}else{ |
|
return false; |
|
} |
|
} |
|
|
|
// returns true or false whether mode requires GPS |
|
static bool mode_requires_GPS(uint8_t mode) { |
|
switch(mode) { |
|
case AUTO: |
|
case GUIDED: |
|
case LOITER: |
|
case RTL: |
|
case CIRCLE: |
|
case POSITION: |
|
case DRIFT: |
|
return true; |
|
default: |
|
return false; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
// manual_flight_mode - returns true if flight mode is completely manual (i.e. roll, pitch and yaw controlled by pilot) |
|
static bool manual_flight_mode(uint8_t mode) { |
|
switch(mode) { |
|
case ACRO: |
|
case STABILIZE: |
|
case DRIFT: |
|
case SPORT: |
|
return true; |
|
default: |
|
return false; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
// set_mode - change flight mode and perform any necessary initialisation |
|
// optional force parameter used to force the flight mode change (used only first time mode is set) |
|
// returns true if mode was succesfully set |
|
// STABILIZE, ACRO, SPORT and LAND can always be set successfully but the return state of other flight modes should be checked and the caller should deal with failures appropriately |
|
static bool set_mode(uint8_t mode) |
|
{ |
|
// boolean to record if flight mode could be set |
|
bool success = false; |
|
bool ignore_checks = !motors.armed(); // allow switching to any mode if disarmed. We rely on the arming check to perform |
|
|
|
// return immediately if we are already in the desired mode |
|
if (mode == control_mode) { |
|
return true; |
|
} |
|
|
|
switch(mode) { |
|
case ACRO: |
|
success = true; |
|
set_yaw_mode(ACRO_YAW); |
|
set_roll_pitch_mode(ACRO_RP); |
|
set_throttle_mode(ACRO_THR); |
|
set_nav_mode(NAV_NONE); |
|
break; |
|
|
|
case STABILIZE: |
|
success = true; |
|
set_yaw_mode(STABILIZE_YAW); |
|
set_roll_pitch_mode(STABILIZE_RP); |
|
set_throttle_mode(STABILIZE_THR); |
|
set_nav_mode(NAV_NONE); |
|
break; |
|
|
|
case ALT_HOLD: |
|
success = true; |
|
set_yaw_mode(ALT_HOLD_YAW); |
|
set_roll_pitch_mode(ALT_HOLD_RP); |
|
set_throttle_mode(ALT_HOLD_THR); |
|
set_nav_mode(NAV_NONE); |
|
break; |
|
|
|
case AUTO: |
|
// check we have a GPS and at least one mission command (note the home position is always command 0) |
|
if ((GPS_ok() && g.command_total > 1) || ignore_checks) { |
|
success = true; |
|
// roll-pitch, throttle and yaw modes will all be set by the first nav command |
|
init_commands(); // clear the command queues. will be reloaded when "run_autopilot" calls "update_commands" function |
|
} |
|
break; |
|
|
|
case CIRCLE: |
|
if (GPS_ok() || ignore_checks) { |
|
success = true; |
|
set_roll_pitch_mode(CIRCLE_RP); |
|
set_throttle_mode(CIRCLE_THR); |
|
set_nav_mode(CIRCLE_NAV); |
|
set_yaw_mode(CIRCLE_YAW); |
|
} |
|
break; |
|
|
|
case LOITER: |
|
if (GPS_ok() || ignore_checks) { |
|
success = true; |
|
set_yaw_mode(LOITER_YAW); |
|
set_roll_pitch_mode(LOITER_RP); |
|
set_throttle_mode(LOITER_THR); |
|
set_nav_mode(LOITER_NAV); |
|
} |
|
break; |
|
|
|
case POSITION: |
|
if (GPS_ok() || ignore_checks) { |
|
success = true; |
|
set_yaw_mode(POSITION_YAW); |
|
set_roll_pitch_mode(POSITION_RP); |
|
set_throttle_mode(POSITION_THR); |
|
set_nav_mode(POSITION_NAV); |
|
} |
|
break; |
|
|
|
case GUIDED: |
|
if (GPS_ok() || ignore_checks) { |
|
success = true; |
|
set_yaw_mode(get_wp_yaw_mode(false)); |
|
set_roll_pitch_mode(GUIDED_RP); |
|
set_throttle_mode(GUIDED_THR); |
|
set_nav_mode(GUIDED_NAV); |
|
} |
|
break; |
|
|
|
case LAND: |
|
success = true; |
|
do_land(NULL); // land at current location |
|
break; |
|
|
|
case RTL: |
|
if (GPS_ok() || ignore_checks) { |
|
success = true; |
|
do_RTL(); |
|
} |
|
break; |
|
|
|
case OF_LOITER: |
|
if (g.optflow_enabled || ignore_checks) { |
|
success = true; |
|
set_yaw_mode(OF_LOITER_YAW); |
|
set_roll_pitch_mode(OF_LOITER_RP); |
|
set_throttle_mode(OF_LOITER_THR); |
|
set_nav_mode(OF_LOITER_NAV); |
|
} |
|
break; |
|
|
|
case DRIFT: |
|
success = true; |
|
set_yaw_mode(YAW_DRIFT); |
|
set_roll_pitch_mode(ROLL_PITCH_DRIFT); |
|
set_nav_mode(NAV_NONE); |
|
set_throttle_mode(THROTTLE_MANUAL_TILT_COMPENSATED); |
|
break; |
|
|
|
case SPORT: |
|
success = true; |
|
set_yaw_mode(SPORT_YAW); |
|
set_roll_pitch_mode(SPORT_RP); |
|
set_throttle_mode(SPORT_THR); |
|
set_nav_mode(NAV_NONE); |
|
// reset acro angle targets to current attitude |
|
acro_roll = ahrs.roll_sensor; |
|
acro_pitch = ahrs.pitch_sensor; |
|
nav_yaw = ahrs.yaw_sensor; |
|
break; |
|
|
|
default: |
|
success = false; |
|
break; |
|
} |
|
|
|
// update flight mode |
|
if (success) { |
|
control_mode = mode; |
|
Log_Write_Mode(control_mode); |
|
}else{ |
|
// Log error that we failed to enter desired flight mode |
|
Log_Write_Error(ERROR_SUBSYSTEM_FLIGHT_MODE,mode); |
|
} |
|
|
|
// return success or failure |
|
return success; |
|
} |
|
|
|
// update_auto_armed - update status of auto_armed flag |
|
static void update_auto_armed() |
|
{ |
|
// disarm checks |
|
if(ap.auto_armed){ |
|
// if motors are disarmed, auto_armed should also be false |
|
if(!motors.armed()) { |
|
set_auto_armed(false); |
|
return; |
|
} |
|
// if in stabilize or acro flight mode and throttle is zero, auto-armed should become false |
|
if(manual_flight_mode(control_mode) && g.rc_3.control_in == 0 && !failsafe.radio) { |
|
set_auto_armed(false); |
|
} |
|
}else{ |
|
// arm checks |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
// for tradheli if motors are armed and throttle is above zero and the motor is started, auto_armed should be true |
|
if(motors.armed() && g.rc_3.control_in != 0 && motors.motor_runup_complete()) { |
|
set_auto_armed(true); |
|
} |
|
#else |
|
// if motors are armed and throttle is above zero auto_armed should be true |
|
if(motors.armed() && g.rc_3.control_in != 0) { |
|
set_auto_armed(true); |
|
} |
|
#endif // HELI_FRAME |
|
} |
|
} |
|
|
|
/* |
|
* map from a 8 bit EEPROM baud rate to a real baud rate |
|
*/ |
|
static uint32_t map_baudrate(int8_t rate, uint32_t default_baud) |
|
{ |
|
switch (rate) { |
|
case 1: return 1200; |
|
case 2: return 2400; |
|
case 4: return 4800; |
|
case 9: return 9600; |
|
case 19: return 19200; |
|
case 38: return 38400; |
|
case 57: return 57600; |
|
case 111: return 111100; |
|
case 115: return 115200; |
|
} |
|
//cliSerial->println_P(PSTR("Invalid SERIAL3_BAUD")); |
|
return default_baud; |
|
} |
|
|
|
static void check_usb_mux(void) |
|
{ |
|
bool usb_check = hal.gpio->usb_connected(); |
|
if (usb_check == ap.usb_connected) { |
|
return; |
|
} |
|
|
|
// the user has switched to/from the telemetry port |
|
ap.usb_connected = usb_check; |
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2 |
|
// the APM2 has a MUX setup where the first serial port switches |
|
// between USB and a TTL serial connection. When on USB we use |
|
// SERIAL0_BAUD, but when connected as a TTL serial port we run it |
|
// at SERIAL3_BAUD. |
|
if (ap.usb_connected) { |
|
hal.uartA->begin(SERIAL0_BAUD); |
|
} else { |
|
hal.uartA->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD)); |
|
} |
|
#endif |
|
} |
|
|
|
/* |
|
* Read Vcc vs 1.1v internal reference |
|
*/ |
|
uint16_t board_voltage(void) |
|
{ |
|
return board_vcc_analog_source->voltage_latest() * 1000; |
|
} |
|
|
|
// |
|
// print_flight_mode - prints flight mode to serial port. |
|
// |
|
static void |
|
print_flight_mode(AP_HAL::BetterStream *port, uint8_t mode) |
|
{ |
|
switch (mode) { |
|
case STABILIZE: |
|
port->print_P(PSTR("STABILIZE")); |
|
break; |
|
case ACRO: |
|
port->print_P(PSTR("ACRO")); |
|
break; |
|
case ALT_HOLD: |
|
port->print_P(PSTR("ALT_HOLD")); |
|
break; |
|
case AUTO: |
|
port->print_P(PSTR("AUTO")); |
|
break; |
|
case GUIDED: |
|
port->print_P(PSTR("GUIDED")); |
|
break; |
|
case LOITER: |
|
port->print_P(PSTR("LOITER")); |
|
break; |
|
case RTL: |
|
port->print_P(PSTR("RTL")); |
|
break; |
|
case CIRCLE: |
|
port->print_P(PSTR("CIRCLE")); |
|
break; |
|
case POSITION: |
|
port->print_P(PSTR("POSITION")); |
|
break; |
|
case LAND: |
|
port->print_P(PSTR("LAND")); |
|
break; |
|
case OF_LOITER: |
|
port->print_P(PSTR("OF_LOITER")); |
|
break; |
|
case DRIFT: |
|
port->print_P(PSTR("DRIFT")); |
|
break; |
|
case SPORT: |
|
port->print_P(PSTR("SPORT")); |
|
break; |
|
default: |
|
port->printf_P(PSTR("Mode(%u)"), (unsigned)mode); |
|
break; |
|
} |
|
}
|
|
|