You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
247 lines
8.9 KiB
247 lines
8.9 KiB
#include "AC_Avoid.h" |
|
|
|
const AP_Param::GroupInfo AC_Avoid::var_info[] = { |
|
|
|
// @Param: ENABLE |
|
// @DisplayName: Avoidance control enable/disable |
|
// @Description: Enabled/disable stopping at fence |
|
// @Values: 0:None,1:StopAtFence,2:UseProximitySensor,3:All |
|
// @Bitmask: 0:StopAtFence,1:UseProximitySensor |
|
// @User: Standard |
|
AP_GROUPINFO("ENABLE", 1, AC_Avoid, _enabled, AC_AVOID_ALL), |
|
|
|
AP_GROUPEND |
|
}; |
|
|
|
/// Constructor |
|
AC_Avoid::AC_Avoid(const AP_AHRS& ahrs, const AP_InertialNav& inav, const AC_Fence& fence, const AP_Proximity& proximity) |
|
: _ahrs(ahrs), |
|
_inav(inav), |
|
_fence(fence), |
|
_proximity(proximity) |
|
{ |
|
AP_Param::setup_object_defaults(this, var_info); |
|
} |
|
|
|
void AC_Avoid::adjust_velocity(const float kP, const float accel_cmss, Vector2f &desired_vel) |
|
{ |
|
// exit immediately if disabled |
|
if (_enabled == AC_AVOID_DISABLED) { |
|
return; |
|
} |
|
|
|
// limit acceleration |
|
float accel_cmss_limited = MIN(accel_cmss, AC_AVOID_ACCEL_CMSS_MAX); |
|
|
|
if ((_enabled & AC_AVOID_STOP_AT_FENCE) > 0) { |
|
adjust_velocity_circle(kP, accel_cmss_limited, desired_vel); |
|
adjust_velocity_poly(kP, accel_cmss_limited, desired_vel); |
|
} |
|
|
|
if ((_enabled & AC_AVOID_USE_PROXIMITY_SENSOR) > 0) { |
|
adjust_velocity_proximity(kP, accel_cmss_limited, desired_vel); |
|
} |
|
} |
|
|
|
// convenience function to accept Vector3f. Only x and y are adjusted |
|
void AC_Avoid::adjust_velocity(const float kP, const float accel_cmss, Vector3f &desired_vel) |
|
{ |
|
Vector2f des_vel_xy(desired_vel.x, desired_vel.y); |
|
adjust_velocity(kP, accel_cmss, des_vel_xy); |
|
desired_vel.x = des_vel_xy.x; |
|
desired_vel.y = des_vel_xy.y; |
|
} |
|
|
|
/* |
|
* Adjusts the desired velocity for the circular fence. |
|
*/ |
|
void AC_Avoid::adjust_velocity_circle(const float kP, const float accel_cmss, Vector2f &desired_vel) |
|
{ |
|
// exit if circular fence is not enabled |
|
if ((_fence.get_enabled_fences() & AC_FENCE_TYPE_CIRCLE) == 0) { |
|
return; |
|
} |
|
|
|
// exit if the circular fence has already been breached |
|
if ((_fence.get_breaches() & AC_FENCE_TYPE_CIRCLE) != 0) { |
|
return; |
|
} |
|
|
|
// get position as a 2D offset in cm from ahrs home |
|
const Vector2f position_xy = get_position(); |
|
|
|
float speed = desired_vel.length(); |
|
// get the fence radius in cm |
|
const float fence_radius = _fence.get_radius() * 100.0f; |
|
// get the margin to the fence in cm |
|
const float margin = get_margin(); |
|
|
|
if (!is_zero(speed) && position_xy.length() <= fence_radius) { |
|
// Currently inside circular fence |
|
Vector2f stopping_point = position_xy + desired_vel*(get_stopping_distance(kP, accel_cmss, speed)/speed); |
|
float stopping_point_length = stopping_point.length(); |
|
if (stopping_point_length > fence_radius - margin) { |
|
// Unsafe desired velocity - will not be able to stop before fence breach |
|
// Project stopping point radially onto fence boundary |
|
// Adjusted velocity will point towards this projected point at a safe speed |
|
Vector2f target = stopping_point * ((fence_radius - margin) / stopping_point_length); |
|
Vector2f target_direction = target - position_xy; |
|
float distance_to_target = target_direction.length(); |
|
float max_speed = get_max_speed(kP, accel_cmss, distance_to_target); |
|
desired_vel = target_direction * (MIN(speed,max_speed) / distance_to_target); |
|
} |
|
} |
|
} |
|
|
|
/* |
|
* Adjusts the desired velocity for the polygon fence. |
|
*/ |
|
|
|
void AC_Avoid::adjust_velocity_poly(const float kP, const float accel_cmss, Vector2f &desired_vel) |
|
{ |
|
// exit if the polygon fence is not enabled |
|
if ((_fence.get_enabled_fences() & AC_FENCE_TYPE_POLYGON) == 0) { |
|
return; |
|
} |
|
|
|
// exit if the polygon fence has already been breached |
|
if ((_fence.get_breaches() & AC_FENCE_TYPE_POLYGON) != 0) { |
|
return; |
|
} |
|
|
|
// get polygon boundary |
|
// Note: first point in list is the return-point (which copter does not use) |
|
uint16_t num_points; |
|
Vector2f* boundary = _fence.get_polygon_points(num_points); |
|
|
|
// exit if there are no points |
|
if (boundary == NULL || num_points == 0) { |
|
return; |
|
} |
|
|
|
// do not adjust velocity if vehicle is outside the polygon fence |
|
const Vector3f& position = _inav.get_position(); |
|
Vector2f position_xy(position.x, position.y); |
|
if (_fence.boundary_breached(position_xy, num_points, boundary)) { |
|
return; |
|
} |
|
|
|
// Safe_vel will be adjusted to remain within fence. |
|
// We need a separate vector in case adjustment fails, |
|
// e.g. if we are exactly on the boundary. |
|
Vector2f safe_vel(desired_vel); |
|
|
|
uint16_t i, j; |
|
for (i = 1, j = num_points-1; i < num_points; j = i++) { |
|
// end points of current edge |
|
Vector2f start = boundary[j]; |
|
Vector2f end = boundary[i]; |
|
// vector from current position to closest point on current edge |
|
Vector2f limit_direction = Vector2f::closest_point(position_xy, start, end) - position_xy; |
|
// distance to closest point |
|
const float limit_distance = limit_direction.length(); |
|
if (!is_zero(limit_distance)) { |
|
// We are strictly inside the given edge. |
|
// Adjust velocity to not violate this edge. |
|
limit_direction /= limit_distance; |
|
limit_velocity(kP, accel_cmss, safe_vel, limit_direction, MAX(limit_distance - get_margin(),0.0f)); |
|
} else { |
|
// We are exactly on the edge - treat this as a fence breach. |
|
// i.e. do not adjust velocity. |
|
return; |
|
} |
|
} |
|
|
|
desired_vel = safe_vel; |
|
} |
|
|
|
/* |
|
* Adjusts the desired velocity based on output from the proximity sensor |
|
*/ |
|
void AC_Avoid::adjust_velocity_proximity(const float kP, const float accel_cmss, Vector2f &desired_vel) |
|
{ |
|
// exit immediately if proximity sensor is not present |
|
if (_proximity.get_status() != AP_Proximity::Proximity_Good) { |
|
return; |
|
} |
|
|
|
// exit immediately if no desired velocity |
|
if (desired_vel.is_zero()) { |
|
return; |
|
} |
|
|
|
// normalise desired velocity vector |
|
Vector2f vel_dir = desired_vel.normalized(); |
|
|
|
// get angle of desired velocity |
|
float heading_rad = atan2f(vel_dir.y, vel_dir.x); |
|
|
|
// rotate desired velocity angle into body-frame angle |
|
float heading_bf_rad = wrap_PI(heading_rad - _ahrs.yaw); |
|
|
|
// get nearest object using body-frame angle and shorten desired velocity (which must remain in earth-frame) |
|
float distance_m; |
|
if (_proximity.get_horizontal_distance(degrees(heading_bf_rad), distance_m)) { |
|
limit_velocity(kP, accel_cmss, desired_vel, vel_dir, MAX(distance_m*100.0f - 200.0f, 0.0f)); |
|
} |
|
} |
|
|
|
/* |
|
* Limits the component of desired_vel in the direction of the unit vector |
|
* limit_direction to be at most the maximum speed permitted by the limit_distance. |
|
* |
|
* Uses velocity adjustment idea from Randy's second email on this thread: |
|
* https://groups.google.com/forum/#!searchin/drones-discuss/obstacle/drones-discuss/QwUXz__WuqY/qo3G8iTLSJAJ |
|
*/ |
|
void AC_Avoid::limit_velocity(const float kP, const float accel_cmss, Vector2f &desired_vel, const Vector2f limit_direction, const float limit_distance) const |
|
{ |
|
const float max_speed = get_max_speed(kP, accel_cmss, limit_distance); |
|
// project onto limit direction |
|
const float speed = desired_vel * limit_direction; |
|
if (speed > max_speed) { |
|
// subtract difference between desired speed and maximum acceptable speed |
|
desired_vel += limit_direction*(max_speed - speed); |
|
} |
|
} |
|
|
|
/* |
|
* Gets the current xy-position, relative to home (not relative to EKF origin) |
|
*/ |
|
Vector2f AC_Avoid::get_position() |
|
{ |
|
const Vector3f position_xyz = _inav.get_position(); |
|
const Vector2f position_xy(position_xyz.x,position_xyz.y); |
|
const Vector2f diff = location_diff(_inav.get_origin(),_ahrs.get_home()) * 100.0f; |
|
return position_xy - diff; |
|
} |
|
|
|
/* |
|
* Computes the speed such that the stopping distance |
|
* of the vehicle will be exactly the input distance. |
|
*/ |
|
float AC_Avoid::get_max_speed(const float kP, const float accel_cmss, const float distance) const |
|
{ |
|
return AC_AttitudeControl::sqrt_controller(distance, kP, accel_cmss); |
|
} |
|
|
|
/* |
|
* Computes distance required to stop, given current speed. |
|
* |
|
* Implementation copied from AC_PosControl. |
|
*/ |
|
float AC_Avoid::get_stopping_distance(const float kP, const float accel_cmss, const float speed) const |
|
{ |
|
// avoid divide by zero by using current position if the velocity is below 10cm/s, kP is very low or acceleration is zero |
|
if (kP <= 0.0f || accel_cmss <= 0.0f || is_zero(speed)) { |
|
return 0.0f; |
|
} |
|
|
|
// calculate distance within which we can stop |
|
// accel_cmss/kP is the point at which velocity switches from linear to sqrt |
|
if (speed < accel_cmss/kP) { |
|
return speed/kP; |
|
} else { |
|
// accel_cmss/(2.0f*kP*kP) is the distance at which we switch from linear to sqrt response |
|
return accel_cmss/(2.0f*kP*kP) + (speed*speed)/(2.0f*accel_cmss); |
|
} |
|
}
|
|
|