You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
350 lines
13 KiB
350 lines
13 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
/* |
|
Flymaple port by Mike McCauley |
|
*/ |
|
|
|
// Interface to the Flymaple sensors: |
|
// ITG3205 Gyroscope http://www.sparkfun.com/datasheets/Sensors/Gyro/PS-ITG-3200-00-01.4.pdf |
|
// ADXL345 Accelerometer http://www.analog.com/static/imported-files/data_sheets/ADXL345.pdf |
|
|
|
#include <AP_HAL.h> |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_FLYMAPLE |
|
|
|
#include "AP_InertialSensor_Flymaple.h" |
|
|
|
const extern AP_HAL::HAL& hal; |
|
|
|
/// Statics |
|
Vector3f AP_InertialSensor_Flymaple::_accel_filtered; |
|
uint32_t AP_InertialSensor_Flymaple::_accel_samples; |
|
Vector3f AP_InertialSensor_Flymaple::_gyro_filtered; |
|
uint32_t AP_InertialSensor_Flymaple::_gyro_samples; |
|
uint64_t AP_InertialSensor_Flymaple::_last_accel_timestamp; |
|
uint64_t AP_InertialSensor_Flymaple::_last_gyro_timestamp; |
|
LowPassFilter2p AP_InertialSensor_Flymaple::_accel_filter_x(800, 10); |
|
LowPassFilter2p AP_InertialSensor_Flymaple::_accel_filter_y(800, 10); |
|
LowPassFilter2p AP_InertialSensor_Flymaple::_accel_filter_z(800, 10); |
|
LowPassFilter2p AP_InertialSensor_Flymaple::_gyro_filter_x(800, 10); |
|
LowPassFilter2p AP_InertialSensor_Flymaple::_gyro_filter_y(800, 10); |
|
LowPassFilter2p AP_InertialSensor_Flymaple::_gyro_filter_z(800, 10); |
|
|
|
// This is how often we wish to make raw samples of the sensors in Hz |
|
const uint32_t raw_sample_rate_hz = 800; |
|
// And the equivalent time between samples in microseconds |
|
const uint32_t raw_sample_interval_us = (1000000 / raw_sample_rate_hz); |
|
|
|
/////// |
|
/// Accelerometer ADXL345 register definitions |
|
#define FLYMAPLE_ACCELEROMETER_ADDRESS 0x53 |
|
#define FLYMAPLE_ACCELEROMETER_XL345_DEVID 0xe5 |
|
#define FLYMAPLE_ACCELEROMETER_ADXLREG_BW_RATE 0x2c |
|
#define FLYMAPLE_ACCELEROMETER_ADXLREG_POWER_CTL 0x2d |
|
#define FLYMAPLE_ACCELEROMETER_ADXLREG_DATA_FORMAT 0x31 |
|
#define FLYMAPLE_ACCELEROMETER_ADXLREG_DEVID 0x00 |
|
#define FLYMAPLE_ACCELEROMETER_ADXLREG_DATAX0 0x32 |
|
#define FLYMAPLE_ACCELEROMETER_GRAVITY 248 |
|
|
|
// ADXL345 accelerometer scaling |
|
// Result will be scaled to 1m/s/s |
|
// ADXL345 in Full resolution mode (any g scaling) is 256 counts/g, so scale by 9.81/256 = 0.038320312 |
|
#define FLYMAPLE_ACCELEROMETER_SCALE_M_S (GRAVITY_MSS / 256.0f) |
|
|
|
/// Gyro ITG3205 register definitions |
|
#define FLYMAPLE_GYRO_ADDRESS 0x68 |
|
#define FLYMAPLE_GYRO_WHO_AM_I 0x00 |
|
#define FLYMAPLE_GYRO_PWR_MGM 0x3e |
|
#define FLYMAPLE_GYRO_DLPF_FS 0x16 |
|
#define FLYMAPLE_GYRO_INT_CFG 0x17 |
|
#define FLYMAPLE_GYRO_SMPLRT_DIV 0x15 |
|
#define FLYMAPLE_GYRO_GYROX_H 0x1d |
|
|
|
// ITG3200 Gyroscope scaling |
|
// ITG3200 is 14.375 LSB degrees/sec with FS_SEL=3 |
|
// Result wil be radians/sec |
|
#define FLYMAPLE_GYRO_SCALE_R_S (1.0f / 14.375f) * (3.1415926f / 180.0f) |
|
|
|
uint16_t AP_InertialSensor_Flymaple::_init_sensor( Sample_rate sample_rate ) |
|
{ |
|
// Sensors are raw sampled at 800Hz. |
|
// Here we figure the divider to get the rate that update should be called |
|
switch (sample_rate) { |
|
case RATE_50HZ: |
|
_sample_divider = raw_sample_rate_hz / 50; |
|
_default_filter_hz = 10; |
|
break; |
|
case RATE_100HZ: |
|
_sample_divider = raw_sample_rate_hz / 100; |
|
_default_filter_hz = 20; |
|
break; |
|
case RATE_200HZ: |
|
default: |
|
_sample_divider = raw_sample_rate_hz / 200; |
|
_default_filter_hz = 20; |
|
break; |
|
} |
|
|
|
// get pointer to i2c bus semaphore |
|
AP_HAL::Semaphore* i2c_sem = hal.i2c->get_semaphore(); |
|
|
|
// take i2c bus sempahore |
|
if (!i2c_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) |
|
return false; |
|
|
|
// Init the accelerometer |
|
uint8_t data; |
|
hal.i2c->readRegister(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_DEVID, &data); |
|
if (data != FLYMAPLE_ACCELEROMETER_XL345_DEVID) |
|
hal.scheduler->panic(PSTR("AP_InertialSensor_Flymaple: could not find ADXL345 accelerometer sensor")); |
|
hal.i2c->writeRegister(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_POWER_CTL, 0x00); |
|
hal.scheduler->delay(5); |
|
hal.i2c->writeRegister(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_POWER_CTL, 0xff); |
|
hal.scheduler->delay(5); |
|
// Measure mode: |
|
hal.i2c->writeRegister(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_POWER_CTL, 0x08); |
|
hal.scheduler->delay(5); |
|
// Full resolution, 8g: |
|
// Caution, this must agree with FLYMAPLE_ACCELEROMETER_SCALE_1G |
|
// In full resoution mode, the scale factor need not change |
|
hal.i2c->writeRegister(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_DATA_FORMAT, 0x08); |
|
hal.scheduler->delay(5); |
|
// Normal power, 800Hz Output Data Rate, 400Hz bandwidth: |
|
hal.i2c->writeRegister(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_BW_RATE, 0x0d); |
|
hal.scheduler->delay(5); |
|
// Power up default is FIFO bypass mode. FIFO is not used by the chip |
|
|
|
// Init the Gyro |
|
// Expect to read the same as the Gyro I2C adress: |
|
hal.i2c->readRegister(FLYMAPLE_GYRO_ADDRESS, FLYMAPLE_GYRO_WHO_AM_I, &data); |
|
if (data != FLYMAPLE_GYRO_ADDRESS) |
|
hal.scheduler->panic(PSTR("AP_InertialSensor_Flymaple: could not find ITG-3200 accelerometer sensor")); |
|
hal.i2c->writeRegister(FLYMAPLE_GYRO_ADDRESS, FLYMAPLE_GYRO_PWR_MGM, 0x00); |
|
hal.scheduler->delay(1); |
|
// Sample rate divider: with 8kHz internal clock (see FLYMAPLE_GYRO_DLPF_FS), |
|
// get 500Hz sample rate, 2 samples |
|
hal.i2c->writeRegister(FLYMAPLE_GYRO_ADDRESS, FLYMAPLE_GYRO_SMPLRT_DIV, 0x0f); |
|
hal.scheduler->delay(1); |
|
// 2000 degrees/sec, 256Hz LPF, 8kHz internal sample rate |
|
// This is the least amount of filtering we can configure for this device |
|
hal.i2c->writeRegister(FLYMAPLE_GYRO_ADDRESS, FLYMAPLE_GYRO_DLPF_FS, 0x18); |
|
hal.scheduler->delay(1); |
|
// No interrupts |
|
hal.i2c->writeRegister(FLYMAPLE_GYRO_ADDRESS, FLYMAPLE_GYRO_INT_CFG, 0x00); |
|
hal.scheduler->delay(1); |
|
|
|
// Set up the filter desired |
|
_set_filter_frequency(_mpu6000_filter); |
|
|
|
// give back i2c semaphore |
|
i2c_sem->give(); |
|
|
|
return AP_PRODUCT_ID_FLYMAPLE; |
|
} |
|
|
|
/* |
|
set the filter frequency |
|
*/ |
|
void AP_InertialSensor_Flymaple::_set_filter_frequency(uint8_t filter_hz) |
|
{ |
|
if (filter_hz == 0) |
|
filter_hz = _default_filter_hz; |
|
|
|
_accel_filter_x.set_cutoff_frequency(raw_sample_rate_hz, filter_hz); |
|
_accel_filter_y.set_cutoff_frequency(raw_sample_rate_hz, filter_hz); |
|
_accel_filter_z.set_cutoff_frequency(raw_sample_rate_hz, filter_hz); |
|
_gyro_filter_x.set_cutoff_frequency(raw_sample_rate_hz, filter_hz); |
|
_gyro_filter_y.set_cutoff_frequency(raw_sample_rate_hz, filter_hz); |
|
_gyro_filter_z.set_cutoff_frequency(raw_sample_rate_hz, filter_hz); |
|
} |
|
|
|
/*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */ |
|
|
|
// This takes about 20us to run |
|
bool AP_InertialSensor_Flymaple::update(void) |
|
{ |
|
if (!wait_for_sample(100)) { |
|
return false; |
|
} |
|
Vector3f accel_scale = _accel_scale[0].get(); |
|
|
|
// Not really needed since Flymaple _accumulate runs in the main thread |
|
hal.scheduler->suspend_timer_procs(); |
|
|
|
// base the time on the gyro timestamp, as that is what is |
|
// multiplied by time to integrate in DCM |
|
_delta_time = (_last_gyro_timestamp - _last_update_usec) * 1.0e-6f; |
|
_last_update_usec = _last_gyro_timestamp; |
|
|
|
_previous_accel[0] = _accel[0]; |
|
|
|
_accel[0] = _accel_filtered; |
|
_accel_samples = 0; |
|
|
|
_gyro[0] = _gyro_filtered; |
|
_gyro_samples = 0; |
|
|
|
hal.scheduler->resume_timer_procs(); |
|
|
|
// add offsets and rotation |
|
_accel[0].rotate(_board_orientation); |
|
|
|
// Adjust for chip scaling to get m/s/s |
|
_accel[0] *= FLYMAPLE_ACCELEROMETER_SCALE_M_S; |
|
|
|
// Now the calibration scale factor |
|
_accel[0].x *= accel_scale.x; |
|
_accel[0].y *= accel_scale.y; |
|
_accel[0].z *= accel_scale.z; |
|
_accel[0] -= _accel_offset[0]; |
|
|
|
_gyro[0].rotate(_board_orientation); |
|
|
|
// Adjust for chip scaling to get radians/sec |
|
_gyro[0] *= FLYMAPLE_GYRO_SCALE_R_S; |
|
_gyro[0] -= _gyro_offset[0]; |
|
|
|
if (_last_filter_hz != _mpu6000_filter) { |
|
_set_filter_frequency(_mpu6000_filter); |
|
_last_filter_hz = _mpu6000_filter; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
bool AP_InertialSensor_Flymaple::get_gyro_health(void) const |
|
{ |
|
if (_last_gyro_timestamp == 0) { |
|
// not initialised yet, show as healthy to prevent scary GCS |
|
// warnings |
|
return true; |
|
} |
|
uint64_t now = hal.scheduler->micros(); |
|
if ((now - _last_gyro_timestamp) >= (2 * raw_sample_interval_us)) { |
|
// gyros have not updated |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
bool AP_InertialSensor_Flymaple::get_accel_health(void) const |
|
{ |
|
if (_last_accel_timestamp == 0) { |
|
// not initialised yet, show as healthy to prevent scary GCS |
|
// warnings |
|
return true; |
|
} |
|
uint64_t now = hal.scheduler->micros(); |
|
if ((now - _last_accel_timestamp) >= (2 * raw_sample_interval_us)) { |
|
// gyros have not updated |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
float AP_InertialSensor_Flymaple::get_delta_time(void) const |
|
{ |
|
return _delta_time; |
|
} |
|
|
|
float AP_InertialSensor_Flymaple::get_gyro_drift_rate(void) |
|
{ |
|
// Dont really know this for the ITG-3200. |
|
// 0.5 degrees/second/minute |
|
return ToRad(0.5/60); |
|
} |
|
|
|
// This needs to get called as often as possible. |
|
// Its job is to accumulate samples as fast as is reasonable for the accel and gyro |
|
// sensors. |
|
// Cant call this from within the system timers, since the long I2C reads (up to 1ms) |
|
// with interrupts disabled breaks lots of things |
|
// Therefore must call this as often as possible from |
|
// within the mainline and thropttle the reads here to suit the sensors |
|
void AP_InertialSensor_Flymaple::_accumulate(void) |
|
{ |
|
// get pointer to i2c bus semaphore |
|
AP_HAL::Semaphore* i2c_sem = hal.i2c->get_semaphore(); |
|
|
|
// take i2c bus sempahore |
|
if (!i2c_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) |
|
return; |
|
|
|
// Read accelerometer |
|
// ADXL345 is in the default FIFO bypass mode, so the FIFO is not used |
|
uint8_t buffer[6]; |
|
uint64_t now = hal.scheduler->micros(); |
|
// This takes about 250us at 400kHz I2C speed |
|
if ((now - _last_accel_timestamp) >= raw_sample_interval_us |
|
&& hal.i2c->readRegisters(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_DATAX0, 6, buffer) == 0) |
|
{ |
|
// The order is a bit wierd here since the standard we have adopted for Flymaple |
|
// sensor orientation is different to what the board designers intended |
|
// Caution, to support alternative chip orientations on other bords, may |
|
// need to add a chip orientation rotate |
|
int16_t y = -((((int16_t)buffer[1]) << 8) | buffer[0]); // chip X axis |
|
int16_t x = -((((int16_t)buffer[3]) << 8) | buffer[2]); // chip Y axis |
|
int16_t z = -((((int16_t)buffer[5]) << 8) | buffer[4]); // chip Z axis |
|
_accel_filtered = Vector3f(_accel_filter_x.apply(x), |
|
_accel_filter_y.apply(y), |
|
_accel_filter_z.apply(z)); |
|
_accel_samples++; |
|
_last_accel_timestamp = now; |
|
} |
|
|
|
// Read gyro |
|
now = hal.scheduler->micros(); |
|
// This takes about 250us at 400kHz I2C speed |
|
if ((now - _last_gyro_timestamp) >= raw_sample_interval_us |
|
&& hal.i2c->readRegisters(FLYMAPLE_GYRO_ADDRESS, FLYMAPLE_GYRO_GYROX_H, 6, buffer) == 0) |
|
{ |
|
// See above re order of samples in buffer |
|
int16_t y = -((((int16_t)buffer[0]) << 8) | buffer[1]); // chip X axis |
|
int16_t x = -((((int16_t)buffer[2]) << 8) | buffer[3]); // chip Y axis |
|
int16_t z = -((((int16_t)buffer[4]) << 8) | buffer[5]); // chip Z axis |
|
_gyro_filtered = Vector3f(_gyro_filter_x.apply(x), |
|
_gyro_filter_y.apply(y), |
|
_gyro_filter_z.apply(z)); |
|
_gyro_samples++; |
|
_last_gyro_timestamp = now; |
|
} |
|
|
|
// give back i2c semaphore |
|
i2c_sem->give(); |
|
} |
|
|
|
bool AP_InertialSensor_Flymaple::_sample_available(void) |
|
{ |
|
_accumulate(); |
|
return min(_accel_samples, _gyro_samples) / _sample_divider > 0; |
|
} |
|
|
|
bool AP_InertialSensor_Flymaple::wait_for_sample(uint16_t timeout_ms) |
|
{ |
|
if (_sample_available()) { |
|
return true; |
|
} |
|
uint32_t start = hal.scheduler->millis(); |
|
while ((hal.scheduler->millis() - start) < timeout_ms) { |
|
hal.scheduler->delay_microseconds(100); |
|
if (_sample_available()) { |
|
return true; |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
#endif // CONFIG_HAL_BOARD |
|
|
|
|