You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
653 lines
26 KiB
653 lines
26 KiB
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
/* |
|
support for autotune of multirotors. Based on original autotune code from ArduCopter, written by Leonard Hall |
|
Converted to a library by Andrew Tridgell |
|
*/ |
|
|
|
#define AUTOTUNE_FFI_RATIO_FOR_TESTING 0.5f // I is set 2x smaller than VFF during testing |
|
#define AUTOTUNE_FFI_RATIO_FINAL 0.5f // I is set 0.5x VFF after testing |
|
#define AUTOTUNE_PI_RATIO_FINAL 1.0f // I is set 1x P after testing |
|
#define AUTOTUNE_YAW_PI_RATIO_FINAL 0.1f // I is set 1x P after testing |
|
#define AUTOTUNE_RD_STEP 0.05f // minimum increment when increasing/decreasing Rate D term |
|
#define AUTOTUNE_RP_STEP 0.05f // minimum increment when increasing/decreasing Rate P term |
|
#define AUTOTUNE_SP_STEP 0.05f // minimum increment when increasing/decreasing Stab P term |
|
#define AUTOTUNE_PI_RATIO_FOR_TESTING 0.1f // I is set 10x smaller than P during testing |
|
#define AUTOTUNE_RD_MAX 0.200f // maximum Rate D value |
|
#define AUTOTUNE_RLPF_MIN 1.0f // minimum Rate Yaw filter value |
|
#define AUTOTUNE_RLPF_MAX 5.0f // maximum Rate Yaw filter value |
|
#define AUTOTUNE_RP_MIN 0.01f // minimum Rate P value |
|
#define AUTOTUNE_RP_MAX 2.0f // maximum Rate P value |
|
#define AUTOTUNE_SP_MAX 20.0f // maximum Stab P value |
|
#define AUTOTUNE_SP_MIN 0.5f // maximum Stab P value |
|
#define AUTOTUNE_D_UP_DOWN_MARGIN 0.2f // The margin below the target that we tune D in |
|
|
|
#include "AC_AutoTune_Multi.h" |
|
|
|
// constructor |
|
AC_AutoTune_Multi::AC_AutoTune_Multi() |
|
{ |
|
tune_seq[0] = RD_UP; |
|
tune_seq[1] = RD_DOWN; |
|
tune_seq[2] = RP_UP; |
|
tune_seq[3] = SP_DOWN; |
|
tune_seq[4] = SP_UP; |
|
tune_seq[5] = TUNE_COMPLETE; |
|
} |
|
|
|
void AC_AutoTune_Multi::do_gcs_announcements() |
|
{ |
|
const uint32_t now = AP_HAL::millis(); |
|
if (now - announce_time < AUTOTUNE_ANNOUNCE_INTERVAL_MS) { |
|
return; |
|
} |
|
float tune_rp = 0.0f; |
|
float tune_rd = 0.0f; |
|
float tune_sp = 0.0f; |
|
float tune_accel = 0.0f; |
|
char axis_char = '?'; |
|
switch (axis) { |
|
case ROLL: |
|
tune_rp = tune_roll_rp; |
|
tune_rd = tune_roll_rd; |
|
tune_sp = tune_roll_sp; |
|
tune_accel = tune_roll_accel; |
|
axis_char = 'R'; |
|
break; |
|
case PITCH: |
|
tune_rp = tune_pitch_rp; |
|
tune_rd = tune_pitch_rd; |
|
tune_sp = tune_pitch_sp; |
|
tune_accel = tune_pitch_accel; |
|
axis_char = 'P'; |
|
break; |
|
case YAW: |
|
tune_rp = tune_yaw_rp; |
|
tune_rd = tune_yaw_rLPF; |
|
tune_sp = tune_yaw_sp; |
|
tune_accel = tune_yaw_accel; |
|
axis_char = 'Y'; |
|
break; |
|
} |
|
|
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: (%c) %s", axis_char, type_string()); |
|
send_step_string(); |
|
if (!is_zero(lean_angle)) { |
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: lean=%f target=%f", (double)lean_angle, (double)target_angle); |
|
} |
|
if (!is_zero(rotation_rate)) { |
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: rotation=%f target=%f", (double)(rotation_rate*0.01f), (double)(target_rate*0.01f)); |
|
} |
|
switch (tune_type) { |
|
case RD_UP: |
|
case RD_DOWN: |
|
case RP_UP: |
|
case RP_DOWN: |
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: p=%f d=%f", (double)tune_rp, (double)tune_rd); |
|
break; |
|
case RFF_UP: |
|
case RFF_DOWN: |
|
break; |
|
case SP_DOWN: |
|
case SP_UP: |
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: p=%f accel=%f", (double)tune_sp, (double)tune_accel); |
|
break; |
|
case MAX_GAINS: |
|
case TUNE_COMPLETE: |
|
break; |
|
} |
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: success %u/%u", counter, AUTOTUNE_SUCCESS_COUNT); |
|
|
|
announce_time = now; |
|
} |
|
|
|
void AC_AutoTune_Multi::test_init() |
|
{ |
|
twitch_test_init(); |
|
} |
|
|
|
void AC_AutoTune_Multi::test_run(AxisType test_axis, const float dir_sign) |
|
{ |
|
twitch_test_run(test_axis, dir_sign); |
|
} |
|
|
|
// load_test_gains - load the to-be-tested gains for a single axis |
|
// called by control_attitude() just before it beings testing a gain (i.e. just before it twitches) |
|
void AC_AutoTune_Multi::load_test_gains() |
|
{ |
|
AC_AutoTune::load_test_gains(); |
|
|
|
switch (axis) { |
|
case ROLL: |
|
attitude_control->get_rate_roll_pid().kI(tune_roll_rp*0.01f); |
|
attitude_control->get_rate_roll_pid().ff(0.0f); |
|
attitude_control->get_rate_roll_pid().filt_T_hz(0.0f); |
|
attitude_control->get_rate_roll_pid().slew_limit(0.0f); |
|
break; |
|
case PITCH: |
|
attitude_control->get_rate_pitch_pid().kI(tune_pitch_rp*0.01f); |
|
attitude_control->get_rate_pitch_pid().ff(0.0f); |
|
attitude_control->get_rate_pitch_pid().filt_T_hz(0.0f); |
|
attitude_control->get_rate_pitch_pid().slew_limit(0.0f); |
|
break; |
|
case YAW: |
|
attitude_control->get_rate_yaw_pid().kI(tune_yaw_rp*0.01f); |
|
attitude_control->get_rate_yaw_pid().kD(0.0f); |
|
attitude_control->get_rate_yaw_pid().ff(0.0f); |
|
attitude_control->get_rate_yaw_pid().filt_T_hz(0.0f); |
|
attitude_control->get_rate_yaw_pid().slew_limit(0.0f); |
|
break; |
|
} |
|
} |
|
|
|
// save_tuning_gains - save the final tuned gains for each axis |
|
// save discovered gains to eeprom if autotuner is enabled (i.e. switch is in the high position) |
|
void AC_AutoTune_Multi::save_tuning_gains() |
|
{ |
|
|
|
AC_AutoTune::save_tuning_gains(); |
|
|
|
// sanity check the rate P values |
|
if ((axes_completed & AUTOTUNE_AXIS_BITMASK_ROLL) && roll_enabled() && !is_zero(tune_roll_rp)) { |
|
// rate roll gains |
|
attitude_control->get_rate_roll_pid().ff(orig_roll_rff); |
|
attitude_control->get_rate_roll_pid().filt_T_hz(orig_roll_fltt); |
|
attitude_control->get_rate_roll_pid().slew_limit(orig_roll_smax); |
|
attitude_control->get_rate_roll_pid().kI(tune_roll_rp*AUTOTUNE_PI_RATIO_FINAL); |
|
attitude_control->get_rate_roll_pid().save_gains(); |
|
|
|
// resave pids to originals in case the autotune is run again |
|
orig_roll_rff = attitude_control->get_rate_roll_pid().ff(); |
|
orig_roll_ri = attitude_control->get_rate_roll_pid().kI(); |
|
} |
|
|
|
if ((axes_completed & AUTOTUNE_AXIS_BITMASK_PITCH) && pitch_enabled() && !is_zero(tune_pitch_rp)) { |
|
// rate pitch gains |
|
attitude_control->get_rate_pitch_pid().ff(orig_pitch_rff); |
|
attitude_control->get_rate_pitch_pid().filt_T_hz(orig_pitch_fltt); |
|
attitude_control->get_rate_pitch_pid().slew_limit(orig_pitch_smax); |
|
attitude_control->get_rate_pitch_pid().kI(tune_pitch_rp*AUTOTUNE_PI_RATIO_FINAL); |
|
attitude_control->get_rate_pitch_pid().save_gains(); |
|
|
|
// resave pids to originals in case the autotune is run again |
|
orig_pitch_rff = attitude_control->get_rate_pitch_pid().ff(); |
|
orig_pitch_ri = attitude_control->get_rate_pitch_pid().kI(); |
|
} |
|
|
|
if ((axes_completed & AUTOTUNE_AXIS_BITMASK_YAW) && yaw_enabled() && !is_zero(tune_yaw_rp)) { |
|
// rate yaw gains |
|
attitude_control->get_rate_yaw_pid().kD(0.0f); |
|
attitude_control->get_rate_yaw_pid().ff(orig_yaw_rff); |
|
attitude_control->get_rate_yaw_pid().filt_T_hz(orig_yaw_fltt); |
|
attitude_control->get_rate_yaw_pid().slew_limit(orig_yaw_smax); |
|
attitude_control->get_rate_yaw_pid().filt_E_hz(tune_yaw_rLPF); |
|
attitude_control->get_rate_yaw_pid().kI(tune_yaw_rp*AUTOTUNE_YAW_PI_RATIO_FINAL); |
|
attitude_control->get_rate_yaw_pid().save_gains(); |
|
|
|
// resave pids to originals in case the autotune is run again |
|
orig_yaw_rd = attitude_control->get_rate_yaw_pid().kD(); |
|
orig_yaw_rLPF = attitude_control->get_rate_yaw_pid().filt_E_hz(); |
|
orig_yaw_rff = attitude_control->get_rate_yaw_pid().ff(); |
|
orig_yaw_ri = attitude_control->get_rate_yaw_pid().kI(); |
|
} |
|
|
|
// update GCS and log save gains event |
|
update_gcs(AUTOTUNE_MESSAGE_SAVED_GAINS); |
|
AP::logger().Write_Event(LogEvent::AUTOTUNE_SAVEDGAINS); |
|
|
|
reset(); |
|
} |
|
|
|
// update gains for the rate p up tune type |
|
void AC_AutoTune_Multi::updating_rate_p_up_all(AxisType test_axis) |
|
{ |
|
switch (test_axis) { |
|
case ROLL: |
|
updating_rate_p_up_d_down(tune_roll_rd, min_d, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); |
|
break; |
|
case PITCH: |
|
updating_rate_p_up_d_down(tune_pitch_rd, min_d, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); |
|
break; |
|
case YAW: |
|
updating_rate_p_up_d_down(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); |
|
break; |
|
} |
|
} |
|
|
|
// update gains for the rate d up tune type |
|
void AC_AutoTune_Multi::updating_rate_d_up_all(AxisType test_axis) |
|
{ |
|
switch (test_axis) { |
|
case ROLL: |
|
updating_rate_d_up(tune_roll_rd, min_d, AUTOTUNE_RD_MAX, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); |
|
break; |
|
case PITCH: |
|
updating_rate_d_up(tune_pitch_rd, min_d, AUTOTUNE_RD_MAX, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); |
|
break; |
|
case YAW: |
|
updating_rate_d_up(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RLPF_MAX, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); |
|
break; |
|
} |
|
} |
|
|
|
// update gains for the rate d down tune type |
|
void AC_AutoTune_Multi::updating_rate_d_down_all(AxisType test_axis) |
|
{ |
|
switch (test_axis) { |
|
case ROLL: |
|
updating_rate_d_down(tune_roll_rd, min_d, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); |
|
break; |
|
case PITCH: |
|
updating_rate_d_down(tune_pitch_rd, min_d, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); |
|
break; |
|
case YAW: |
|
updating_rate_d_down(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); |
|
break; |
|
} |
|
} |
|
|
|
// update gains for the angle p up tune type |
|
void AC_AutoTune_Multi::updating_angle_p_up_all(AxisType test_axis) |
|
{ |
|
switch (test_axis) { |
|
case ROLL: |
|
updating_angle_p_up(tune_roll_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max); |
|
break; |
|
case PITCH: |
|
updating_angle_p_up(tune_pitch_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max); |
|
break; |
|
case YAW: |
|
updating_angle_p_up(tune_yaw_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max); |
|
break; |
|
} |
|
} |
|
|
|
// update gains for the angle p down tune type |
|
void AC_AutoTune_Multi::updating_angle_p_down_all(AxisType test_axis) |
|
{ |
|
switch (test_axis) { |
|
case ROLL: |
|
updating_angle_p_down(tune_roll_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max); |
|
break; |
|
case PITCH: |
|
updating_angle_p_down(tune_pitch_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max); |
|
break; |
|
case YAW: |
|
updating_angle_p_down(tune_yaw_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max); |
|
break; |
|
} |
|
} |
|
|
|
// updating_rate_d_up - increase D and adjust P to optimize the D term for a little bounce back |
|
// optimize D term while keeping the maximum just below the target by adjusting P |
|
void AC_AutoTune_Multi::updating_rate_d_up(float &tune_d, float tune_d_min, float tune_d_max, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float rate_target, float meas_rate_min, float meas_rate_max) |
|
{ |
|
if (meas_rate_max > rate_target) { |
|
// if maximum measurement was higher than target |
|
// reduce P gain (which should reduce maximum) |
|
tune_p -= tune_p*tune_p_step_ratio; |
|
if (tune_p < tune_p_min) { |
|
// P gain is at minimum so start reducing D |
|
tune_p = tune_p_min; |
|
tune_d -= tune_d*tune_d_step_ratio; |
|
if (tune_d <= tune_d_min) { |
|
// We have reached minimum D gain so stop tuning |
|
tune_d = tune_d_min; |
|
counter = AUTOTUNE_SUCCESS_COUNT; |
|
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); |
|
} |
|
} |
|
} else if ((meas_rate_max < rate_target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (tune_p <= tune_p_max)) { |
|
// we have not achieved a high enough maximum to get a good measurement of bounce back. |
|
// increase P gain (which should increase maximum) |
|
tune_p += tune_p*tune_p_step_ratio; |
|
if (tune_p >= tune_p_max) { |
|
tune_p = tune_p_max; |
|
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); |
|
} |
|
} else { |
|
// we have a good measurement of bounce back |
|
if (meas_rate_max-meas_rate_min > meas_rate_max*aggressiveness) { |
|
// ignore the next result unless it is the same as this one |
|
ignore_next = true; |
|
// bounce back is bigger than our threshold so increment the success counter |
|
counter++; |
|
} else { |
|
if (ignore_next == false) { |
|
// bounce back is smaller than our threshold so decrement the success counter |
|
if (counter > 0) { |
|
counter--; |
|
} |
|
// increase D gain (which should increase bounce back) |
|
tune_d += tune_d*tune_d_step_ratio*2.0f; |
|
// stop tuning if we hit maximum D |
|
if (tune_d >= tune_d_max) { |
|
tune_d = tune_d_max; |
|
counter = AUTOTUNE_SUCCESS_COUNT; |
|
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); |
|
} |
|
} else { |
|
ignore_next = false; |
|
} |
|
} |
|
} |
|
} |
|
|
|
// updating_rate_d_down - decrease D and adjust P to optimize the D term for no bounce back |
|
// optimize D term while keeping the maximum just below the target by adjusting P |
|
void AC_AutoTune_Multi::updating_rate_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float rate_target, float meas_rate_min, float meas_rate_max) |
|
{ |
|
if (meas_rate_max > rate_target) { |
|
// if maximum measurement was higher than target |
|
// reduce P gain (which should reduce maximum) |
|
tune_p -= tune_p*tune_p_step_ratio; |
|
if (tune_p < tune_p_min) { |
|
// P gain is at minimum so start reducing D gain |
|
tune_p = tune_p_min; |
|
tune_d -= tune_d*tune_d_step_ratio; |
|
if (tune_d <= tune_d_min) { |
|
// We have reached minimum D so stop tuning |
|
tune_d = tune_d_min; |
|
counter = AUTOTUNE_SUCCESS_COUNT; |
|
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); |
|
} |
|
} |
|
} else if ((meas_rate_max < rate_target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (tune_p <= tune_p_max)) { |
|
// we have not achieved a high enough maximum to get a good measurement of bounce back. |
|
// increase P gain (which should increase maximum) |
|
tune_p += tune_p*tune_p_step_ratio; |
|
if (tune_p >= tune_p_max) { |
|
tune_p = tune_p_max; |
|
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); |
|
} |
|
} else { |
|
// we have a good measurement of bounce back |
|
if (meas_rate_max-meas_rate_min < meas_rate_max*aggressiveness) { |
|
if (ignore_next == false) { |
|
// bounce back is less than our threshold so increment the success counter |
|
counter++; |
|
} else { |
|
ignore_next = false; |
|
} |
|
} else { |
|
// ignore the next result unless it is the same as this one |
|
ignore_next = true; |
|
// bounce back is larger than our threshold so decrement the success counter |
|
if (counter > 0) { |
|
counter--; |
|
} |
|
// decrease D gain (which should decrease bounce back) |
|
tune_d -= tune_d*tune_d_step_ratio; |
|
// stop tuning if we hit minimum D |
|
if (tune_d <= tune_d_min) { |
|
tune_d = tune_d_min; |
|
counter = AUTOTUNE_SUCCESS_COUNT; |
|
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); |
|
} |
|
} |
|
} |
|
} |
|
|
|
// updating_rate_p_up_d_down - increase P to ensure the target is reached while checking bounce back isn't increasing |
|
// P is increased until we achieve our target within a reasonable time while reducing D if bounce back increases above the threshold |
|
void AC_AutoTune_Multi::updating_rate_p_up_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float rate_target, float meas_rate_min, float meas_rate_max) |
|
{ |
|
if (meas_rate_max > rate_target*(1+0.5f*aggressiveness)) { |
|
// ignore the next result unless it is the same as this one |
|
ignore_next = true; |
|
// if maximum measurement was greater than target so increment the success counter |
|
counter++; |
|
} else if ((meas_rate_max < rate_target) && (meas_rate_max > rate_target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (meas_rate_max-meas_rate_min > meas_rate_max*aggressiveness) && (tune_d > tune_d_min)) { |
|
// if bounce back was larger than the threshold so decrement the success counter |
|
if (counter > 0) { |
|
counter--; |
|
} |
|
// decrease D gain (which should decrease bounce back) |
|
tune_d -= tune_d*tune_d_step_ratio; |
|
// do not decrease the D term past the minimum |
|
if (tune_d <= tune_d_min) { |
|
tune_d = tune_d_min; |
|
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); |
|
} |
|
// decrease P gain to match D gain reduction |
|
tune_p -= tune_p*tune_p_step_ratio; |
|
// do not decrease the P term past the minimum |
|
if (tune_p <= tune_p_min) { |
|
tune_p = tune_p_min; |
|
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); |
|
} |
|
// cancel change in direction |
|
positive_direction = !positive_direction; |
|
} else { |
|
if (ignore_next == false) { |
|
// if maximum measurement was lower than target so decrement the success counter |
|
if (counter > 0) { |
|
counter--; |
|
} |
|
// increase P gain (which should increase the maximum) |
|
tune_p += tune_p*tune_p_step_ratio; |
|
// stop tuning if we hit maximum P |
|
if (tune_p >= tune_p_max) { |
|
tune_p = tune_p_max; |
|
counter = AUTOTUNE_SUCCESS_COUNT; |
|
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); |
|
} |
|
} else { |
|
ignore_next = false; |
|
} |
|
} |
|
} |
|
|
|
// updating_angle_p_down - decrease P until we don't reach the target before time out |
|
// P is decreased to ensure we are not overshooting the target |
|
void AC_AutoTune_Multi::updating_angle_p_down(float &tune_p, float tune_p_min, float tune_p_step_ratio, float angle_target, float meas_angle_max, float meas_rate_min, float meas_rate_max) |
|
{ |
|
if (meas_angle_max < angle_target*(1+0.5f*aggressiveness)) { |
|
if (ignore_next == false) { |
|
// if maximum measurement was lower than target so increment the success counter |
|
counter++; |
|
} else { |
|
ignore_next = false; |
|
} |
|
} else { |
|
// ignore the next result unless it is the same as this one |
|
ignore_next = true; |
|
// if maximum measurement was higher than target so decrement the success counter |
|
if (counter > 0) { |
|
counter--; |
|
} |
|
// decrease P gain (which should decrease the maximum) |
|
tune_p -= tune_p*tune_p_step_ratio; |
|
// stop tuning if we hit maximum P |
|
if (tune_p <= tune_p_min) { |
|
tune_p = tune_p_min; |
|
counter = AUTOTUNE_SUCCESS_COUNT; |
|
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); |
|
} |
|
} |
|
} |
|
|
|
// updating_angle_p_up - increase P to ensure the target is reached |
|
// P is increased until we achieve our target within a reasonable time |
|
void AC_AutoTune_Multi::updating_angle_p_up(float &tune_p, float tune_p_max, float tune_p_step_ratio, float angle_target, float meas_angle_max, float meas_rate_min, float meas_rate_max) |
|
{ |
|
if ((meas_angle_max > angle_target*(1+0.5f*aggressiveness)) || |
|
((meas_angle_max > angle_target) && (meas_rate_min < -meas_rate_max*aggressiveness))) { |
|
// ignore the next result unless it is the same as this one |
|
ignore_next = true; |
|
// if maximum measurement was greater than target so increment the success counter |
|
counter++; |
|
} else { |
|
if (ignore_next == false) { |
|
// if maximum measurement was lower than target so decrement the success counter |
|
if (counter > 0) { |
|
counter--; |
|
} |
|
// increase P gain (which should increase the maximum) |
|
tune_p += tune_p*tune_p_step_ratio; |
|
// stop tuning if we hit maximum P |
|
if (tune_p >= tune_p_max) { |
|
tune_p = tune_p_max; |
|
counter = AUTOTUNE_SUCCESS_COUNT; |
|
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); |
|
} |
|
} else { |
|
ignore_next = false; |
|
} |
|
} |
|
} |
|
|
|
void AC_AutoTune_Multi::Log_AutoTune() |
|
{ |
|
if ((tune_type == SP_DOWN) || (tune_type == SP_UP)) { |
|
switch (axis) { |
|
case ROLL: |
|
Log_Write_AutoTune(axis, tune_type, target_angle, test_angle_min, test_angle_max, tune_roll_rp, tune_roll_rd, tune_roll_sp, test_accel_max); |
|
break; |
|
case PITCH: |
|
Log_Write_AutoTune(axis, tune_type, target_angle, test_angle_min, test_angle_max, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp, test_accel_max); |
|
break; |
|
case YAW: |
|
Log_Write_AutoTune(axis, tune_type, target_angle, test_angle_min, test_angle_max, tune_yaw_rp, tune_yaw_rLPF, tune_yaw_sp, test_accel_max); |
|
break; |
|
} |
|
} else { |
|
switch (axis) { |
|
case ROLL: |
|
Log_Write_AutoTune(axis, tune_type, target_rate, test_rate_min, test_rate_max, tune_roll_rp, tune_roll_rd, tune_roll_sp, test_accel_max); |
|
break; |
|
case PITCH: |
|
Log_Write_AutoTune(axis, tune_type, target_rate, test_rate_min, test_rate_max, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp, test_accel_max); |
|
break; |
|
case YAW: |
|
Log_Write_AutoTune(axis, tune_type, target_rate, test_rate_min, test_rate_max, tune_yaw_rp, tune_yaw_rLPF, tune_yaw_sp, test_accel_max); |
|
break; |
|
} |
|
} |
|
|
|
} |
|
|
|
void AC_AutoTune_Multi::Log_AutoTuneDetails() |
|
{ |
|
Log_Write_AutoTuneDetails(lean_angle, rotation_rate); |
|
} |
|
|
|
// @LoggerMessage: ATUN |
|
// @Description: Copter/QuadPlane AutoTune |
|
// @Vehicles: Copter, Plane |
|
// @Field: TimeUS: Time since system startup |
|
// @Field: Axis: which axis is currently being tuned |
|
// @Field: TuneStep: step in autotune process |
|
// @Field: Targ: target angle or rate, depending on tuning step |
|
// @Field: Min: measured minimum target angle or rate |
|
// @Field: Max: measured maximum target angle or rate |
|
// @Field: RP: new rate gain P term |
|
// @Field: RD: new rate gain D term |
|
// @Field: SP: new angle P term |
|
// @Field: ddt: maximum measured twitching acceleration |
|
|
|
// Write an Autotune data packet |
|
void AC_AutoTune_Multi::Log_Write_AutoTune(uint8_t _axis, uint8_t tune_step, float meas_target, float meas_min, float meas_max, float new_gain_rp, float new_gain_rd, float new_gain_sp, float new_ddt) |
|
{ |
|
AP::logger().Write( |
|
"ATUN", |
|
"TimeUS,Axis,TuneStep,Targ,Min,Max,RP,RD,SP,ddt", |
|
"s--ddd---o", |
|
"F--000---0", |
|
"QBBfffffff", |
|
AP_HAL::micros64(), |
|
axis, |
|
tune_step, |
|
meas_target*0.01f, |
|
meas_min*0.01f, |
|
meas_max*0.01f, |
|
new_gain_rp, |
|
new_gain_rd, |
|
new_gain_sp, |
|
new_ddt); |
|
} |
|
|
|
// Write an Autotune data packet |
|
void AC_AutoTune_Multi::Log_Write_AutoTuneDetails(float angle_cd, float rate_cds) |
|
{ |
|
// @LoggerMessage: ATDE |
|
// @Description: AutoTune data packet |
|
// @Field: TimeUS: Time since system startup |
|
// @Field: Angle: current angle |
|
// @Field: Rate: current angular rate |
|
AP::logger().WriteStreaming( |
|
"ATDE", |
|
"TimeUS,Angle,Rate", |
|
"sdk", |
|
"F00", |
|
"Qff", |
|
AP_HAL::micros64(), |
|
angle_cd*0.01f, |
|
rate_cds*0.01f); |
|
} |
|
|
|
// get intra test rate I gain for the specified axis |
|
float AC_AutoTune_Multi::get_intra_test_ri(AxisType test_axis) |
|
{ |
|
float ret = 0.0f; |
|
switch (test_axis) { |
|
case ROLL: |
|
ret = orig_roll_rp * AUTOTUNE_PI_RATIO_FOR_TESTING; |
|
break; |
|
case PITCH: |
|
ret = orig_pitch_rp * AUTOTUNE_PI_RATIO_FOR_TESTING; |
|
break; |
|
case YAW: |
|
ret = orig_yaw_rp * AUTOTUNE_PI_RATIO_FOR_TESTING; |
|
break; |
|
} |
|
return ret; |
|
} |
|
|
|
// get tuned rate I gain for the specified axis |
|
float AC_AutoTune_Multi::get_tuned_ri(AxisType test_axis) |
|
{ |
|
float ret = 0.0f; |
|
switch (test_axis) { |
|
case ROLL: |
|
ret = tune_roll_rp*AUTOTUNE_PI_RATIO_FINAL; |
|
break; |
|
case PITCH: |
|
ret = tune_pitch_rp*AUTOTUNE_PI_RATIO_FINAL; |
|
break; |
|
case YAW: |
|
ret = tune_yaw_rp*AUTOTUNE_PI_RATIO_FINAL; |
|
break; |
|
} |
|
return ret; |
|
} |
|
|
|
// get minimum rate P (for any axis) |
|
float AC_AutoTune_Multi::get_rp_min() const |
|
{ |
|
return AUTOTUNE_RP_MIN; |
|
} |
|
|
|
// get minimum angle P (for any axis) |
|
float AC_AutoTune_Multi::get_sp_min() const |
|
{ |
|
return AUTOTUNE_SP_MIN; |
|
} |
|
|
|
// get minimum rate Yaw filter value |
|
float AC_AutoTune_Multi::get_yaw_rate_filt_min() const |
|
{ |
|
return AUTOTUNE_RLPF_MIN; |
|
}
|
|
|